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Euler constants for a Fuchsian group of the first kind
by

MUHAREM AVDISPAHIC and LEJLA SMAJLOVIC (Sarajevo)

1. Introduction. Let I" C PSL(2,R) be a Fuchsian group of the first
kind, x an r-dimensional unitary representation of the group I', and Z,

the corresponding zeta function.

In this paper we will evaluate the Euler—Selberg constant 'yéF’X) and

higher Euler—Selberg constants 'yT(LF’X) (n € N) appearing in the Laurent

series expansion of Z}X /Zry around s = 1:

!

Z 1
(1) 22 =g+ =D+ 1P
I s—1

More precisely, in Theorem 3.2 we prove that

(r _ (=17 ( Tr(x(P)A(P), log/ w)
s =-—"1lim —=——"log/ N(P) - —

J jl a—oo N(%):<:E N(P) Jj+1
for j = 0,1,..., where the sum on the right is taken over all hyperbolic
conjugacy classes of I, N(P) denotes the norm of the class P, and A(P) =
log N(Py)/(1 — N(P)~1) for the primitive element Py such that P = P§ for
some 7.

This extends the result proved by Y. Hashimoto, Y. Ilijima, N. Kurokawa
and M. Wakayama [6] from the case of compact Riemann surfaces to the
case of non-compact Riemann surfaces of a finite volume. The proof of The-
orem 3.2 relies on the representation of the logarithmic derivative of the
Selberg zeta function Zr, obtained in [4], and introduces an approach that
differs from the one used in [6].

In Theorem 4.1 and Proposition 4.4, we obtain upper bounds (in terms
of topological and spectral theoretical invariants of I") for the Euler—Selberg

constant ,YéF) in the case when r = 1 and x = id, which improve the bound
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obtained by J. Jorgenson and J. Kramer in [10]. Lower bounds for the con-
stant ’y(()F) are given in Propositions 5.1 and 5.2. The role of ,Yéf) in measuring
the difference between the Arakelov and the Petersson metrics is discussed

in [10, p. 2].

2. Preliminaries

2.1. The Selberg zeta function. Let ‘H be the upper half-plane and I" a
Fuchsian group of the first kind containing ny; > 1 inequivalent parabolic
classes. Then I'\'H can be identified with a non-compact, hyperbolic Rie-
mann surface of a finite volume with ny cusps. We will denote by § the
fundamental domain of that surface, and by |§| its volume.

The group I' contains inequivalent hyperbolic, elliptic and parabolic
classes. We denote the set of inequivalent hyperbolic resp. elliptic classes
by {P} resp. {R}, whereas the set of inequivalent, primitive hyperbolic
classes is denoted by {Py}. All elements of an elliptic class are conjugate in
SL(2,R) to a rotation (g?ﬁg _Cf)isr}f), for some 6 € (0,7). The order of the
primitive element Ry associated to R is denoted by Mpg/2.

The Selberg zeta function (see [7], [8] and [12]) associated to the pair
(I, x), where x is an r-dimensional unitary representation of I' (without
loss of generality, we may assume that y is irreducible, see [8, p. 267]), is
defined as an Euler product

2 Zra(s) = [] Hdet (I, — x(Py)N = [ Zrxrl(s

{Po}r k=0 {Po}r

converging absolutely for Res > 1. Here, N(F,) denotes the norm of the
class Py.

Investigation of Zr, is closely related to the L? spectral theory of the
operator A = y2(9/02% 4+ 0/0y?) on X = I'\'H (see, e.g., [9]). The operator
— A is essentially self-adjoint on the space D of all twice continuously differ-
entiable functions f : H — V (V is an r-dimensional vector space over C)
such that f and Af are square integrable on § and satisfy the equality
f(Sz) = (S)f( ) for all z € H and S € I'. It has the unique (self-adjoint)

extension —A to the space D.

