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Euler constants for a Fuchsian group of the first kind
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Muharem Avdispahić and Lejla Smajlović (Sarajevo)

1. Introduction. Let Γ ⊆ PSL(2,R) be a Fuchsian group of the first
kind, χ an r-dimensional unitary representation of the group Γ , and ZΓ,χ

the corresponding zeta function.

In this paper we will evaluate the Euler–Selberg constant γ
(Γ,χ)
0 and

higher Euler–Selberg constants γ
(Γ,χ)
n (n ∈ N) appearing in the Laurent

series expansion of Z ′
Γ,χ/ZΓ,χ around s = 1:

(1)
Z ′

Γ,χ

ZΓ,χ
(s) =

1

s− 1
+ γ

(Γ,χ)
0 + γ

(Γ,χ)
1 (s− 1) + γ

(Γ,χ)
2 (s− 1)2 + · · · .

More precisely, in Theorem 3.2 we prove that

γ
(Γ,χ)
j =

(−1)j

j!
lim

x→∞

( ∑

N(P )<x

Tr(χ(P ))Λ(P )

N(P )
logj N(P ) −

logj+1 x

j + 1

)

for j = 0, 1, . . ., where the sum on the right is taken over all hyperbolic
conjugacy classes of Γ , N(P ) denotes the norm of the class P , and Λ(P ) =
logN(P0)/(1 −N(P )−1) for the primitive element P0 such that P = Pn

0 for
some n.

This extends the result proved by Y. Hashimoto, Y. Iijima, N. Kurokawa
and M. Wakayama [6] from the case of compact Riemann surfaces to the
case of non-compact Riemann surfaces of a finite volume. The proof of The-
orem 3.2 relies on the representation of the logarithmic derivative of the
Selberg zeta function ZΓ,χ obtained in [4], and introduces an approach that
differs from the one used in [6].

In Theorem 4.1 and Proposition 4.4, we obtain upper bounds (in terms
of topological and spectral theoretical invariants of Γ ) for the Euler–Selberg

constant γ
(Γ )
0 in the case when r = 1 and χ = id, which improve the bound
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obtained by J. Jorgenson and J. Kramer in [10]. Lower bounds for the con-

stant γ
(Γ )
0 are given in Propositions 5.1 and 5.2. The role of γ

(Γ )
0 in measuring

the difference between the Arakelov and the Petersson metrics is discussed
in [10, p. 2].

2. Preliminaries

2.1. The Selberg zeta function. Let H be the upper half-plane and Γ a
Fuchsian group of the first kind containing n1 ≥ 1 inequivalent parabolic
classes. Then Γ\H can be identified with a non-compact, hyperbolic Rie-
mann surface of a finite volume with n1 cusps. We will denote by F the
fundamental domain of that surface, and by |F| its volume.

The group Γ contains inequivalent hyperbolic, elliptic and parabolic
classes. We denote the set of inequivalent hyperbolic resp. elliptic classes
by {P} resp. {R}, whereas the set of inequivalent, primitive hyperbolic
classes is denoted by {P0}. All elements of an elliptic class are conjugate in
SL(2,R) to a rotation

(
cos θ − sin θ
sin θ cos θ

)
, for some θ ∈ (0, π). The order of the

primitive element R0 associated to R is denoted by MR/2.

The Selberg zeta function (see [7], [8] and [12]) associated to the pair
(Γ, χ), where χ is an r-dimensional unitary representation of Γ (without
loss of generality, we may assume that χ is irreducible, see [8, p. 267]), is
defined as an Euler product

(2) ZΓ,χ(s) =
∏

{P0}Γ

∞∏

k=0

det(Ir − χ(P0)N(P0)
−s−k) =

∏

{P0}Γ

ZΓ,χ,P0
(s),

converging absolutely for Re s > 1. Here, N(P0) denotes the norm of the
class P0.

Investigation of ZΓ,χ is closely related to the L2 spectral theory of the

operator ∆ = y2(∂/∂x2 + ∂/∂y2) on X = Γ\H (see, e.g., [9]). The operator
−∆ is essentially self-adjoint on the space D of all twice continuously differ-
entiable functions f : H → V (V is an r-dimensional vector space over C)
such that f and ∆f are square integrable on F and satisfy the equality
f(Sz) = χ(S)f(z) for all z ∈ H and S ∈ Γ . It has the unique (self-adjoint)

extension −∆̃ to the space D̃.

Let Tj , j = 1, . . . , n1, denote all parabolic classes of the group Γ . Then
χ(Tj) does not depend on the choice of the representative of the class Tj

and can be considered as a matrix from C
r×r. We will denote by mj the

multiplicity of 1 as an eigenvalue of the matrix χ(Tj), and n∗1 =
∑n1

j=1mj

will be the degree of singularity of χ.

If n∗1 ≥ 1, the operator −∆̃ has both discrete and continuous spectrum;
if n∗1 = 0, it has only a discrete spectrum. Let {λn}n≥0 (0 = λ0 < λ1 < · · · ,
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λn → ∞) be the discrete spectrum of −∆̃. The non-trivial zeros sn =
1/2 ± irn of ZΓ,χ(s), lying on the critical line, are related to the discrete
spectrum, the numbers rn being solutions of the equations 1/4 + r2n = λn.

Let 0 < ε < ε0 < 1/4. We will denote by Nε,Γ,χ,ε0
the number of eigen-

values λn such that ε ≤ λn < ε0.

