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Minimal polynomials of some beta-numbers

and Chebyshev polynomials
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1. Introduction. For β > 1, the β-transformation Tβ : x 7→ βx (mod 1)
is multiplication by β modulo 1. Then the β-expansion dβ(x) = (xi)i≥1 of

x ∈ [0, 1] is defined by xi = ⌊βT i−1
β (x)⌋. While Rényi [15] introduced the

β-transformation and proved that it is ergodic, Parry [13] found its invariant
measure and characterized possible sequences that can be a β-expansion. It
was shown that the β-expansion of 1 bounds, in a sense, the β-expansion
of any other x ∈ [0, 1) in terms of lexicographic order. To be more precise,
let us fix β > 1 and assume that s = x1x2 · · · is an infinite word over the
alphabet {0, 1, . . . , ⌊β⌋}. In addition, put

d∗β(1) := lim
εց0

dβ(1 − ε);

we have d∗β(1) = (e1 · · · em−1(em − 1))ω if dβ(1) = e1 · · · em0ω and d∗β(1) =
dβ(1) otherwise. Here aω := aa · · · . Then Parry showed that s = dβ(x) for
some x ∈ [0, 1) if and only if σn(s) < d∗β(1) for all n ≥ 0, where σ is the
shift.

If dβ(1) is eventually periodic, say dβ(1) = e1 · · · en(en+1 · · · en+p)
ω, then

we call β a beta-number. In this case, β is the dominant root of

(

xn+p −
n+p
∑

i=1

eix
n+p−i

)

−
(

xn −
n

∑

i=1

eix
n−i

)

= 0.

In particular, if dβ(1) is finite, i.e., dβ(1) = e1 · · · en0ω, then we call β a
simple beta-number and β is the dominant root of

xn −
n

∑

i=1

eix
n−i = 0.
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These two polynomials above are called the beta-polynomial of β, or simply
the β-polynomial if β is clear from the context. The term characteristic

polynomial is also used in the literature.

We focus on a special class of β-expansions. We study the real β > 1 for
which d∗β(1) encodes a rational rotation on R/Z. In this case, β is an algebraic
integer. For the case of irrational rotations, see [4, 6]. An arithmetic study
was also pursued there and the current work is in fact motivated by those
papers.

Let α > 0 and ̺ ∈ [0, 1]. We consider the following two infinite sequences
called lower and upper mechanical words with slope α and intercept ̺: for
n ≥ 0,

sα,̺(n) = ⌊α(n + 1) + ̺⌋ − ⌊αn + ̺⌋,
s′α,̺(n) = ⌈α(n + 1) + ̺⌉ − ⌈αn + ̺⌉.

Note that these are infinite words over the alphabet A = {⌈α⌉ − 1, ⌈α⌉}.
For an irrational α, the words are aperiodic and called Sturmian words. On
the other hand, a rational α produces purely periodic words, whose shortest
period words are called Christoffel words. Our main concern is the rational
case. We now describe it in more detail.

Let α = p/q > 0 with gcd(p, q) = 1 and b = ⌈α⌉. Then A = {b − 1, b}
and the lengths of the Christoffel words, say tp,q, t′p,q, are q. So sα,0 = tωp,q

and s′α,0 = (t′p,q)
ω. We also have

tp,q = (b − 1)zp,qb, t′p,q = bzp,q(b − 1),

for some word zp,q, called a central word. We see that zp,q is a palindrome,
i.e., zp,q is equal to its reversal (see [12]). The motivation of this paper comes
from the next proposition. For any word w = a0a1 · · · an−1 with ai ∈ Z, we
denote by −→w the vector (a0, . . . , an−1) ∈ Zn.

Proposition 1.1 ([4, 6]). For α > 0, there exists a unique β > 1 for

which d∗β(1) = s′α,0. Define ∆ : (0,∞) → (1,∞) by ∆(α) = β. Then

(a) At an irrational α > 0, ∆ is continuous, and ∆(α) is a transcen-

dental number.

(b) ∆ is left-continuous but not right-continuous at every rational.

(c) If α = p/q with gcd(p, q) = 1 and b = ⌈α⌉, then the ∆(α)-polynomial

is

xq −−−−→
bzp,qb · (xq−1, xq−2, . . . , 1).