Let T}, j = 1,...,n1, denote all parabolic classes of the group I'. Then
X(T;) does not depend on the choice of the representative of the class Tj
and can be considered as a matrix from C™*". We will denote by m; the
multiplicity of 1 as an eigenvalue of the matrix x(7}), and nj = > "L, m;
will be the degree of singularity of x.

If n] > 1, the operator — A has both discrete and continuous spectrum;
if nj =0, it has only a discrete spectrum. Let {\,}n>0 (0 =X g < A1 < -+,
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An — o0) be the discrete spectrum of —A. The non-trivial zeros Sy =
1/2 £ ir, of Zr,(s), lying on the critical line, are related to the discrete
spectrum, the numbers 7, being solutions of the equations 1/4 +r2 = \,,.
Let 0 < e < egg < 1/4. We will denote by N; r, -, the number of eigen-
values A\, such that ¢ <\, < eg. N
The continuous spectrum of —A is expressed through zeros (or equiva-
lently, poles) of the hyperbolic scattering determinant

I(s—1/2)\" X ay,
o0 = (") T
I'(s) — g
where the coefficients a,, and g,, depend on the group I" (see [8] or [5]).

One of the properties of the continuous spectrum is that it is possible to
choose column vector f, (for a fixed j € {1,...,n1} and 1 < h <) so that

X(I}-_l)fhj — Imian; fn;, where 0 < ap,; < 1and ap; = 0iff 1 <h <my (see
[8, pp. 268-269]).
As proved in [8, pp. 496-501], the Selberg zeta function Zr,(s) is a
meromorphic function of a finite order that satisfies the functional equation
Zrx(8)¥rx(s) = Zry(1 — s),

with the factor ¥, given by
n
— du)
7 (u)
where

1
INCEYORIE) exp<1§2
= B Tt 2 X sl

ap, 750
Tr(x(R)) cos2(m —0)(s — 1/2) + cos20(s — 1/2)
+rYy :
= Mpsin 6 cos2m(s —1/2)+1
0<O(R)<m

sz T o] a2 (s 1) - T (3]

2.2. The logarithmic derivative of the Selberg zeta function. Properties
of the Selberg zeta function, such as finiteness of its order, Euler product
representation and the functional equation, make it a representative member
of the fundamental class of functions introduced by Jorgenson and Lang ([11,
pp. 45-46]). The Jorgenson-Lang explicit formula has been generalized to a
wider class of test functions [1] and given a new form applicable in the case
when the factor of functional equation has infinitely many zeros or poles in
the critical strip [3]. In [2] and [4], we have proved that the Selberg trace
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formula, when interpreted as an explicit formula, holds for a class of test
functions that need not satisfy Selberg’s boundedness condition.

As an application of the trace formula obtained, we deduced the follow-
ing theorem, which gave a new integral representation of the logarithmic
derivative of the Selberg zeta function.

THEOREM 2.A ([4]). (a) For Rea >0 and = > 1,

Zrx (1 _ ! Tr(x(P)A(P) 24 a
0 Z(ave) =i 3 e e

doz® i/[: COS YTy, OSO cosytdR(t) @OSO t-r(t)cosyt &t
0 0 a?41¢2

n n_{oxo H(t)cosytdt

2 42
T o+t
Z R)) OSO cosyt cosh2(m — 0)t + cosh 260t dt)
2 12 :
(e ZMRS1 0 0 Q +1 cosh 27t + 1
0<O(R)<m

(b)

7! 1 T T1-20
FX( +a> :O<min{ , }) as |T| — oo
Zry olog|T|” o

fora=oc+iT, 1/2> 0 > 0.