The continuous spectrum of −∆̃ is expressed through zeros (or equiva-
lently, poles) of the hyperbolic scattering determinant

φ(s) =

(
Γ (s− 1/2)

Γ (s)

)n∗

1
∞∑

n=1

an

g2s
n

,

where the coefficients an and gn depend on the group Γ (see [8] or [5]).

One of the properties of the continuous spectrum is that it is possible to
choose column vector fhj

(for a fixed j ∈ {1, . . . , n1} and 1 ≤ h ≤ r) so that

χ(T−1
j )fhj

= e
2πiαhj fhj

, where 0 ≤ αhj
< 1 and αhj

= 0 iff 1 ≤ h ≤ mj (see
[8, pp. 268–269]).

As proved in [8, pp. 496–501], the Selberg zeta function ZΓ,χ(s) is a
meromorphic function of a finite order that satisfies the functional equation

ZΓ,χ(s)ΨΓ,χ(s) = ZΓ,χ(1 − s),

with the factor ΨΓ,χ given by

ΨΓ,χ(s) = φ(s) · η

(
1

2

)
exp

( s\
1/2

η′

η
(u) du

)
,

where

η′

η
(s) = − r|F|

(s− 1/2) sin 2π(s− 1/2)

cos 2π(s− 1/2) + 1
− 2

∑

αhj
6=0

log |1 − e
2πiαhj |

+ π
∑

{R}
0<θ(R)<π

Tr(χ(R))

MR sin θ

cos 2(π − θ)(s− 1/2) + cos 2θ(s− 1/2)

cos 2π(s− 1/2) + 1

− 2n∗1

[
log 2 −

Γ ′

Γ
(s) +

Γ ′

Γ
(1 − s)

]
− n∗1

[
Γ ′

Γ

(
s+

1

2

)
−
Γ ′

Γ

(
3

2
− s

)]
.

2.2. The logarithmic derivative of the Selberg zeta function. Properties
of the Selberg zeta function, such as finiteness of its order, Euler product
representation and the functional equation, make it a representative member
of the fundamental class of functions introduced by Jorgenson and Lang ([11,
pp. 45–46]). The Jorgenson–Lang explicit formula has been generalized to a
wider class of test functions [1] and given a new form applicable in the case
when the factor of functional equation has infinitely many zeros or poles in
the critical strip [3]. In [2] and [4], we have proved that the Selberg trace
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formula, when interpreted as an explicit formula, holds for a class of test
functions that need not satisfy Selberg’s boundedness condition.

As an application of the trace formula obtained, we deduced the follow-
ing theorem, which gave a new integral representation of the logarithmic
derivative of the Selberg zeta function.

Theorem 2.A ([4]). (a) For Reα > 0 and x > 1,

(3)
Z ′

Γ,χ

ZΓ,χ

(
1

2
+ α

)
=

1

1 + x2α

∑

N(P )<x

Tr(χ(P ))Λ(P )

N(P )α+1/2
(x2α −N(P )2α)

+
4αxα

1 + x2α

( M∑

n=0

cos yrn
α2 + r2n

+

∞\
0

cos yt dR(t)

α2 + t2
−

|F|

2π

∞\
0

t · r(t) cos yt

α2 + t2
dt

+
n∗1
π

∞\
0

H(t) cos yt dt

α2 + t2

−
∑

{R}Γ

0<θ(R)<π

Tr(χ(R))

2MR sin θ

∞\
0

cos yt

α2 + t2
cosh 2(π − θ)t+ cosh 2θt

cosh 2πt+ 1
dt

)
.

(b)

Z ′
Γ,χ

ZΓ,χ

(
1

2
+ α

)
= O

(
min

{
T

σ log |T |
,
T 1−2σ

σ

})
as |T | → ∞

for α = σ + iT, 1/2 > σ > 0.

Here, we put rn = −i
√

1/4 − λn = −iµn for λn ≤ 1/4, n = 0, . . . ,M ,

R(t) = N [0 ≤ rn ≤ t] −
1

4π

t\
−t

φ′

φ

(
1

2
+ iu

)
du− r

|F|

4π
t2 +

n∗1
π
t log t

−
t

π

(
n∗1 − n∗1 log 2 −

∑

αhj
6=0

log |1 − e
2πiαhj |

)
,

r(t) = tanhπt− 1 and H(t) = Γ ′

Γ (1 + it) − log t.

In [8, Th. 2.29 on p. 468 with m = 0], it is shown that R(t)=O(|t|/log |t|)
as |t| → ∞ and that

R1(t) =

t\
1

R(u) du = O

(
|t|

log2 |t|

)
as |t| → ∞.

Obviously, r(t) = O(e−t) and H(t) = O(1/t) as t→ ∞.
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2.3. The function ψΓ,χ(x) and the prime geodesic theorem. The prime
geodesics counting function πΓ,χ(x) is defined as

πΓ,χ(x) =
∑

N(P0)≤x

Tr(χ(P0)),

where the sum is taken over all primitive hyperbolic classes P0 of Γ the norm
of which does not exceed x. When r = 1 and χ = id, πΓ (x) is simply the
number of primitive hyperbolic classes P0 of Γ with norms not exceeding x,
or, equivalently, the number of primitive geodesics of lengths not larger than
log x.