(d) For the same rational α as above, let ∆(α+) := limx→α+ ∆(x). Then

the ∆(α+)-polynomial is

xq+1 −−−−→
bzp,qb · (xq, xq−1, . . . , x) − x + 1.
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For a rational α > 0, ∆(α) is called a lower self-Christoffel number, and
the right limit ∆(α+) an upper self-Christoffel number.

We are now in a position to state our main theorem.

Theorem. Let p0/q0 be a fixed rational with 0 < p0 ≤ q0 and gcd(p0, q0)
= 1. For a positive integer b, suppose p/q = b− 1 + p0/q0. Then there exists

an effectively computable B such that for all b ≥ B, we have:

(a) xq −−−−→
bzp,qb · (xq−1, xq−2, . . . , 1) is irreducible over Q,

(b) xq+1 −−−−→
bzp,qb · (xq, xq−1, . . . , x) − x + 1 is irreducible over Q.

Thus the polynomials mentioned are eventually the minimal polynomials
of ∆(p/q) and ∆(p/q+). The above theorem was in fact proved in [7] but we
did not know from which value b on the polynomials were irreducible. Here
we give another proof involving Chebyshev polynomials. The new proof en-
ables us to effectively find B for which b ≥ B implies that the corresponding
polynomials are irreducible over Q. The effective procedure for finding B is
given in Section 4. These quantitative results have some connections with
other fields of number theory, which will be discussed in Section 4.

2. Preliminaries. In this section we briefly review some concepts and
known results to be used in the main proof. First we recall some definitions
in number theory.

Among algebraic integers, a Pisot number is α > 1 all of whose con-
jugates lie inside the unit circle. Suppose g(x) = anxn + · · · + a1x + a0 =
an

∏n
i=1(x − αi) ∈ Z[x] with an 6= 0. Then the Mahler measure of g is the

positive number defined by

M(g) = |an|
n

∏

i=1

max{1, |αi|}.

In particular, cyclotomic polynomials have Mahler measure 1. The most
famous problem on Mahler measures, posed by Lehmer [10], is whether or
not 1 is an accumulation point of the set {M(g) | g ∈ Z[x]}. Though it is
still open, an answer can be given for a special class of polynomials. Let
f ∈ R[x] and deg(f) = n. If f satisfies f(x) = xnf(x−1) then we say that f
is reciprocal. Now the Mahler measures of nonreciprocal polynomials cannot
be less than the smallest Pisot number:

Theorem 2.1 ([17]). Let p(x) ∈ Z[x] and let θ0 = 1.32472 . . . be the

smallest Pisot number , i.e., the real zero of x3 − x − 1. If M(p) < θ0, then

p(x) is a reciprocal polynomial.

Let Tn and Un be the nth Chebyshev polynomials of the first and the
second kind respectively. Among many equivalent definitions we adopt the
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following simple equations, which are suitable for our proof:

Tn(cos θ) := cos nθ, Un(cos θ) :=
sin(n + 1)θ

sin θ
.

For instance, T2(x) = 2x2 − 1 and U3(x) = 8x3 − 4x.

In the analysis of our polynomials, we shall encounter some reciprocal
polynomials, and they will be converted into more convenient ones via a
transformation introduced in [3].

Suppose that p(z) =
∑2n

i=0 aiz
i ∈ R[z] is a nonzero reciprocal polynomial

with ai = a2n−i, i = 0, . . . , n. If a2n = a2n−1 = · · · = an+k+1 = 0 but
an+k 6= 0, then

p(z) =
2n
∑

i=0

aiz
i = zn

[

an+k

(

zk +
1

zk

)

+ · · · + an+1

(

z +
1

z

)

+ an

]

= an+kz
n

k
∏

i=1

(

z +
1

z
− αi

)

= an+kz
n−k

k
∏

i=1

(z2 − αiz + 1)

for some αi ∈ C, i = 1, . . . , k. Given a reciprocal polynomial p as above, the
Chebyshev transform T of p is defined by

T p(x) := an+k

k
∏

i=1

(x − αi).

Theorem 2.2 ([3]). The Chebyshev transform T is a linear isomorphism

of the space of real reciprocal polynomials, {p(z) =
∑2n

i=0 aiz
i ∈ R[z] : ai =

a2n−i, i = 0, . . . , n}, into the space of real polynomials of degree at most n.