Here, we put r, = —i\/1/4 — X\, = —ip, for \, <1/4,n=0,..., M,

1 ¢ (1 S| 2 | ni
R(t) = N[0 < <tl—— du—r—t —tlogt
(t) 0<r, <t 47T_St¢<2+zu)u " +7r og
t *_ * o o 27rio¢h,
—;(nl nj log2 g log|l—e J|)7
ahj7é0

r(t) = tanh7t — 1 and H(t) = L(1 +it) — logt.
In [8, Th. 2.29 on p. 468 with m = 0], it is shown that R(t)=0O(|t|/log |t|)
as [t| — oo and that

t

t

Ry(t) = | R(u) du = o<10g|2||t|> as |t| — co.
1

Obviously, 7(t) = O(e™") and H(t) = O(1/t) as t — oo.
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2.3. The function () and the prime geodesic theorem. The prime
geodesics counting function 7r, () is defined as

trx(®) = Y Te(x(P)),
N(Py)<z
where the sum is taken over all primitive hyperbolic classes Py of I" the norm
of which does not exceed . When r = 1 and x = id, wp(z) is simply the
number of primitive hyperbolic classes Py of I' with norms not exceeding x,
or, equivalently, the number of primitive geodesics of lengths not larger than
log z.
The function ¢, (z) is given by

dra(e) =Y AP)Tr(x(P)),
N(P)<z
where the sum is taken over all hyperbolic classes P of I' whose norm does
not exceed z.
In [4, Th. 6.1] we have proved that
Mo

Yry(z) = Z a;

n=0

+gry(z) for x> 2,
n
where s, = 1/2+ir, forn=0,..., M and —C’p7X:c3/4 < gry(z) < C’p7X:c3/4
for > 2. The constant Cr,, depends only upon I" and .
The prime geodesic theorem proved in [4] states that

M
Try(z) = Zli(mS”) +hry(z)  for x> 2,
n=0

where —0p7xx3/4 log*1 r < hnx(m) < CF,X.Z'3/4 log*1

depending only upon I" and .

x for some constant Cry

3. Euler—Selberg constants. In the proof of our next theorem, we
shall make use of the following lemma that can be easily verified by induc-
tion.

LEMMA 3.1. Let f be a meromorphic function with a pole of order m at
a point s = sy, and the corresponding Laurent series expansion

o0

f(s) = Z an(s —so)".

n=—m

Assume that for a fired § > 0 and |s — so| < 0 the function f can also be
represented as

F()= > falz,8)(s = s0)"

n=—m
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for all x > xg. Suppose lim,_.oc frn(x,s) = b, € C for n > —m, indepen-
dently of s in the above disc. Then b, = a, for alln > —m.
THEOREM 3.2. Let
zZ 1
F,X(S): +’Y(SF’X)+’Y( ,X)( 1)+’7§F’X)(8—1)2—|—---

ZFvX s—1
be the Laurent series expansion of the logarithmic derivative of the Selberg
zeta function around s = 1. Then

V(va) = ﬂ lim ( Z w log! N(P) — log/*! ZL‘)

forall 7=0,1,....
Proof. Putting s =1/2 + « into (3), taking into account that
COos Yrg B a2 4 g=1/2
(s—1/2)2+72  2s(s—1) '
and conveniently regrouping the terms, we get

Z/ x25_1 v xl—s
(4) I')x (S) _ < Z T (X(P))A(P) N(P)lfs + _>

25—1 —
Zry 1+ NP N(P) s—1
(4s — 2)xs~1/2 M COS YTy, OSO cos yt dR(t)
1+ 21 1(8—1/2)2+r% 0(s—1/2)2+1¢2
I8 OSO t-r(t)cosyt n_*{oso H(t)cosytdt
7r0 —1/2)2 4+ ¢2 ) (s—1/2)2 + 2
Z R)) OSO cos yt cosh 2(m — )t + cosh 26t dt)
_ 2
e QMRsmHO s—1/2)2+t cosh 27t + 1
0<f(R)<m
1 z* b1 1
- Tr(x(P))A(P)N(P)* ' — =
(X AN ey D) ()
N(P)<z
for x > 1. Now,
:L,l—s 1 o (_1)n+1
= — 1)1
s—1 s—1+ngo(n+1)‘(S ) log
" TP AP)
Tr(x(P P 1—
N(P)™°
N (D) (P)
N(P)<z
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If we put
1,25—1 xs—l
f_l(CC,S) = 1 +SC2871 + 1 +CC2871’
M 0o
(45— 2)zs~1/2 CoS Yy cosyt dR(t)
Jolw,8) = = ae Zl G122 +2 " b (s—1/2)2 +£2
B @OSO t-r(t)cosyt gt n_’l‘oso H(t)cosytdt
27r0(3—1/2)2+t2 T (s =1/2)2+ 12
Z R)) OSO cos yt cosh 2(m — 0)t + cosh 26t dt)
_ 2
& 2MRsm00 s—1/2)2+¢ cosh2mt + 1
0<f(R)<m
1 o1 x5zt
(X maepaevert - o)
N(P)<z
a7 Tr(x(P)A(P)
iy ( 2 NPy 10gm>
N(P)<z