The function ψΓ,χ(x) is given by

ψΓ,χ(x) =
∑

N(P )≤x

Λ(P ) Tr(χ(P )),

where the sum is taken over all hyperbolic classes P of Γ whose norm does
not exceed x.

In [4, Th. 6.1] we have proved that

ψΓ,χ(x) =

M∑

n=0

xsn

sn
+ gΓ,χ(x) for x ≥ 2,

where sn = 1/2+ irn for n = 0, . . . ,M and −CΓ,χx
3/4 ≤ gΓ,χ(x) ≤ CΓ,χx

3/4

for x ≥ 2. The constant CΓ,χ depends only upon Γ and χ.
The prime geodesic theorem proved in [4] states that

πΓ,χ(x) =
M∑

n=0

li(xsn) + hΓ,χ(x) for x ≥ 2,

where −cΓ,χx
3/4 log−1 x ≤ hΓ,χ(x) ≤ cΓ,χx

3/4 log−1 x for some constant cΓ,χ

depending only upon Γ and χ.

3. Euler–Selberg constants. In the proof of our next theorem, we
shall make use of the following lemma that can be easily verified by induc-
tion.

Lemma 3.1. Let f be a meromorphic function with a pole of order m at

a point s = s0, and the corresponding Laurent series expansion

f(s) =
∞∑

n=−m

an(s− s0)
n.

Assume that for a fixed δ > 0 and |s − s0| < δ the function f can also be

represented as

f(s) =
∞∑

n=−m

fn(x, s)(s− s0)
n
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for all x > x0. Suppose limx→∞ fn(x, s) = bn ∈ C for n ≥ −m, indepen-

dently of s in the above disc. Then bn = an for all n ≥ −m.

Theorem 3.2. Let

Z ′
Γ,χ

ZΓ,χ
(s) =

1

s− 1
+ γ

(Γ,χ)
0 + γ

(Γ,χ)
1 (s− 1) + γ

(Γ,χ)
2 (s− 1)2 + · · ·

be the Laurent series expansion of the logarithmic derivative of the Selberg

zeta function around s = 1. Then

γ
(Γ,χ)
j =

(−1)j

j!
lim

x→∞

( ∑

N(P )<x

Tr(χ(P ))Λ(P )

N(P )
logj N(P ) −

logj+1 x

j + 1

)

for all j = 0, 1, . . . .

Proof. Putting s = 1/2 + α into (3), taking into account that

cos yr0
(s− 1/2)2 + r20

=
x1/2 + x−1/2

2s(s− 1)
,

and conveniently regrouping the terms, we get

Z ′
Γ,χ

ZΓ,χ
(s) =

x2s−1

1 + x2s−1

( ∑

N(P )<x

Tr(χ(P ))Λ(P )

N(P )
N(P )1−s +

x1−s

s− 1

)
(4)

+
(4s− 2)xs−1/2

1 + x2s−1

( M∑

n=1

cos yrn
(s− 1/2)2 + r2n

+

∞\
0

cos yt dR(t)

(s− 1/2)2 + t2

−
|F|

2π

∞\
0

t · r(t) cos yt

(s− 1/2)2 + t2
dt+

n∗1
π

∞\
0

H(t) cos yt dt

(s− 1/2)2 + t2

−
∑

{R}Γ

0<θ(R)<π

Tr(χ(R))

2MR sin θ

∞\
0

cos yt

(s− 1/2)2 + t2
cosh 2(π − θ)t+ cosh 2θt

cosh 2πt+ 1
dt

)

−
1

1 + x2s−1

( ∑

N(P )<x

Tr(χ(P ))Λ(P )N(P )s−1−
xs

s

)
+

xs−1

1 + x2s−1

(
1

s
+

1

s− 1

)

for x > 1. Now,

x1−s

s− 1
=

1

s− 1
+

∞∑

n=0

(−1)n+1

(n+ 1)!
(s− 1)n logn+1 x

and ∑

N(P )<x

Tr(χ(P ))Λ(P )

N(P )
N(P )1−s

=
∑

N(P )<x

Tr(χ(P ))Λ(P )

N(P )

∞∑

n=0

(−1)n

n!
(s− 1)n lognN(P ).
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If we put

f−1(x, s) =
x2s−1

1 + x2s−1
+

xs−1

1 + x2s−1
,

f0(x, s) =
(4s− 2)xs−1/2

1 + x2s−1

( M∑

n=1

cos yrn
(s− 1/2)2 + r2n

+

∞\
0

cos yt dR(t)

(s− 1/2)2 + t2

−
|F|

2π

∞\
0

t · r(t) cos yt

(s− 1/2)2 + t2
dt+

n∗1
π

∞\
0

H(t) cos yt dt

(s− 1/2)2 + t2

−
∑

{R}Γ

0<θ(R)<π

Tr(χ(R))

2MR sin θ

∞\
0

cos yt

(s− 1/2)2 + t2
cosh 2(π − θ)t+ cosh 2θt

cosh 2πt+ 1
dt

)

−
1

1 + x2s−1

( ∑

N(P )<x

Tr(χ(P ))Λ(P )N(P )s−1 −
xs

s
−
xs−1

s

)

+
x2s−1

1 + x2s−1

( ∑

N(P )<x

Tr(χ(P ))Λ(P )

N(P )
− log x

)

= A(x, s) −B(x, s) + C(x, s)

and

fn(x, s) =
x2s−1

1 + x2s−1

(−1)n

n!