Note that

|p(eiθ)| = |T p(2 cos θ)|.
Chebyshev polynomials now naturally appear via Chebyshev transforms.

Lemma 2.3 ([9]). If p(z) = z2n +1 and q(z) = z2n +z2n−2 + · · ·+z2 +1,
then T p(x) = 2Tn(x/2) and T q(x) = Un(x/2).

The following geometric study on beta-polynomials will be useful below.
The reader should note that all the bounds given in the proposition tend to
1 as β increases.

Proposition 2.4 ([7]).

(a) If β is an upper self-Christoffel number and γ 6= β is a zero of the

β-polynomial , then

|γ| ≤ β +
√

β2 + 4β

2β
.
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(b) If β is a lower self-Christoffel number and γ 6= β is a zero of the

β-polynomial , then

2β + 1 −
√

8β + 1

2β
≤ |γ| ≤ 2β + 1 +

√
8β + 1

2β
.

3. Proof. Throughout this section, the notations appearing in the The-
orem will be used without explicit mention. First we consider lower self-
Christoffel numbers.

Put f(x) = xq − −−−→
bzp,qb · (xq−1, xq−2, . . . , 1) and suppose that f(x) =

g(x)h(x) over Q and g(β) 6= 0 = h(β). Then Theorem 2.1 together with
Proposition 2.4 implies that g is eventually reciprocal as b increases. If γ is
a zero of g, then so is γ−1. Thus

γq =
−−−→
bzp,qb · (γq−1, γq−2, . . . , 1) = γq−1−−−→bzp,qb · (γ1−q, γ2−q, . . . , 1)

= γq−1γ−q = γ−1,

where we use the fact that bzp,qb is a palindrome. So γq+1 = 1.

Assume that q = 2n + 1 and γj = eiθj = e2jπi/(q+1) is a zero of g for
some j = 1, . . . , q. We then consider the polynomial

r(z) := zq − f(z) =
−−−→
bzp,qb · (z2n, z2n−1, . . . , 1)

= b(z2n + z2n−1 + · · · + 1) −
n

∑

k=1

akz
k(z2n−2k + 1), ak ∈ {0, 1/2, 1}.

Together with the equation

z2n+z2n−1+· · ·+1 = (z2n+z2n−2+· · ·+z2+1)+z(z2n−2+z2n−4+· · ·+z2+1),

Lemma 2.3 guarantees that the Chebyshev transform of r(z) is

T r(x) = b

(

Un

(

x

2

)

+ Un−1

(

x

2

))

−
n

∑

k=1

2akTn−k

(

x

2

)

.

To compute T r(2 cos θj), we use the fact that Tn−k(cos θj) = cos(n − k)θj

and that

Un(cos θj) + Un−1(cos θj) =
sin(n + 1)θj + sinnθj

sin θj
(1)

=
2 sin

(2n+1)θj

2 cos
θj

2

sin θj
=

sin
(2n+1)θj

2

sin
θj

2

.

Thus one finds that

1 = |T r(2 cos θj)| ≥ b

∣

∣sin
(2n+1)θj

2

∣

∣

∣

∣sin
θj

2

∣

∣

−
n

∑

k=1

2ak.
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Since 0 < θj/2 < π and (2n + 1)θj/2 = (2n + 1)jπ/(2n + 2) cannot be an
integer multiple of π for any j = 1, . . . , 2n + 1, this leads to a contradiction
as b increases.

If q = 2n, then

r(z) = zq − f(z) =
−−−→
bzp,qb · (z2n−1, z2n−2, . . . , 1)

= b(z2n−1 + z2n−2 + · · · + 1) −
n−1
∑

k=1

akz
k(z2n−2k−1 + 1), ak ∈ {0, 1}.

If n = 1, then the sum is understood to be zero. Define a polynomial r1(z)
by

r1(z) :=
r(z)

z + 1
= b(z2n−2 + z2n−4 + · · · + z2 + 1)

−
n−1
∑

k=1

akz
k(z2n−2k−2 − z2n−2k−3 + · · · − z + 1).

Its Chebyshev transform is

T r1(x) = bUn−1

(

x

2

)

−
n−1
∑

k=1

ak

(

Un−k−1

(

x

2

)

− Un−k−2

(

x

2

))

.