= A(z,s) — B(z,s) + C(z, s)

and

o -1 T Onl.ZL‘
fulo9) = P ( 5 BOPDAR) oy py - 108" )

2s5—1 |
142z n! N{PI<z

for n > 1, then (4) becomes

anxs )(s—1)".

n=-—1
We will first evaluate lim, .o A(z, s) for s in the disc |s — 1| < §, where
0 =min{1/4,1/2 — 1} if 0 < A1 < 1/4, and § = 1/4 if A\; > 1/4. (Recall
that, in the first case, u1 = \/1/4 — A1 < 1/2.) If M > 1, we have

M
CoS YTy,
5 Oyt
(5) Z(s—1/2)+2— L
for some constant C7, uniformly in the disc |s — 1| < 4.
Furthermore,

[e.e]

< S R(t)sinyt dt
Tl (s =172+

o

2tR(t) cosyt dt
‘ Vo1 s

‘OSO cos yt dR(t) +Cy+Cy
(

o (s—1/2)? +12
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for some constants C7 and Cs, and

OSO R(t)sinyt dt < OSORl(t) cos yt dt
G127+ 2| =) G-122+ 2

o

S 2tR;(t) sinyt dt
3 (s —1/2)2 + %)
Since Ry (t) = O(t/log?t) as t — oo, the two integrals on the right-hand side

of the last inequality are bounded by some constants K7 and Ko, uniformly
in s for |s — 1| < §. Therefore,

< Kylog?z + (C1 + K2)logx + Cs.

(©) ‘ S ( cosyt dR(t)

o (s— 1/2)2 +¢2
Using (5), (6), the facts that
cosh 2(m — )t + cosh 26t

r(t) = 0™, H(t) = 0(1/l]), c_ e

as |t| — oo, and having in mind that the sum over elliptic classes is finite,
we obtain

= 0(1),

(4s — 2)a" 1/
1+ 2251

for large x, and s in the disc |s — 1| < §. Therefore, lim, o A(z,s) = 0
uniformly for s in the disc |s — 1| < 4.

The next step is to prove that lim, .o, B(z,s) = 0 uniformly in that
disc. To do so, we will use the integral representation of the sum appearing
in B(z, s):

|A(z,s)| < C max{z", log® r}

Y T(P)AP)IN(PY =7 diry (1),

N(P)<z T

where 7 > 1 is less than the smallest N(P).
Now, for & > 2, one gets

|B(z, s)|
1 2 1 1 M mersnfl )
- ‘1_1_ 25—1 Sts_ dpry(t) — 27 @Z)F,X{Q)""Z + 2% gry ()
L T n=0 Sn
M x T
$5Tsn—2 5 51
—(s—1 dt — (s — )\ t5 2gr, (t)dt — — —
(s )Z:;Jé - (s >§ gra(t)dt — — = —
s—l—sn—l 1
S—
<‘1+ 2sl< +Z$+ Sn +|$ |‘9F,x(x)|

5= 1

+5‘ Jeo2gr(t) dt‘

)
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uniformly in |s — 1| < §, where the constant C' depends on I" and x only.
Since gr(z) = O(z%/*) as x — oo, passing to the limit we conclude that
limg o0 B(z, s) = 0 uniformly in the disc |s — 1| < 4.