( ∑

N(P )<x

Tr(χ(P ))Λ(P )

N(P )
lognN(P ) −

logn+1 x

n+ 1

)

for n ≥ 1, then (4) becomes

Z ′
Γ,χ

ZΓ,χ
(s) =

∞∑

n=−1

fn(x, s)(s− 1)n.

We will first evaluate limx→∞A(x, s) for s in the disc |s− 1| < δ, where
δ = min{1/4, 1/2 − µ1} if 0 < λ1 < 1/4, and δ = 1/4 if λ1 ≥ 1/4. (Recall

that, in the first case, µ1 =
√

1/4 − λ1 < 1/2.) If M ≥ 1, we have

(5)
M∑

n=1

cos yrn
(s− 1/2)2 + r2n

≤ C1x
µ1

for some constant C1, uniformly in the disc |s− 1| < δ.

Furthermore,
∣∣∣∣
∞\
0

cos yt dR(t)

(s− 1/2)2 + t2

∣∣∣∣ ≤ y

∣∣∣∣
∞\
3

R(t) sin yt dt

(s− 1/2)2 + t2

∣∣∣∣+
∣∣∣∣
∞\
3

2tR(t) cos yt dt

((s− 1/2)2 + t2)2

∣∣∣∣+C1y+C2
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for some constants C1 and C2, and
∣∣∣∣
∞\
3

R(t) sin yt dt

(s− 1/2)2 + t2

∣∣∣∣ ≤ y

∣∣∣∣
∞\
3

R1(t) cos yt dt

(s− 1/2)2 + t2

∣∣∣∣ +

∣∣∣∣
∞\
3

2tR1(t) sin yt dt

((s− 1/2)2 + t2)2

∣∣∣∣.

Since R1(t) = O(t/log2 t) as t→ ∞, the two integrals on the right-hand side
of the last inequality are bounded by some constants K1 and K2, uniformly
in s for |s− 1| < δ. Therefore,

(6)

∣∣∣∣
∞\
0

cos yt dR(t)

(s− 1/2)2 + t2

∣∣∣∣ ≤ K1 log2 x+ (C1 +K2) log x+ C2.

Using (5), (6), the facts that

r(t) = O(e−t), H(t) = O(1/|t|),
cosh 2(π − θ)t+ cosh 2θt

cosh 2πt+ 1
= O(1),

as |t| → ∞, and having in mind that the sum over elliptic classes is finite,
we obtain

|A(x, s)| ≤ C

∣∣∣∣
(4s− 2)xs−1/2

1 + x2s−1

∣∣∣∣ max{xµ1 , log2 x}

for large x, and s in the disc |s − 1| < δ. Therefore, limx→∞A(x, s) = 0
uniformly for s in the disc |s− 1| < δ.

The next step is to prove that limx→∞B(x, s) = 0 uniformly in that
disc. To do so, we will use the integral representation of the sum appearing
in B(x, s):

∑

N(P )<x

Tr(χ(P ))Λ(P )N(P )s−1 =

x\
τ

ts−1 dψΓ,χ(t),

where τ > 1 is less than the smallest N(P ).
Now, for x > 2, one gets

|B(x, s)|

=

∣∣∣∣
1

1 + x2s−1

∣∣∣∣
∣∣∣∣
2\
τ

ts−1 dψΓ,χ(t) − 2s−1ψΓ,χ(2) +

M∑

n=0

xs+sn−1

sn
+ xs−1gΓ,χ(x)

− (s− 1)
M∑

n=0

x\
2

ts+sn−2

sn
dt− (s− 1)

x\
2

ts−2gΓ,χ(t) dt−
xs

s
−
xs−1

s

∣∣∣∣

≤

∣∣∣∣
1

1 + x2s−1

∣∣∣∣
(
C +

M∑

n=1

∣∣∣∣
xs+sn−1

s+ sn − 1

∣∣∣∣ + |xs−1| |gΓ,χ(x)|

+ δ
∣∣∣
x\
2

ts−2gΓ,χ(t) dt
∣∣∣ +

∣∣∣∣
xs−1

s

∣∣∣∣
)
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uniformly in |s − 1| < δ, where the constant C depends on Γ and χ only.
Since gΓ,χ(x) = O(x3/4) as x → ∞, passing to the limit we conclude that
limx→∞B(x, s) = 0 uniformly in the disc |s− 1| < δ.

Finally, we will prove that limx→∞ C(x, s) is a finite number, not de-
pending on s in the disc |s− 1| < δ. First, we represent the sum appearing
in the expression for C(x, s) as the Stieltjes integral

∑

N(P )<x

Tr(χ(P ))Λ(P )

N(P )
=

x\
τ

dψΓ,χ(t)

t
.

