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1. Introduction. The problem of determining upper bounds for the
number of integer points on elliptic curves has received considerable atten-
tion, and is a notoriously difficult problem. In a series of papers [11]–[15],
Ljunggren proved absolute upper bounds for the number of positive integer
solutions to equations of the form

aX4 − bY 2 = c, c ∈ {±1,−2,±4}.

In the case c = 1, Ljunggren [12] proved that the equation X4−bY 2 = 1 has
at most two solutions in positive integers X, Y . This result was extended by
Bennett and the third author in [3], wherein it was proved that all equations
of the form a2X4 − bY 2 = 1, with a > 1, have at most one solution in
positive integers. In [5], Chen and Voutier proved that the equation aX4−Y 2

= 1 (a > 2) has at most one solution in positive integers. These results
have recently been extended by Akhtari [1], wherein it was proved that any
equation of the form aX4 − bY 2 = 1 has at most two solutions in positive
integers. A key fact in the proof is that one only needs to prove the result
for the subfamily of equations (t + 1)X4 − tY 2 = 1.

Noticeably absent from the above list of values for c is the particular
value c = 2. The third author [19] has recently proved, under stringent
conditions on a, b, that the equation aX4 − bY 2 = 2 has at most one solu-
tion in positive integers. Proving a similar result for the general equation
aX4 − bY 2 = 2 remains elusive. However, the methods of [1] can be employed
for the particular subfamily of equations (t + 2)X4 − tY 2 = 2. The purpose
of the present paper is to prove an upper bound in the case that c = 2. In
particular, we prove
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Theorem 1.1. For all odd positive integers t > 40 000, the equation

(1.1) (t + 2)X4 − tY 2 = 2

has at most two solutions in positive integers X, Y . For the remaining odd

positive integers t, equation (1.1) has at most three solutions in positive

integers X, Y .

Theorem 1.1 is likely not best possible. We conjecture that the only posi-
tive integer solution to equation (1.1) is (X, Y ) = (1, 1), and more generally,
that any equation of the form aX4−bY 2 = 2, with a and b odd, has at most
one solution in positive integers, and that such a solution must arise from
the fundamental solution to the quadratic equation aX2 − bY 2 = 2. This
conjecture was verified for (1.1) in the range 1 ≤ t < 1200.

The organization of the paper is as follows. In Section 2 we reduce the
solution of (1.1) to the problem of determining all squares in certain linear
recurrences, yielding equations of the form X2 = V2k+1(t). In Section 3, the
problem is further reduced to a family of Thue equations with the property
that the roots of the associated family of polynomials can be given explicitly
in terms of the parameter t. We finish off the first part of the paper by
proving some lower bounds in Section 4, which will be needed later. In
Section 5 the family of Thue equations are shown to be written in terms of
resolvent forms, and the concept of a solution being associated to a fourth
root of unity is introduced. In Section 6 the main lemma is proved, which
shows that for each fourth root of unity, there can be at most one associated
solution to the Thue equation. The proof of this fact uses the hypergeometric
method, and in particular, proves that for fixed t, there is at most one
solution (k, x) to the equation X2 = V4k+3(t). In Section 7, we use Thue’s
method to solve the equation X2 = V4k+1(t) completely, finishing the proof
of Theorem 1.1.

2. Linear recurrences. For t ≥ 1 and odd, let

α =

√
t + 2 +

√
t√

2
,

and for k ≥ 0, define sequences {Vi}, {Ui} by

α2k+1 =
V2k+1

√
t + 2 + U2k+1

√
t√

2
, α2k = V2k + U2k

√

t(t + 2).

All positive integer solutions (X, Y ) to the quadratic equation

(t + 2)X2 − tY 2 = 2

are given by (X, Y ) = (V2k+1, U2k+1).
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Thus, a positive integer solution (X, Y ), with X > 1, to equation (1.1)
is equivalent to the existence of positive integers (t, k) satisfying

X2 = V2k+1(t).

Our strategy to prove Theorem 1.1 is to first prove that for fixed t, the
equations

(2.1) X2 = V4k+1(t)

and

(2.2) X2 = V4k+3(t)

are solvable for at most one integer k > 0. This results in an upper bound
of three solutions for equation (1.1). We then show that for t large enough,
equation (2.1) has no solution with k > 0.