Finally, we will prove that lim, .., C(x,s) is a finite number, not de-
pending on s in the disc |s — 1| < J. First, we represent the sum appearing
in the expression for C(x, s) as the Stieltjes integral

Tr(x(P)A(P) _  dry(t)
Z N(P) _S Ft ’

N(P)<z
Integration by parts yields

T

T dry(t) gryx () -
§ S logx—l—z " +F>; —|—§t 20 (8) dt + K,

where the constant K depends on I" and x only. Boundedness of gr(z)
by z3/4 and the fact that s, < 1 for n = 1,..., M imply that the limit
of the right-hand side of the above equality is finite as z — o0. Since
22571 /(1+ 2%~ 1) — 1 as 2 — oo, uniformly in |s — 1| < 1/4, we obtain

;1;1520 fo(z,s) = x&%o( Z W - log:z:) =beC
N(P)<z

for all s in the disc |s — 1| < 4.

It is left to prove that limy_,o fr(z,s) = b, € C for all n € N. Arguing
as above, we represent the sum appearing in the expression for f,(z,s) as
the Stieltjes integral and integrate by parts to obtain

logn-i-l

n—+1

x log x

Slog td?,brx()

T

Yry(x) —log"

M1 Tlog" 't (logt — ¢ log™ 1 ¢ (log t —
+3 58 o8 ;(_fngt ") i+ Jora(t) 2= ti;gt ) gy K
n=1 2 2
where the constant K depends on I' and y only.
Since s, < 1 (for n > 1) and gr(z) = O(z3/*) as © — oo, the limit as
x — oo of the two integrals on the right-hand side of the above equality is
finite. This proves that limy_,o fn(z,s) = b, € C for all n € N, uniformly

in the disc |s — 1| < §, and completes the proof of the theorem.

The case r = 1 and x = id deserves our special attention. In this case,
()

the Euler—Selberg constant ~," * is a real number that plays an important
role in applications. We have just proved that
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)

However, the constant v, ’ can be expressed in terms of primitive geodesics
only. A benefit from such an expression will be clear in the next two sections,

where we consider upper and lower bounds for 'yép). In the following, we shall
assume that 7 = 1 and x = id, and omit the index y in further notation.
PRrROPOSITION 3.3. For x > T > 2 we have
Z log N (P,)
() _ il i ~08 V\Ho)
@ A= X Fwetm( Y )
N(Py)<T T<N(Po)<z
oo 0
logtdrp(t)
LD Bt
k=2 T
Proof. For x > T > 2 one has

() _ A(P)
(8) 70F = zlg&( Z NP log .Z‘)

o log N (Pp)
S| Yy e
N(P0)<Tk:N(P())k
log N(FPy) ) log N(Py)
+ —logx O
(T 2 NP1 % Z Z N(Po)k—l
<N(Py)<z k=2 T<N(P,

The second sum on the right-hand side of (8) is taken over all natural num-
bers k such that N(Py)* < x. Since the first sum is finite, we get

. log N(F
® Jm Sy B

Po <Tk:N Po k<g

- T Y T g
N(Py)<T k=1 Py)<T 0
Furthermore,
log N (Py) ¢ logtdmp(t)
1 —_— —1
(10) 2 N(Py) -1 =V = loee
T<N(Py)<z T
M x x
log t d(li(t*")) logtdhp(t)
=2 R
n=0 T
M =z _1
ton 1 -h
:ZS —i—log(m—l)—logaz—kM
n=1T T
logT -hp(T) = ¢ logt-hp(t)dt ¢ hp(t)dt
—log(T' —1) — ——— +§ e ;t(t—l)'
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Therefore, letting # — 0o and having in mind that |hp(t)| < cpt®/*log™' ¢
for all ¢ > 2, we obtain

_ logN(P) B
T<N(Py)<z

It is left to consider the limit of the last sum on the right-hand side of (8).
We have

k xT
Z log N(Py) _ \Sflogtdmﬂ(t)
N(R)k —1 k_1
T<N(Py)< ¥z T
Hence,
) log N(Py)  Tlogtdmp(t)
1 = .
Jm o > N([B)F -1 :SF th—1