Integration by parts yields

x\
τ

dψΓ,χ(t)

t
− log x = 1 −

M∑

n=1

xsn−1

λn
+
gΓ,χ(x)

x
+

x\
2

t−2gΓ,χ(t) dt+K,

where the constant K depends on Γ and χ only. Boundedness of gΓ,χ(x)

by x3/4 and the fact that sn < 1 for n = 1, . . . ,M imply that the limit
of the right-hand side of the above equality is finite as x → ∞. Since
x2s−1/(1 + x2s−1) → 1 as x→ ∞, uniformly in |s− 1| < 1/4, we obtain

lim
x→∞

f0(x, s) = lim
x→∞

( ∑

N(P )<x

Tr(χ(P ))Λ(P )

N(P )
− log x

)
= b0 ∈ C

for all s in the disc |s− 1| < δ.
It is left to prove that limx→∞ fn(x, s) = bn ∈ C for all n ∈ N. Arguing

as above, we represent the sum appearing in the expression for fn(x, s) as
the Stieltjes integral and integrate by parts to obtain
x\
τ

logn t

t
dψΓ,χ(t) −

logn+1 x

n+ 1
=

logn x

x
ψΓ,χ(x) − logn x

+
M∑

n=1

1

sn

x\
2

logn−1 t (log t− n)

t2−sn
dt+

x\
2

gΓ,χ(t)
logn−1 t (log t− n)

t2
dt+K1,

where the constant K1 depends on Γ and χ only.
Since sn < 1 (for n ≥ 1) and gΓ,χ(x) = O(x3/4) as x → ∞, the limit as

x → ∞ of the two integrals on the right-hand side of the above equality is
finite. This proves that limx→∞ fn(x, s) = bn ∈ C for all n ∈ N, uniformly
in the disc |s− 1| < δ, and completes the proof of the theorem.

The case r = 1 and χ = id deserves our special attention. In this case,

the Euler–Selberg constant γ
(Γ )
0 is a real number that plays an important

role in applications. We have just proved that

γ
(Γ )
0 = lim

x→∞

( ∑

N(P )<x

Λ(P )

N(P )
− log x

)
.
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However, the constant γ
(Γ )
0 can be expressed in terms of primitive geodesics

only. A benefit from such an expression will be clear in the next two sections,

where we consider upper and lower bounds for γ
(Γ )
0 . In the following, we shall

assume that r = 1 and χ = id, and omit the index χ in further notation.

Proposition 3.3. For x > T ≥ 2 we have

γ
(Γ )
0 =

∑

N(P0)≤T

Z ′
P0

ZP0

(1) + lim
x→∞

( ∑

T<N(P0)<x

logN(P0)

N(P0) − 1
− log x

)
(7)

+
∞∑

k=2

∞\
T

log t dπΓ (t)

tk − 1
.

Proof. For x > T ≥ 2 one has

γ
(Γ )
0 = lim

x→∞

( ∑

N(P )<x

Λ(P )

N(P )
− log x

)
(8)

= lim
x→∞

[ ∑

N(P0)≤T

∑

k: N(P0)k<x

logN(P0)

N(P0)k − 1

+

( ∑

T<N(P0)<x

logN(P0)

N(P0) − 1
− log x

)
+

∞∑

k=2

∑

T<N(P0)< k√x

logN(P0)

N(P0)k − 1

]
.

The second sum on the right-hand side of (8) is taken over all natural num-
bers k such that N(P0)

k < x. Since the first sum is finite, we get

(9) lim
x→∞

∑

N(P0)≤T

∑

k:N(P0)k<x

logN(P0)

N(P0)k − 1

=
∑

N(P0)≤T

∞∑

k=1

logN(P0)

N(P0)k − 1
=

∑

N(P0)≤T

Z ′
P0

ZP0

(1).

Furthermore,

(10)
∑

T<N(P0)<x

logN(P0)

N(P0) − 1
− log x =

x\
T

log t dπΓ (t)

t− 1
− log x

=
M∑

n=0

x\
T

log t d(li(tsn))

t− 1
+

x\
T

log t dhΓ (t)

t− 1
− log x

=
M∑

n=1

x\
T

tsn−1 dt

t− 1
+ log(x− 1) − log x+

log x · hΓ (x)

x− 1

− log(T − 1) −
log T · hΓ (T )

T − 1
+

x\
T

log t · hΓ (t) dt

(t− 1)2
−

x\
T

hΓ (t) dt

t(t− 1)
.
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Therefore, letting x → ∞ and having in mind that |hΓ (t)| ≤ cΓ t
3/4 log−1 t

for all t ≥ 2, we obtain

(11) lim
x→∞

( ∑

T<N(P0)<x

logN(P0)

N(P0) − 1
− log x

)
= B(T ) <∞.

It is left to consider the limit of the last sum on the right-hand side of (8).
We have

∑

T<N(P0)< k
√

x

logN(P0)

N(P0)k − 1
=

k
√

x\
T

log t dπΓ (t)

tk − 1
.

Hence,

lim
x→∞

∑

T<N(P0)< k
√

x

logN(P0)

N(P0)k − 1
=

∞\
T

log t dπΓ (t)

tk − 1
.

For k ≥ 2 one has

∞\
T

log t dπΓ (t)

tk − 1
=

M∑

n=0

∞\
T

tsn−1dt

tk − 1
+

∞\
T

log t dhΓ (t)

tk − 1
.

It is easy to see that

(12)

∞\
T

tsn−1 dt

tk − 1
≤

∞\
T

dt

(t− 1)k+1−sn
=

(T − 1)sn−k

k − sn
.

Integration by parts and simple estimations yield
∣∣∣∣
∞\
T

log t dhΓ (t)

tk − 1

∣∣∣∣ ≤
∣∣∣∣
hΓ (T ) log T

T k − 1

∣∣∣∣ +

∣∣∣∣
\
T

hΓ (T ) d

(
log t

tk − 1

)∣∣∣∣(13)

≤
cΓT

3/4

T k − 1
+ cΓ

∞\
T

t3/4 kt
k−1 dt

(tk − 1)2

= cΓ

(
T 3/4

T k − 1
+

T 3/4

T k − 1
+

3

4

∞\
T

dt

t1/4(tk − 1)

)

≤ cΓ

(
2T 3/4

T k − 1
+

3

4

cΓ
k − 3/4

(T k − 1)3/4k

T k − 1

)

<
13cΓT

3/4

5(T k − 1)
.

