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Poisson distribution for a sum
of additive functions on shifted primes

by

JoNas S1auLys and GEDIMINAS STEPANAUSKAS (Vilnius)

1. Introduction. The function f defined on the positive integers is said
to be additive if

f(mn) = f(m)+ f(n) for (m,n)=1, f(1)=0.
If, in addition,
F") = f(p)

for all prime powers p*, then f is called strongly additive. In our paper the
additive functions always depend on a real parameter x, therefore we will
write f.

The weak convergence, as x+ — o0, of the distributions

(1) ve(n <z, fo(A(n)) < u) := & oo,

n<z

fo(A(n))<u

where A(n) = n, is quite well explored (see monographs [2], [3], [7]). Other
cases, when A(n) is an arithmetically interesting sequence of positive inte-
gers, are more difficult and less considered. But there are rather general re-
sults when A(n) runs through polynomial values or through a set of shifted
primes (for related references see [2], [6]). For the study of the limit dis-
tribution of (1), various methods were used. Some results proved by sieve
methods, by approximating an additive function by a sum of independent
random variables, or by the factorial moments method can be generalized
to sums of two or more additive functions with shifted arguments (see [8]
for references). And this can be done without changing the method of proof
provided the arithmetic structure of A(n) is not too difficult. In [8], [9] we

2000 Mathematics Subject Classification: Primary 11N37, 11N60.
Key words and phrases: additive arithmetic function, Poisson distribution, factorial
moments.

[403] © Instytut Matematyczny PAN, 2007



404 J. Siaulys and G. Stepanauskas

considered the weak convergence of the distributions

ve(p <z, fo(p+1) <u)
and
vz(n <z, fo(n) + ge(n+1) <u)

to the Poisson law.

In the present article we continue the investigations of [8], [9] and obtain
necessary and sufficient conditions for the weak convergence, as * — oo, of
the distributions

ve(p <@, fa(p+1) +g2(p+2) <)

to the Poisson law. The Poisson law as the limit distribution for the sum of
additive functions on the set of shifted primes has never been considered.
We consider the case where the strongly additive functions on the set of
primes take only two values 0 and 1. To find weak convergence conditions,
we use the method of factorial moments.

Throughout the paper we will keep the following notation. p and ¢ with
or without subscripts mean prime numbers; ¢, ¢, co, . . . are absolute positive
constants. We denote by e(z) any quantity vanishing as © — oo. The nota-
tion a < b is equivalent to the inequality |a| < ¢b for some c. If a constant ¢,
a constant implied by <, or a vanishing function £(z) depend on a param-
eter a, we write ¢, <4, €q(x). The notation F(u) = F(u) means that
the set of distribution functions Fj(u) converges weakly to the distribution
function F'(u) as x — oo. The Poisson distribution function with parame-
ter A (A > 0) is denoted by I7)(u) and the classical Euler function by ¢.
The superscript 7 in Zf ,max/ means that the summation or maximum is
extended over primes ¢ for which f;(¢) = 1. Other notation is generally
accepted or is later discussed in the text.

2. Main result and examples

THEOREM. Let f, and g, © > 2, be two sets of strongly additive func-
tions such that

fz(p), 9z (p) € {0,1}

for all primes p and

(H) xlggo(logm)< 3 %-ﬁ- S 3) —0

r*<q<z r*<q<z
for all a € (0,1). In order that
(2) va(p <, falp+1) + 92(p +2) <u) = Ix(u)
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as x — oo it is both necessary and sufficient that

(D) >

q<z q<z
. sl 1
(4) lim | max/ — +max? - | =0.
r—oo\ ¢z ¢ gq<z (

ExXAMPLE 1. Let ¢¢(x) and 1)4(x) be unboundedly increasing functions
such that log1f(x)/logz — 0 and logvy(x)/logz — 0 as * — oco. Let

1 if () < p < 09 (a),
e A
0 otherwise,
and
_ )1 it dy(e) <p <4y,
92(p) = .
0 otherwise,
with some «, 3 > 1. It follows from the Theorem that