T<N(Py)< ¥z

For k£ > 2 one has

00 M oo Sp— o)
Slogtde(t) _ Zy Lat N Slogtid_hq(t)'

o

Ttenlat B

It is easy to see that
S dt (T — 1)Snik
th—1 = ) (t= Dk ks,

(12)

Integration by parts and simple estimations yield

Tlogtdhp(t) hr(T)logT log t
<
R e +;hF(T)d -1

- TkE—1 (tk —1)2

(13)

T

T
T3/4 T3/4 37t
<Tk 1T ZS m>
- O\TF-1 4k-3/4 T’f—l
_ 13c, T3/
5Tk — 1)

Therefore,

S logtde i — 1)~ k 130[‘T3/4

ks, BT —1F

T n=0
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Summation over k yields

M
10gtd7rp — 1)t 13¢pT3/4
(14) Z S Z + 5T —1)(T—2)

Thus, the series
DD O L
NPk —1
k=2 T<N(Py)< ¥z
is of the form Y .2, fix(x), where

fr(x) / Ap =\ log;;di_m;(t)

T

(z — o0)

and > 77, A < co. Hence,

logNP log N(Py)
JL“SOZ 2. N(Py)F—1 : ZJL“SO( 2. N(Po)k—ol)

k=2 T<N(Py))< ¥z T<N(Py)< ¥z
S 10gtd7rp( )
k=2 T .
Now, taking into account (8), (9) and (11) we get (7).

4. Upper bounds for the Euler—Selberg constant. In this section
we shall make use of Theorem 3.2 and Proposition 3.3 to obtain upper

bounds for %()F) .

THEOREM 4.1. (a)

M

Sn—1

() o Tsn A(P) 14

2 _rTnzlg{z b Y Aot
n=1 N(P)<T

(b) Let 0 <e <1/4 and s. =1/2+ \/1/4 —e. Then

Tsn_l 1 Se—1
(15) = > T Nerin
0<An<e €
A(P
+ Z % +5CrT V4 —1ogT
N(P)<T

for T > 2.



Euler constants for a Fuchsian group 137

Proof. (a) For z > T > 2 we have

N(P) (P) t
N(P)<z N(P)<T T

_ A(P)  yr(xz) Yr(T)

= N(P) + . T logT
N(P)<T

M M x
Tt gl gr(t)

+ ;::1 P Shrw +; o dt.

Letting z — oo, and taking into account that s, —1 < 0 for n > 1 and
Yr(z)/z — 1 as x — oo, we get

AP) | T gr(t) Yr(T)
Z N(P) S 2 dt — T~ logT.
(P)<T T

Since lgr (1) < Cre/ and Yp(T)/T > 1+ TSI T /s, = OpT=1/4, we
have

(16) (0 < i i > AP) | 500114 logT.
o= 2, N(P) ©8
n=1 N(P)<T

(b) Obviously,
Tt 1
<
1—s,  1-—s;

On the other hand, A\, < 1 — s, for all 0 < \, < 1/4. These two facts
combined with (16) give (15).

751 foralle <\, < 1/4.

COROLLARY 4.2. (a) If T > max{e, (5Cr)*}, then

Sp—1
) VA DR oY
n=1 " NPT

(b) Let T be such that
1
1—s.
If T > max{2,T.}, then

r TSn—l
e -y
0<An<e An N(P)<

N. 1174+ 50T = log T

A(P)
(P)

—~

2

Proof. Straightforward.
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Notice that the left-hand side of the equation in (b), as a function of T', is
decreasing from +oo to 0 and the right-hand side strictly increases to +oo.
Therefore, T is unique.