Therefore,

∞\
T

log t dπΓ (t)

tk − 1
≤

M∑

n=0

(T − 1)sn−k

k − sn
+

13cΓT
3/4

5(T − 1)k
.
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Summation over k yields

(14)
∞∑

k=2

∞\
T

log t dπΓ (t)

tk − 1
≤

M∑

n=0

(T − 1)sn−1

T − 2
+

13cΓT
3/4

5(T − 1)(T − 2)
.

Thus, the series
∞∑

k=2

∑

T<N(P0)< k√x

logN(P0)

N(P0)k − 1

is of the form
∑∞

k=2 fk(x), where

fk(x) ր Ak =

∞\
T

log t dπΓ (t)

tk − 1
(x→ ∞)

and
∑∞

k=2Ak <∞. Hence,

lim
x→∞

∞∑

k=2

∑

T<N(P0)< k
√

x

logN(P0)

N(P0)k − 1
=

∞∑

k=2

lim
x→∞

( ∑

T<N(P0)< k
√

x

logN(P0)

N(P0)k − 1

)

=
∞∑

k=2

∞\
T

log t dπΓ (t)

tk − 1
.

Now, taking into account (8), (9) and (11) we get (7).

4. Upper bounds for the Euler–Selberg constant. In this section
we shall make use of Theorem 3.2 and Proposition 3.3 to obtain upper

bounds for γ
(Γ )
0 .

Theorem 4.1. (a)

γ
(Γ )
0 ≤ min

T≥2

{ M∑

n=1

T sn−1

1 − sn
+

∑

N(P )≤T

Λ(P )

N(P )
+ 5CΓT

−1/4 − log T

}
.

(b) Let 0 < ε < 1/4 and sε = 1/2 +
√

1/4 − ε. Then

γ
(Γ )
0 ≤

∑

0<λn<ε

T sn−1

λn
+

1

1 − sε
T sε−1Nε,Γ,1/4(15)

+
∑

N(P )≤T

Λ(P )

N(P )
+ 5CΓT

−1/4 − log T

for T ≥ 2.
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Proof. (a) For x > T ≥ 2 we have

∑

N(P )<x

Λ(P )

N(P )
− log x =

∑

N(P )≤T

Λ(P )

N(P )
+

x\
T

dψΓ (t)

t
− log x

=
∑

N(P )≤T

Λ(P )

N(P )
+
ψΓ (x)

x
−
ψΓ (T )

T
− log T

+
M∑

n=1

T sn−1

λn
−

M∑

n=1

xsn−1

λn
+

x\
T

gΓ (t)

t2
dt.

Letting x → ∞, and taking into account that sn − 1 < 0 for n ≥ 1 and
ψΓ (x)/x→ 1 as x→ ∞, we get

γ
(Γ )
0 = 1 +

M∑

n=1

T sn−1

λn
+

∑

N(P )≤T

Λ(P )

N(P )
+

∞\
T

gΓ (t)

t2
dt−

ψΓ (T )

T
− log T.

Since |gΓ (t)| ≤ CΓ t
3/4 and ψΓ (T )/T ≥ 1 +

∑M
n=1 T

sn−1/sn − CΓT
−1/4, we

have

(16) γ
(Γ )
0 ≤

M∑

n=1

T sn−1

1 − sn
+

∑

N(P )≤T

Λ(P )

N(P )
+ 5CΓT

−1/4 − log T.

(b) Obviously,

T sn−1

1 − sn
≤

1

1 − sε
T sε−1 for all ε ≤ λn < 1/4.

On the other hand, λn < 1 − sn for all 0 < λn < 1/4. These two facts
combined with (16) give (15).

Corollary 4.2. (a) If T ≥ max{e, (5CΓ )4}, then

(17) γ
(Γ )
0 ≤

M∑

n=1

T sn−1

1 − sn
+

∑

N(P )≤T

Λ(P )

N(P )
.

(b) Let Tε be such that

1

1 − sε
T sε−1

ε Nε,Γ,1/4 + 5CΓT
−1/4
ε = log Tε.

If T ≥ max{2, Tε}, then

γ
(Γ )
0 ≤

∑

0<λn<ε

T sn−1

λn
+

∑

N(P )≤T

Λ(P )

N(P )
.

Proof. Straightforward.
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Notice that the left-hand side of the equation in (b), as a function of T , is
decreasing from +∞ to 0 and the right-hand side strictly increases to +∞.
Therefore, Tε is unique.