(log a3)*

Jim ve(p < @, folp+1) + ga(p+2) = k) = = )

for every fixed k =0,1,2,.... If £ = 0 we have

#{ ‘ p + 1 has no prime factors in the interval (¢f(z), % ()] }
<z
b= p + 2 has no prime factors in (¢g(x), 1,[)5(:13)]
x
- aflogx
as T — 00.
EXAMPLE 2. Let
1 iflogz < p < (logx)?,
o) = sty = { 1 108 <= Qo)
0 otherwise.
The Theorem implies that
. log 4)*
lim v(p < 2. folp+1) +gs(p+2) = k) = LD
for every fixed k =0,1,2,.... In case k = 0, we get
p—+ 1 and p + 2 have no prime factors T
#Fp<z|. 2 ~
in (logz, (logx)“] 4log x

as ¢ — o0o. If kK =1 we have

#{pr

as r — OQ.

exactly one prime in (log z, (log x)?] xlog4
divides p+1 or p + 2 4logz
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3. Auxiliary lemmas

LEMMA 1 ([4]). For every real-valued additive function h, every real num-
ber b and every integer a,

~1/2
ve(p <z, h(p+a) =b) < <4+ > é) .

q<z
h(g)#0
LEMMA 2 ([5, Theorem 3.7]). The inequality

T
m(x,d,v) = 1< ——
p%; ¢(d)log a

p=vmodd
holds uniformly for all x > 2 and integers d, v with (v,d) =1, 1 <d < x.

LEMMA 3 ([1]). Let K be a positive real number. Then there exists a real
number L such that uniformly for all x > 2,

2. max,

d<z'/2(logz)~L

liz
o(d)

LEMMA 4. Let f, and g., © > 2, be two sets of strongly additive func-
tions such that fz(p), g=(p) € {0,1} for all primes p and

1 1
(5) ZE—F g;SCI.

i
(log )&~

m(x,d,v) — <

g<z q<z

For positive integers | let

B(L,z) = ﬁ S (felp+1) + (0 +2))
p<z
X (folp+ 1)+ go(p+2)—1) ... (falp+1) +g(p+2) —1+1).
Then
(6) Blliz) < b+t b e + 1

Proof. We have
81.2) = == S el + D+ lp+2) = —= 3 (X 1+ T1)

p<z p<z g|p+1 qlp+2
- = Y a0+ =3 ¥
T w(e) & Y n(r) &
<V PST g>\/z
qlp+1
1 1 g
—— Y Al -+ —=> D1
(@) (@) &
<V PST g>\/z
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Since

Z 1<1
>V

qlp+a

for p <z and for a = 1 or 2, Lemma 2 and the condition (5) imply that
(7) B(l,z) < er + 1.

Assume now [ € N, [ > 2. It follows from the known combinatorial
equalities that

8 B0) = = 3 L+ Vel + ) =1 (Lalp+ ) =141

+ %ng(p—l—Q)(g;p(p—I—Z) —1)...(gz(p+2)—1+1)
p<z
-1 I 1
+k:1 (k)@gfx(PJr D(folp+1) =1)...(fulp+1) —k+1)

X ge(p+2)(92(p+2)—1)... (92(p+2) — ([ —k)+1).
The strong additivity of f, and g, implies that

fm(p+1)"'(fx(p+l)_k+1)gm(p+2)"'(gm(p+2)_(Z_k)+1)

f f f g g g
q1lp+1 g2|p+1 qr|p+1 Ge41p+2  qryolpt2 qi|p+2
@FqQ QeFQL sk —1 Qk+27 k11 QF k15911

—wa-rr Y

q1--qklp+1 Grg1--qp+2
q1<--<qk  qr+1<<q

where the last double summation is extended over all collections of primes

Qs Ghse ey Qs 1 < 00 < Gy Qi1 < o0 < @ osuch that fo(q1) = - =
fe(ak) = g2(qr+1) = -+~ = g=(q;) = 1. Continuing the equality (8), we have

l
(9) ﬁ(l,:c):ﬁl—!x)z N 3 Y 1R

k=0 q1 <...<qk§x1/<l+l) qk+1<...<ql§1’1/(l+1) pSIE

q1---qk|p+1
Qhog1--q1|D+2
where
l
1 f g f g
R=0(—=>>( X POEERE DY > 1)),
m(x)
k=0p<z  qi..qklp+1  qrt1--qlp+2 q1---qk|p+1 qri1--qlp+2
N<<qk  qrp1<<q @<--<gr qr+1<<q

qp>al/ 1) q >t/ (+D)
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Since

Y1kl

g>z/ 1+
qlpt+a

for p < x and for a =1 or 2, we have
R < p(l—1,x).
On the other hand, for any positive integers kq, ko,