REMARK 4.3. By representing the function Z./Zr as a Gauss transform
of the hyperbolic heat trace, J. Jorgenson and J. Kramer [10, Theorem 4.7]
have given an upper bound for the Euler—Selberg constant involving the
constant ¢/» that appears in the error term of the prime number theorem.
They have used a weaker version of the prime geodesic theorem, proved in
[8, p. 475], asserting that

Try (@ Zh ) 4+ hry(z) for x> 2,

where —c’FXx3/4 log~ /22 < hpy(z) < c’FXx3/4 log='/2 2 for some constant
r depending only upon I" and x. The constant ¢ differs from our con-

()’

stant cr, . In our notation, the upper bound for ~ ’ obtained by Jorgenson
and Kramer can be stated as
Z/
(18) <34 Z > Z—f(n,
0

0<>\n<5 N(P0)<66Fv5

where 0 < ¢ < 7/64, the second sum on the right-hand side is taken over
primitive hyperbolic conjugacy classes Py, and

<4(4 —E 3s.)

Ore = max{% log (cpr + Ne’p’1/4)> ,5+ 2log N()’F’E}.

Proposition 3.3 enables us to obtain also an upper bound for ,YéF) with
the constant ¢ instead of Cr. We state this as follows.
PROPOSITION 4.4. (a) Let T be the constant such that

3/4 M 1
6CFT (Tp—l)S"

log(Tr — 1 R -
og(Tr —1) = Tp—1+n§ Tr—2

Then, for T > max{e?, Tr},

’ M _1sn—1
1 <
(19 DTS lUDE
P())<T n=1

(b) Let 0 < e < 1/4 and denote by Tr. the solution of the equation

1 1 6erT3/% N,
>+ T + 0,1

T —1)*7!N,
( ) 5’“/4<1—36+T—2 T—-1 T-2

=log(T —1).
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Then, for T > max{e?, Tr.},

20 ) < - 1 m Zh 4
(20) Z Z 7 (1).
0< A, <t N(Py)<T Po

Proof. Note that the uniqueness of numbers T and 77, follows by the
same argument applied to T; in Corollary 4.2(b).
(a) For any T > 2, combining (7) and (10) we obtain

A Ttonlat logT - hp(T)
(I Po g r
21 < E E —log(T—1) — ———=
< (logt — t_l) t)dt logtdﬁp
- S (t—1)2 - Z S

k=2T
Let us estimate the right-hand side of (21). First,

S T (logt — =) hp(t) dt
T

_ t3/4 dt <, T3/4 +§ dt
S e =\ T T ) i -

T34 3T dt T3/4 )
< - _— | = —_— 1)~ 4 .
_CF<T—1+4§(75—1)5/4> CF<T_1+3(T 1) )

(22)

o0 o0

The other two terms containing integrals in (21) are taken care of by (12)
and (14). Thus, having in mind that ‘logThF | < CFTl/ , we get

o 3 Zagyyy Lo
0 1-s,
Po <T n=1

3/4 — 1)t
TR

Finally, since 3(T — 1)~'/4 < 37?_/14 and 1—32) < 1, for T > 5 we have

5T
7! M (T—l)S"_l 6 T3/4
(I P cr
2 < —(1
(23) < (pZ;qZPO(H; et
0
_ 1 Sn—1
+ Z —log(T' - 1),

which proves (a) in the given range of T
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(b) Let 0 < € < 1/4. Then, since A\, = s,(1 — s,,) and s, < 1 for n > 1,
we have

M
_ 1 Sp—1 T -1 Spn—1 T-1 sp—1
D e B D
n=1 " 0<Ap <€ n sn<se "
(T _ l)snfl (T _ 1)3571
< -~ 4+ N, -
S Z , T Nenya == 5
0<An<e
Similarly,
M (T — 1)5"_1 NO T — 1 sn—l
25
(25) D m ey STt y U
n= Sn <S¢
No,re (T - 1)55_1
S ET R

This, together with (23) and (24), yields the statement.