Remark 4.3. By representing the function Z ′
Γ /ZΓ as a Gauss transform

of the hyperbolic heat trace, J. Jorgenson and J. Kramer [10, Theorem 4.7]
have given an upper bound for the Euler–Selberg constant involving the
constant c′Γ that appears in the error term of the prime number theorem.
They have used a weaker version of the prime geodesic theorem, proved in
[8, p. 475], asserting that

πΓ,χ(x) =
∑

n=0

li(xsn) + hΓ,χ(x) for x ≥ 2,

where −c′Γ,χx
3/4 log−1/2 x ≤ hΓ,χ(x) ≤ c′Γ,χx

3/4 log−1/2 x for some constant

c′Γ,χ depending only upon Γ and χ. The constant c′Γ,χ differs from our con-

stant cΓ,χ. In our notation, the upper bound for γ
(Γ )
0 obtained by Jorgenson

and Kramer can be stated as

(18) γ
(Γ )
0 ≤ 3 +

∑

0<λn<ε

1

λn
+

∑

N(P0)<e
δΓ,ε

Z ′
P0

ZP0

(1),

where 0 < ε ≤ 7/64, the second sum on the right-hand side is taken over
primitive hyperbolic conjugacy classes P0, and

δΓ,ε = max

{
sε

ε
log

(
4(4 − 3sε)

ε
(c′Γ +Nε,Γ,1/4)

)
, 5 + 2 logN0,Γ,ε

}
.

Proposition 3.3 enables us to obtain also an upper bound for γ
(Γ )
0 with

the constant cΓ instead of CΓ . We state this as follows.

Proposition 4.4. (a) Let TΓ be the constant such that

log(TΓ − 1) =
6cΓT

3/4
Γ

TΓ − 1
+

M∑

n=0

(TΓ − 1)sn−1

TΓ − 2
.

Then, for T ≥ max{e2, TΓ },

(19) γ
(Γ )
0 ≤

∑

N(P0)≤T

Z ′
P0

ZP0

(1) +
M∑

n=1

(T − 1)sn−1

1 − sn
.

(b) Let 0 < ε < 1/4 and denote by TΓ,ε the solution of the equation

(T − 1)sε−1Nε,Γ,1/4

(
1

1 − sε
+

1

T − 2

)
+

6cΓT
3/4

T − 1
+
N0,Γ,ε

T − 2
= log(T − 1).
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Then, for T ≥ max{e2, TΓ,ε},

(20) γ
(Γ )
0 ≤

∑

0<λn<ε

(T − 1)sn−1

λn
+

∑

N(P0)≤T

Z ′
P0

ZP0

(1).

Proof. Note that the uniqueness of numbers TΓ and TΓ,ε follows by the
same argument applied to Tε in Corollary 4.2(b).

(a) For any T > 2, combining (7) and (10) we obtain

γ
(Γ )
0 ≤

∑

N(P0)≤T

Z ′
P0

ZP0

(1) +
M∑

n=1

∞\
T

tsn−1 dt

t− 1
− log(T − 1) −

log T · hΓ (T )

T − 1
(21)

+

∞\
T

(
log t− t−1

t

)
hΓ (t) dt

(t− 1)2
+

∞∑

k=2

∞\
T

log t dπΓ (t)

tk − 1
.

Let us estimate the right-hand side of (21). First,

(22)

∣∣∣∣
∞\
T

(
log t− t−1

t

)
hΓ (t) dt

(t− 1)2

∣∣∣∣

≤ cΓ

∞\
T

t3/4 dt

(t− 1)2
≤ cΓ

(
T 3/4

T − 1
+

3

4

∞\
T

dt

t1/4(t− 1)

)

≤ cΓ

(
T 3/4

T − 1
+

3

4

∞\
T

dt

(t− 1)5/4

)
= cΓ

(
T 3/4

T − 1
+ 3(T − 1)−1/4

)
.

The other two terms containing integrals in (21) are taken care of by (12)

and (14). Thus, having in mind that
∣∣ log T ·hΓ (T )

T−1

∣∣ ≤ cΓ T 3/4

T−1 , we get

γ
(Γ )
0 ≤

∑

N(P0)≤T

Z ′
P0

ZP0

(1) +
M∑

n=1

(T − 1)sn−1

1 − sn

+ cΓ

(
T 3/4

T − 1

(
2+

13

5(T − 2)

)
+3(T −1)−1/4

)
+

M∑

n=0

(T − 1)sn−1

T − 2
− log(T −1).

Finally, since 3(T − 1)−1/4 < 3T 3/4

T−1 and 13
5(T−2) < 1, for T > 5 we have

γ
(Γ )
0 ≤

∑

N(P0)≤T

Z ′
P0

ZP0

(1) +
M∑

n=1

(T − 1)sn−1

1 − sn
+

6cΓT
3/4

T − 1
(23)

+
M∑

n=0

(T − 1)sn−1

T − 2
− log(T − 1),

which proves (a) in the given range of T .
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(b) Let 0 < ε < 1/4. Then, since λn = sn(1 − sn) and sn < 1 for n ≥ 1,
we have

M∑

n=1

(T − 1)sn−1

1 − sn
≤

∑

0<λn<ε

(T − 1)sn−1

λn
+

∑

sn≤sε

(T − 1)sn−1

1 − sn
(24)

≤
∑

0<λn<ε

(T − 1)sn−1

λn
+Nε,Γ,1/4

(T − 1)sε−1

1 − sε
.

Similarly,

M∑

n=0

(T − 1)sn−1

T − 2
≤
N0,Γ,ε

T − 2
+

∑

sn≤sε

(T − 1)sn−1

T − 2
(25)

≤
N0,Γ,ε

T − 2
+Nε,Γ,1/4

(T − 1)sε−1

T − 2
.

This, together with (23) and (24), yields the statement.