3. Reduction to Thue equations. We show here that a solution to
equation (1.1) gives rise to a solution to a Thue equation.

It is easily proved by induction that the following relation holds for {Vn}:
(3.1) V4k+1 = V 2

2k+1 + 2tU2
2k.

Therefore, if V4k+1 = X2, then

X2 = V 2
2k+1 + 2tU2

2k,

and hence, (X−V2k+1)(X+V2k+1) = 2tU2
2k. It follows that there are positive

integers r, s, A, B, with rs = 2t and U2k = 2AB, for which

X − V2k+1 = 2rA2, X + V2k+1 = 2sB2.

Consequently, V2k+1 = sB2−rA2, and from the easily seen identity V2k+1 =
V2k + tU2k, one deduces that V2k = sB2 − rA2 − 2tAB. Substituting these
expressions for V2k and U2k into the equation V 2

2k − t(t + 2)U2
2k = 1 results

in the equation

s2B4 − 4tsAB3 − 12tA2B2 + 4rtBA3 + r2A4 = 1.

Multiplying this equation through by s2 and setting

(3.2) x = −sB, y = A

shows that x and y satisfy the Thue equation

(3.3) x4 + 4tx3y − 12tx2y2 − 8t2xy3 + 4t2y4 = s2.

Similar to (3.1), one has the relation

V4k+3 = V 2
2k+1 + 2tU2

2k+2,

and so if V4k+3 = X2, then

X2 = V 2
2k+1 + 2tU2

2k+2.
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Therefore, (X − V2k+1)(X + V2k+1) = 2tU2
2k+2, and so there are positive

integers r, s, A, B, with rs = 2t and U2k+2 = 2AB, for which

X − V2k+1 = 2rA2, X + V2k+1 = 2sB2.

Hence V2k+1 = sB2 − rA2, and from the identity V2k+2 = V2k+1 + tU2k+2,
one has V2k+2 = sB2 − rA2 + 2tAB. Substituting these expressions into the
equation V 2

2k+2 − t(t + 2)U2
2k+2 = 1 gives

s2B4 + 4tsAB3 − 12tA2B2 − 4rtBA3 + r2A4 = 1.

Multiplying through by s2 and letting

(3.4) x = sB, y = A

shows that x and y satisfy equation (3.3).
Asymptotically, the roots of the polynomial

(3.5) pt(x) = x4 + 4tx3 − 12tx2 − 8t2x + 4t2

are given as follows. We adopt the L-notation defined in [8, pp. 1151–1152]
that we recall here. Let c be a real number, assume f(x), g(x), and h(x) are
real functions and h(x) > 0 for x > c. We will write

f(x) = g(x) + Lc(h(x))

if

g(x) − h(x) ≤ f(x) ≤ g(x) + h(x) for x > c.

Therefore we obtain

β(1) =
√

2t + 1 +
1

2
√

2t
− 1

2t
− 9

16t
√

2t
+ L6

(

0.59

t2

)

,

β(2) = −
√

2t + 1 − 1

2
√

2t
− 1

2t
+

9

16t
√

2t
+ L792

(

0.48

t2

)

,

β(3) =
1

2
− 5

16t
+

23

64t2
+ L105

(

0.49

t3

)

,

β(4) = −4t − 5

2
+

21

16t
− 84

64t2
+ L5

(

1.349

t3

)

.

Carefully analyzing the construction of the Thue equation (3.3), it is
not difficult to verify that if X2 = V4k+1 with k > 0, then the correspond-
ing positive integer solution (x, y), given by (3.2), to equation (3.3) has the
property that the closest root to x/y is β(4), whereas if X2 = V4k+3, then
the corresponding positive integer solution (x, y), given by (3.4), to equa-
tion (3.3) has the property that the closest root to x/y is β(1). We make this
comment more concrete in the following.

Lemma 3.1. If X2 = V4k+1 is solvable with X an integer and k > 0, and

if (x, y), given by (3.2), is the corresponding solution to the Thue equation
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(3.3), then

|x/y − β(4)| <
1

16t|y|4 .

If X2 = V4k+3 is solvable with X an integer and k > 0, and if (x, y), given

by (3.4), is the corresponding solution to the Thue equation (3.3), then

|x/y − β(1)| <
1

4t|y|4 .