(10) Z 1 =7(z, kika,v),
p<z
ki|p+1
k‘z‘p—f—Q
where v is the only integer for which
v=-2modk;, v=-1mod ko,

and 1 <wv < k1ko — 1. Therefore, according to the estimate of Lemma 2, we
have

l
Blz) < Bl —Lz)+ ) Zf Zg e 1 ,

k=0 gy <. <qp<zl/U+D) gy <o<qu<al/U+D)
< B0 —1,2) + < 5 1. 3 l)l_
g<avarn 4 oy 4
Using the condition (5), we obtain
(11) Bl z) < b+ B(1—1,2).
The estimates (7) and (11) now imply the inequality (6).

4. Proof of Theorem. Necessity. The condition (H) implies that
there exists a vanishing function a(x) such that

lim 2*®) = oo
Tr—0o0

and
(12) im (ogn) (S L4 3 L) —o
Jig (log s 7 =0
zo(®) <q<a xo(®) <g<z

Let fm and g, be two new sets of strongly additive functions defined by the
equalities:

oo ffule) ifg<a@ {g:v(Q) if ¢ < 2°@),
f=(2) {0 if ¢ > 2@, 8:(4) 0 if ¢ > 2@,
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For every positive ¢,

13) v <o, |folp+ 1)+ gulp+2) — fulp+ 1) = Gu(p +2)| > &)
<vp(p <@, | folp+1) — fulp + 1) > £/2)
+ Vr(p <z, ‘gw@"‘ 2) - Z]}(P—i— 2)’ > 5/2)

<wvp<a 3q|p+1: folq) # fo(q))
+ve(p <, 3¢ p+2: g2(q) # 92(q)).

The first summand of the right hand side above does not exceed
1

f 1 f
@Z 213@2 2.1

zo(@) <g<z+1 P<T zo(@) <g<z+1 n<w
qlp+1 qln+1

f1 1
< (logz)( > —+5>.
zo(®) <g<a

An analogous estimate holds for the second summand of the right hand side
of (13). Thus

(14) @<z [folp+1) +0:(0+2) = folp+1) —Gulp +2)| > ©)
1 1 1
< (logx)< Z -+ Zg ——l——).
a(x) q a(x) q z
T <q<z T <q<z

Hence (12) and the weak convergence condition (2) imply that
(15) ve(p <z, fo(p+ 1) + Gu(p + 2) <u)xwaA(u).
It follows that

liminf v, (p < 2, fu(p+1) = 0)

T—00

> liminf v, (p < z, ]/";(p + 1) +Gge(p+2)=0)=c

r—00

Therefore, according to Lemma 1,
f1
Z — < e
g<ao(@)
Similarly
g1
Z — < C3
q<z>(®)

Hence, applying Lemma 4, we get

~

(16) B z) <ial,
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where

Bl = —~

m(x)
From the weak convergence (15) we infer that, for every k € {0} UN,
L 3 =X e ),

m(x) 7 © R

R p<x
fo(p+1)+92(p+2)=k

Let us fix [ € N and choose K > [ + 2. Using the estimate (16) we obtain

K 1
:Zk(k:—l)...(k—l+1)m > 1

Y (Felp+ 1) +Ge(p+2) .- (Folp+ 1)+ Gulp+2) — 1+ 1)

k=l R <z
fz(p+1)+§z(p+2):k
1 —~
_ " p+1)+G.(p+2)...
T pg; (Fo(p+1) + Gulp +2))
Fo (01432 (04+2)> K
f(p+ 1) +G:(p+2) —1
Rl )+l t2) 14 1) 2@ DG +2)
L+ 1) +g:(p+2)—1

I
] >

k<k—1)...(k—l+1)2—fe +5K’l(x)+o<w>

>
Il

l

Y +0A<L> +0M< ! > texa(a).
(K+1-=1)! —1
From this equality it follows that
(17) xlirglo Bl,z) =N
for every fixed positive integer {. If [ = 1, from (17) we have
mh_{& B(l,x) =\

On the other hand,

~ liz 1 1 liz

=y 2 @ i 2 (0= 50)

g<ze(@) q<aa(@)

o 2 s 2 (- g0)

o) q<z(x)