REMARK 4.5. The bounds (20) and (18) cannot be compared since the
constants ¢y and ¢ are different. However, repeating the steps of the proof
of Proposition 4.4, now using the weaker bound on hp that involves the
constant ¢, it is easy to see that

A M _ 1 sp—1 6c T3/4
s S Ty SO STy

= NPT ZPO 1 1-— Sn T —
M
(T — 1)1
— —log(T —1).
D og(T — 1)
n=0
This implies that, for any 0 <e < 1/4 and T' = T}’E satisfying
1 1 6 T34 N,
_1)se—1 T 1/2 0,1 _ .
(T 1) Ng’F’1/4<1—SE+T—2> T_1 lo og T+T 9 IOg(T 1),

the inequality (20) remains valid.
Simple but somewhat lengthy calculations yield e > Tﬁg. Thus, our
bound (20), with T, replaced by Tﬁa, is better than the bound (18).

5. Lower bounds for the Euler—Selberg constant. In this section
we shall use Theorem 3.2 to prove lower bounds for the Euler—Selberg con-
()

stant 7, ° involving the constant Cr. Proposition 3.3 will provide lower
bounds involving primitive hyperbolic classes and the constant cp.

PROPOSITION 5.1.

M Spn—1
(r) < Ien AP) —1/4 _
Yo ' = I}l%{{ E_ 1_s, + E —(P) 5CrT logT .
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Proof. Let us recall that for all x > T > 2,

M s —1 0o
() _ ™ A(P) gr(t) ., vr(T)
Y =1+ E )\n + E N(P) +S 2 dt T logT.
n=1 N(P)<T T

The facts that gr(t) > —Cpt3* and ¥p(T)/T < 1+ M T3 /s, +
CrT3/* for T > 2 complete the proof.

The following proposition gives us lower bounds for ,Yéf) involving the

spectra of the Laplace—Beltrami operator and the constant cp.

PROPOSITION 5.2.
M

(26) (I > max E ﬂ + E Zn, (1)+1o T ME T
Yo =g Hol-se Zp, 8T 1 —
= (Po)<T n=0
6erT/4
——— —log(T'—1)—1,.
71— losl )

Proof. We use Proposition 3.3 to estimate the last two summands in (7).
For k > 2, the relation (13) implies

0o M oo 00
log t dmp(t) ton—1 logt dhp(t)
2 = N7 - dt 2 2 -7
R = 5 e [
o~ T 13,
T —k—s, 5(T-1)F

Since T % /(k — s,) > T /k, we have

0o o0 M 0o
logtdmp(t) . 1 IR
(27) Z§ th—1 =T ;Qka_5(T—1)(T—2)

n=0

M
1 1 13¢pT3/4
> | — —_ ] - = Sn__
—{ k’g(l T) T] ZOT 5T~ 1)(T - 2)

n=

M M
T o epT3t
>1 7o —1— Tt ——
2log > > 1
Now, consider the limit on the right-hand side of (7). Letting z — oo in (10),
having in mind that ¢yt3/*log=' ¢t > hp(t) > —crt®/*log™! t and using (22),
we obtain
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T<N(Po)<:v

T3/4 T(tlogt —t+1) - hp(t)dt
Z StS”_2dt—log(T 1) — CF S og +1)-hr(t)
t(t—1)2
n=1T T
M
Tsn C[‘T3/4 T3/4 .
> log(T — 1 —1)"/4
_Zl_Sn og(T — 1) - ~er( 7 )
n=1
M
Tsn_1 5CFT3/4
> —log(T —-1) — ———.
—nzll—sn og(T—1) = =73
This, together with (7) and (27), implies that
z, M ps,—1 3/4 M
n 6erT
R S T S e = Y
N(P0)<T 0
M
T
—Hog—T 1ZTS”
n=0
! M n—1 M 3/4
spT® T 6crT
b (1 Tt 4 om0
2. 7, WE 1—sn+°gT—1Z T-1
N(Py)LT n=1 n=0
—log(T —1).

The proof is complete.

COROLLARY 5.3.

Z/
fyép) = lim < Z (1) — log(z — 1))
v N(Po)<az =T

Proof. Immediate consequence of (23) and (26) as T' — oc.
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