If γj = eiθj = e2jπi/(q+1) is a zero of g for some j = 1, . . . , q, then

(2) Un−k−1(cos θj) − Un−k−2(cos θj) =
sin(n − k)θj − sin(n − k − 1)θj

sin θj

=
2 cos

(2n−2k−1)θj

2 sin
θj

2

sin θj
=

cos
(2n−2k−1)θj

2

cos
θj

2

.

Since γj 6= −1, there is a constant M so that

M ≥ |T r1(2 cos θj)| ≥ b
|sinnθj |
|sin θj |

−
n

∑

k=1

ak
∣

∣cos
θj

2

∣

∣

.

For any j = 1, . . . , 2n, the number nθj = 2njπ/(2n + 1) is never an integer
multiple of π and the number θj/2 = jπ/(2n + 1) cannot be π/2. Now we
get a contradiction for every sufficiently large b. This proves part (a) of the
Theorem.

The crucial ingredient in the previous proof is to split a given beta-
polynomial into a reciprocal polynomial and a monomial. This technique
also works for upper self-Christoffel numbers.

Put f(x) = xq+1 − −−−→
bzp,qb · (xq, xq−1, . . . , x) − x + 1 and suppose that

f(x) = g(x)h(x) over Q and g(β) 6= 0 = h(β). Then the same reasoning as
before shows that g is eventually reciprocal as b increases. If γ is a zero of g,
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then so is γ−1. Hence

γ = γq+1 −−−−→
bzp,qb · (γq, γq−1, . . . , γ) + 1

= γq+1[γ−q−1 −−−−→
bzp,qb · (γ−q, γ−q+1, . . . , γ−1) + 1] = γq+1γ−1 = γq,

which gives γq−1 = 1.

First, we suppose that q = 2n− 1 and γj = eiθj = e2jπi/(q−1) is a zero of
g for some j = 1, . . . , q − 2. We then put

r(z) := f(z) + z = z2n −−−−→
bzp,qb · (z2n−1, z2n−2, . . . , z) + 1

= z2n + z2n−1 + · · · + 1 − (b + 1)z(z2n−2 + · · · + 1)

+

n
∑

k=1

akz
k(z2n−2k + 1), ak ∈ {0, 1/2, 1}.

Similar arguments to those above yield the Chebyshev transform

T r(x) = Un

(

x

2

)

+ Un−1

(

x

2

)

− (b + 1)

(

Un−1

(

x

2

)

+ Un−2

(

x

2

))

+
n

∑

k=1

2akTn−k

(

x

2

)

.

Using Tn−k(cos θj) = cos(n − k)θj and (1) one thus finds that

(3) 1 = |T r(2 cos θj)| ≥ (b + 1)

∣

∣sin
(2n−1)θj

2

∣

∣

∣

∣sin
θj

2

∣

∣

−
∣

∣sin
(2n+1)θj

2

∣

∣

∣

∣sin
θj

2

∣

∣

−
n

∑

k=1

2ak.

Since 0 < θj/2 < π and (2n − 1)θj/2 = (2n − 1)jπ/(2n − 2) cannot be
an integer multiple of π for any j = 1, . . . , 2n − 3, we eventually get a
contradiction as b increases.

If q = 2n, then

r(z) = f(z) + z = z2n+1 −−−−→
bzp,qb · (z2n, z2n−1, . . . , z) + 1

= z2n+1 + z2n + · · · + 1 − (b + 1)z(z2n−1 + · · · + 1)

+

n
∑

k=1

akz
k(z2n+1−2k + 1), ak ∈ {0, 1}.

This can be rewritten in the form

r1(z) :=
r(z)

z + 1

= z2n + z2n−2 + · · · + z2 + 1 − (b + 1)z(z2n−2 + z2n−4 + · · · + z2 + 1)

+
n

∑

k=1

akz
k(z2n−2k − z2n−2k−1 + · · · − z + 1).
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Hence we find

T r1(x) = Un

(

x

2

)

− (b + 1)Un−1

(

x

2

)

+
n

∑

k=1

ak

(

Un−k

(

x

2

)

−Un−k−1

(

x

2

))

.