In view of Lemma 3, it follows from the last two equalities that

W (Xt X))

<aa:) <aa:)
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If | =2, from (17) we have
(19) lim (3(2,z) = A%

T—00

The value of (3 (2, :c) can also be written in the following way:

(20) B2, meerl (Felp+1) = 1)

p<m

+ % > felp+ Dgelp+2) + % Y G +2)@p+2) - 1)

p<w

2 !
- X X it XY Y
m(x)
q1<g2<z(®  psw ¢11<$°‘(") qe<za(®) p<w
q1q2|p+1 qilp+1
q2|p+2

—l-% Zg Z 1=:514+ 85+ 5;s.

q<q<z*(®)  psz
q1q2|p+2

According to Lemma 3,

B A UL B N *
Sl_w(x) Z ¢(Q1QQ)+7T(9C) Z ( (2, q142, =1) ¢(Q1QQ)>

q1<g2<z*®) q1<q2<z*®)

(o)) 2 s o)

q1<q2<z*(®)

5= (v0(a)) | waer +Olees)

q1<q2<z(®)

Similarly

Finally, using (10) and Lemma 3 once again, we see that Ss can be written
as

Z Z l‘ , 4142,V

q1<xa(1) g2 <a(®@
Q2#q1

:2<1+ <logx>) Z Z ¢(J1(J2 (10;96)'

q1 <xa(z) <z (z)
q27q1
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From (19), (20) and the expressions for Si, Sz, and S3, we have

Tim <2 Zf ¢( Z Z > ¢(q1qz))

q1<gz2<z(®) a142) a1 <z(®) go<g(®) q1q2) q1<q2§xa(w>
QFEQ 2
Hence
1 g 1 \?
o ( 2 ¢<q> p> ¢<q>>
q<z a(z) qua(z)
1 g 1
q<z a(z) q< a(z) qua(z)

fe(@)=92(a)=
The last expression and the equality (18) imply that

1 1
(21) lim < max/ —— + max? —) =0

700 \ g<zo(®) P(g ) g<zo@) P(q)

The relations (3) and (4) now follow from (18), (21), and (12). The necessity
is proved.

5. Proof of Theorem. Sufficiency. Assume that the conditions (3),
(4) and the additional condition (H) are satisfied. Let a(x) be the same
vanishing function and fx, g be the same strongly additive functions as in
the previous section. According to (14), it is enough to prove (15).

Put 1 R
Wa(t) = it (fo (p+1) 42 (p+2))
(t) m);

for > 2 and ¢t € R. Because for all » € {0} UN and L € N,

L
tr Z r it l r it L+1
L (l>(6 V= (L+1)’e B

=1
! BL+1,1) 4 A
-1) +O<7(L+1)! e 1] )

we have

L
(22) - Z

for all positive mtegers L.
If [ is fixed and z is sufﬁciently large, arguing as in (8) and (9), we obtain

Z >’ > 2. L

k 0 g1<<gp<z®(® gpii<<q<z(®) p<x
q1---qk|p+1
Qhoy1--q1|p+2
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The use of (10) enables writing B (I,x) as a sum of two sums:

B\ l'hﬂ? Z Z Z!J 1

olqr---q
k=0 g1 < <@ <a®®) g <o <q <@ ( )
Gt 15 QFGL 550k

! f g lix
(— 2 2 2 (W(x’mmm’v)_¢(Q1--.qz)>

k=0 g < <gr<a®) g < <q<a®)
Q415 QFGL -,k

=:54+ S5
We have
e 5= (o) SO 2 a) (2 aa)
log z o Sz @) o(q) g<aal@) o(q)
—I—max{ max f 1 1 }
g<z(®) qb(q q<ma(”) 9( )
1 -1
cof(mf k5 T A"
;a:m ¢>( )’ g;(z) ?(q)
By Lemma 3,
1
(24) Sy = Ol(logm)

The conditions (3), (4), and (H) immediately yield (18) and (21). These
equalities together with (23) and (24) now imply that

lim B(,z) = A

for every fixed positive integer [. Hence applying (22), we have

lim sup |45, () — M| = lim sup i X (e —1)!|+0 ey
I=L+1
_0 (QA)L—H
(L +1)!

for all real t. Letting L — oo, we obtain
lim ¢, (t) = M=)
Tr—00

and this implies the weak convergence (15). The Theorem is proved.
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