Remark 4.5. The bounds (20) and (18) cannot be compared since the
constants cΓ and c′Γ are different. However, repeating the steps of the proof
of Proposition 4.4, now using the weaker bound on hΓ that involves the
constant c′Γ , it is easy to see that

γ
(Γ )
0 ≤

∑

N(P0)≤T

Z ′
P0

ZP0

(1) +
M∑

n=1

(T − 1)sn−1

1 − sn
+

6c′ΓT
3/4

T − 1
log1/2 T

+

M∑

n=0

(T − 1)sn−1

T − 2
− log(T − 1).

This implies that, for any 0 < ε < 1/4 and T = T ′
Γ,ε satisfying

(T−1)sε−1Nε,Γ,1/4

(
1

1 − sε
+

1

T − 2

)
+

6c′ΓT
3/4

T − 1
log1/2 T+

N0,Γ,ε

T − 2
= log(T−1),

the inequality (20) remains valid.
Simple but somewhat lengthy calculations yield eδΓ,ε > T ′

Γ,ε. Thus, our

bound (20), with TΓ,ε replaced by T ′
Γ,ε, is better than the bound (18).

5. Lower bounds for the Euler–Selberg constant. In this section
we shall use Theorem 3.2 to prove lower bounds for the Euler–Selberg con-

stant γ
(Γ )
0 involving the constant CΓ . Proposition 3.3 will provide lower

bounds involving primitive hyperbolic classes and the constant cΓ .

Proposition 5.1.

γ
(Γ )
0 ≥ max

T≥2

{ M∑

n=1

T sn−1

1 − sn
+

∑

N(P )≤T

Λ(P )

N(P )
− 5CΓT

−1/4 − log T

}
.
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Proof. Let us recall that for all x > T ≥ 2,

γ
(Γ )
0 = 1 +

M∑

n=1

T sn−1

λn
+

∑

N(P )≤T

Λ(P )

N(P )
+

∞\
T

gΓ (t)

t2
dt−

ψΓ (T )

T
− log T.

The facts that gΓ (t) ≥ −CΓ t
3/4 and ψΓ (T )/T ≤ 1 +

∑M
n=1 T

sn−1/sn +

CΓT
3/4 for T ≥ 2 complete the proof.

The following proposition gives us lower bounds for γ
(Γ )
0 involving the

spectra of the Laplace–Beltrami operator and the constant cΓ .

Proposition 5.2.

(26) γ
(Γ )
0 ≥ max

T≥5

{ M∑

n=1

snT
sn−1

1 − sn
+

∑

N(P0)≤T

Z ′
P0

ZP0

(1) + log
T

T − 1

M∑

n=0

T sn

−
6cΓT

3/4

T − 1
− log(T − 1) − 1

}
.

Proof. We use Proposition 3.3 to estimate the last two summands in (7).

For k ≥ 2, the relation (13) implies

∞\
T

log t dπΓ (t)

tk − 1
=

M∑

n=0

∞\
T

tsn−1

tk − 1
dt+

∞\
T

log t dhΓ (t)

tk − 1

≥

M∑

n=0

T sn−k

k − sn
−

13cΓT
3/4

5(T − 1)k
.

Since T sn−k/(k − sn) > T sn−k/k, we have

(27)
∞∑

k=2

∞\
T

log t dπΓ (t)

tk − 1
≥

M∑

n=0

T sn

∞∑

k=2

1

kT k
−

13cΓT
3/4

5(T − 1)(T − 2)

≥

[
− log

(
1 −

1

T

)
−

1

T

] M∑

n=0

T sn −
13cΓT

3/4

5(T − 1)(T − 2)

≥ log
T

T − 1

M∑

n=0

T sn − 1 −
M∑

n=1

T sn−1 −
cΓT

3/4

T − 1
.

Now, consider the limit on the right-hand side of (7). Letting x→ ∞ in (10),
having in mind that cΓ t

3/4 log−1 t ≥ hΓ (t) ≥ −cΓ t
3/4 log−1 t and using (22),

we obtain
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lim
x→∞

( ∑

T<N(P0)<x

logN(P0)

N(P0) − 1
− log x

)

≥
M∑

n=1

∞\
T

tsn−2 dt− log(T − 1) −
cΓT

3/4

T − 1
+

∞\
T

(t log t− t+ 1) · hΓ (t) dt

t(t− 1)2

≥
M∑

n=1

T sn−1

1 − sn
− log(T − 1) −

cΓT
3/4

T − 1
− cΓ

(
T 3/4

T − 1
+ 3(T − 1)−1/4

)

≥
M∑

n=1

T sn−1

1 − sn
− log(T − 1) −

5cΓT
3/4

T − 1
.

This, together with (7) and (27), implies that

γ
(Γ )
0 ≥

∑

N(P0)≤T

Z ′
P0

ZP0

(1)+
M∑

n=1

T sn−1

1 − sn
−log(T−1)−

6cΓT
3/4

T − 1
−

M∑

n=1

T sn−1−1

+ log
T

T − 1

M∑

n=0

T sn

=
∑

N(P0)≤T

Z ′
P0

ZP0

(1) +
M∑

n=1

snT
sn−1

1 − sn
+ log

T

T − 1

M∑

n=0

T sn −
6cΓT

3/4

T − 1
− 1

− log(T − 1).

The proof is complete.

Corollary 5.3.

γ
(Γ )
0 = lim

x→∞

( ∑

N(P0)≤x

Z ′
P0

ZP0

(1) − log(x− 1)

)
.

Proof. Immediate consequence of (23) and (26) as T → ∞.
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