If γj = eiθj = e2jπi/(q−1) is a zero of g for some j = 1, . . . , q − 2, then one
can verify as in (2) that

Un−k(cos θj) − Un−k−1(cos θj) =
cos

(2n−2k+1)θj

2

cos
θj

2

.

Since γj 6= −1, there is a constant M so that

M ≥ |T r1(2 cos θj)| ≥ (b + 1)
|sinnθj |
|sin θj |

− |sin(n + 1)θj |
|sin θj |

−
n

∑

k=1

ak
∣

∣cos
θj

2

∣

∣

.

For any j = 1, . . . , 2n − 2, the number nθj = 2njπ/(2n − 1) is never an
integer multiple of π and the number θj/2 = jπ/(2n − 1) cannot be π/2.
Now we get a contradiction for every sufficiently large b.

4. Discussion and further studies. Suppose that an integer b ≥ 1
is divisible by a prime p but not by p2. Then the Eisenstein criterion shows
that the beta-polynomial of ∆((bq − 1)/q) is irreducible for any q ≥ 1. Now
we introduce another interesting connection between prime numbers and ir-
reducibility for self-Christoffel numbers. This is related to Mersenne primes,
i.e., primes of the form 2n −1. A famous open question in number theory is:

Are there infinitely many Mersenne primes?

We need a classical irreducibility criterion for polynomials in Z[x], which
appears for example in [14].

Theorem 4.1. Let β1, . . . , βn be the zeros of some f(x) ∈ Z[x] of de-

gree n. If there exists an integer b such that f(b) is prime, f(b − 1) 6= 0
and

(4) ℜ(βi) < b − 1/2 for 1 ≤ i ≤ n,

then f(x) is irreducible over Q.

We consider the beta-polynomials of ∆(1/q) and ∆(1/q+). Denote them
by f l

q(x) and fu
q (x) respectively, and take b = 2. Then f l

q(1) = fu
q (1) = −1.

If q ≥ 3 then ∆(1/q) < 3/2, and if q ≥ 4 then ∆(1/q+) < 3/2. Since
beta-numbers are Perron numbers [11], condition (4) holds for lower (resp.
upper) self-Christoffel numbers whenever q ≥ 3 (resp. q ≥ 4). We also note
that

f l
q(2) = 2q−1 − 1, fu

q (2) = 2q − 3.

Now one can say the following:
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1. If there exist infinitely many Mersenne primes, then f l
q(x) is irre-

ducible for infinitely many q ≥ 3.
2. If there exist infinitely many primes of the form 2n − 3, then fu

q (x) is

irreducible for infinitely many q ≥ 4.

Using a computer the author checked the irreducibility of beta-polyno-
mials of self-Christoffel numbers. To be more precise, suppose α = p/q+b−1,
where 1 ≤ p < q ≤ 200, gcd(p, q) = 1 and 1 ≤ b ≤ 150. For given 1/2 ≤
p/q ≤ 199/200, the irreducibility of beta-polynomials of ∆(α) and ∆(α+)
was checked for 1 ≤ b ≤ 150. When some beta-polynomial is reducible, the
case was recorded as “(p, q, b)” in a row. As a result, a table was obtained,
which comprises 5642 (resp. 3422) reducible cases for lower (resp. upper)
self-Christoffel numbers. This is too huge to be included here. We refer to
[8] instead. For example, if α = 6/11 + b − 1 then the beta-polynomial of
∆(α) is irreducible for all b = 1, 2, 4 ≤ b ≤ 150, and the beta-polynomial of
∆(α+) is irreducible for all 2 ≤ b ≤ 150. On the other hand, if α = 4/9+b−1
then the beta-polynomials of both ∆(α) and ∆(α+) are irreducible for all
1 ≤ b ≤ 150. We will use this table below implicitly.

Suppose α = p/q+b−1. If we follow the proof of the Theorem described
in Section 3, then we can find effectively the smallest possible constant B
for which b ≥ B implies that the beta-polynomial of ∆(α) or ∆(α+) is
irreducible. This procedure is demonstrated in the next example.

Example 4.2. Let α = 4/7 + b − 1 and let us find B for the upper
self-Christoffel number ∆(α+). First we must determine B1 so that the
Mahler measure of g is less than θ0 given in Theorem 2.1. One can see that
it is enough that

(

B1 +
√

B2
1 + 4B1

2B1

)5

< θ0.

So B1 ≥ 17. Second we also find B2 which contradicts inequality (3). Com-
putation shows that B2 ≥ 11. Let B3 = max{B1, B2} = 17. Then for b ≥ B3

the beta-polynomial of ∆((4/7 + b − 1)+) is irreducible. One readily notes
that the constant B3 works not only for 4/7 but for all 1/7, 2/7, . . . , 6/7.
To find the smallest B instead of B3, we consult the table of [8]. It suffices
to check whether or not (1, 7, b), (2, 7, b), . . . , (6, 7, b) for 1 ≤ b ≤ 16 are on
the list. But none of them is, even for 1 ≤ b ≤ 150. Now we can state the
following (i.e., in this case the beta-polynomial of ∆(α+) is irreducible for
every b ≥ B = 1):

For any integer p ≥ 1 which is not a multiple of 7, the beta-polynomial

of ∆(p/7+) is irreducible.

Some calculations tempt us to conjecture that all lower self-Christoffel
numbers are Pisot numbers. But this is false as explained below.
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Flatto et al. [5] considered the dynamical zeta-function

ζβ(z) = exp

( ∞
∑

n=1

Pn

n
zn

)

for the β-transformation Tβ , where Pn is the number of fixed points of Tn
β .

They wrote it in terms of the β-expansions of 1:

1. If β is not a simple beta-number with dβ(1) = e1e2 · · · , then

ζβ(z) =
1

1 − ∑∞
i=1 eizi

.

2. If β is a simple beta-number with dβ(1) = e1 · · · en, then

ζβ(z) =
1 − zn

1 −
∑n

i=1 eizi
.

In both cases, ζβ(z) is meromorphic in the open unit disk. It has a simple
pole at z = 1/β and no other pole in {z : |z| ≤ 1/β}. Then M(β) was defined
by the second smallest modulus of the poles of ζβ(z). If no pole other than
1/β exists in the open unit disk, then M(β) = 1. The main interest was
the behavior of the function M(β). The next theorem hints at the possible
abundance of non-Pisot lower self-Christoffel numbers.

Theorem 4.3 ([5]). There exists ε > 0 such that M(β) < 1 for every

β ∈ (1, 1 + ε).

In particular, if the Mersenne prime conjecture is true then there are
infinitely many non-Pisot lower self-Christoffel numbers. There still remains
a question in this direction.

Question 1. Let p/q be a fixed rational with 0 < p ≤ q and gcd(p, q)
= 1. If α = b − 1 + p/q for b ∈ N, is ∆(α) eventually a Pisot number as b
increases?

Together with the Theorem, an affirmative answer to Question 1 would
produce many concrete examples of irreducible Pisot type beta-substitutions.
See [1] for details.

While our main interest in this paper is irreducible beta-polynomials,
Boyd [2] focused on reducible beta-polynomials. Specifically, he dealt with
the situation where β is a Pisot number. It is well known that every Pisot
number is a beta-number [16]. Let β be a Pisot number and f(x) be the
β-polynomial. Now we suppose that f(x) = g(x)h(x) is a nontrivial fac-
torization over Q, where h(x) is the minimal polynomial of β. Boyd called
g(x) the complementary factor. Although extensive calculations made some
mathematicians suspect that g(x) should be a product of cyclotomic polyno-
mials, Boyd showed by systematic computation that there exist many Pisot
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numbers β for which their complementary factors are noncyclotomic or even
nonreciprocal.

Motivated by Boyd’s work, the author checked the complementary fac-
tors of all reducible cases listed in [8] for both lower (5642) and upper (3422)
self-Christoffel numbers. Surprisingly enough, all the complementary factors
are (either cyclotomic polynomials or) products of cyclotomic polynomials.

For lower self-Christoffel numbers in [8], all irreducibles of the comple-
mentary factors are among the Φn with n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15,
16, 18, 20, 21, 22, 24, 26, 28, or 30, where Φn is the nth cyclotomic polynomial.
For upper self-Christoffel numbers in [8], all irreducibles of the complemen-
tary factors are among the Φn with n = 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, or 14.

A natural question arises.

Question 2. For β a lower or an upper self-Christoffel number , if the β-

polynomial is reducible, is its complementary factor a product of cyclotomic

polynomials?
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