Proof. We will prove the result for the equation X2 = V4k+1, as the
proof for the second case is essentially identical. We will use the fact that
V2k/U2k is a close approximation to

√

t(t + 2). The definition of (x, y) gives

x

y
=

−sB

A
=

−2sB2

2AB
= −X + V2k+1

U2k
= −

√

V4k+1 + V2k+1

U2k
.

Using the relations V4k+1 = V 2
2k+1 + 2tU2

2k and V2k+1 = V2k + tU2k, we find
that

x/y = −(
√

(V2k/U2k)2 + 2t(V2k/U2k) + (t2 + t) + (V2k/U2k) + t).

Using the fact that V2k/U2k is a close approximation to
√

t(t + 2), we see
that the above expression is closely approximated by −4t−5/2, which shows
that the closest root to x/y is β(4). As

|pt(x, y)| = |y|4
4
∏

i=1

|x/y − β(i)| ≤ 4t2,

we see that

|x/y − β(4)| ≤ 4t2

|y|4
∏

i6=4 |x/y − β(i)| .

Using the crude estimate 4t for each factor |x/y − β(i)|, we see that

|x/y − β(4)| ≤ 1

16t|y|4 .

4. Lower bounds for k, t and |y|. In order to prove Theorem 1.1,
we first need to verify that equation (1.1) has only the positive integer
solution (X, Y ) = (1, 1) for all t up to a certain bound. Two independent
computations, using PARI and MAGMA, were run in order to verify that
equation (1.1) has no positive integer solutions other than (X, Y ) = (1, 1)
for all 1 ≤ t ≤ 1200. This was achieved by computing all integer solutions to
each Thue equation of the form pt(x, y) = s2, where pt(x, y) is given in (3.5),
and s is a divisor of 2t.

We will also need a lower bound for k. The polynomial V4k+1(t) is monic
and of even degree. Therefore, Runge’s method can be applied directly
to equation (2.1). Fortunately, Runge’s method has been implemented in
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MAGMA by Beukers and Tengely (see [4]). This rather short MAGMA
computation verified that no positive integer solutions (X, t) to equation
(2.1) exist for each 1 ≤ k ≤ 24.

We now describe how to obtain the lower bound k > 6 in the case of
solving X2 = V4k+3. Firstly, it is trivial to see that V4k+3 ≡ 3 (mod 4) for k
even. Indeed, first note that from the definition of Vk,

V2k+1 = (t + 1)V2k−1 + tU2k+1,

and as (t + 1 +
√

t(t + 2))−1 = t + 1 −
√

t(t + 2), we also have the relation

V2k−3 = (t + 1)V2k−1 − tU2k+1.

Combining these two equations gives the second order linear recurrence

V2k+1 = (2t + 2)V2k−1 − V2k−3.

Since t is odd, 4 divides 2t + 2, and so for each k,

V2k+1 ≡ −V2k−3 (mod 4).

As V1 = 1 and V3 = 2t + 1 ≡ 3 (mod 4), it follows that

V2k+1 ≡ 1 (mod 4)

for 2k + 1 ≡ 1, 7 (mod 8), and

V2k+1 ≡ 3 (mod 4)

for 2k + 1 ≡ 3, 5 (mod 8).

If k = 1, then the equation is simply X2 = 8t3 + 20t2 + 12t + 1, which is
easily shown to have no solutions in positive integers X, t using MAGMA.
For the case k = 3, the equation V15 = X2 implies that V5 = 4t2 + 6t + 1 is
either a square or three times a square by elementary divisibility properties
of terms in the sequence {Vn} (see [9] for details). Evidently, neither of
these possibilities is possible. Finally, if k = 5, we use the fact that for each
i ≥ 0, the Jacobi symbol (V16i+7/V16i+5) equals −1, which is easily proved by
induction, however we provide the details for the convenience of the reader.
The proof uses the above linear recurrence equation for {V2k+1}, the above
congruences (mod 4) for V2k+1, along with basic manipulation of Jacobi
symbols. First,

(V7/V5) = (((2t + 2)V5 − V3)/V3) = (−V3/V5) = −(V3/V5) = (V5/V3)

= (−V1/V3) = (−1/V3) = −1.

Thus, the result holds for i = 1. We next show that

(V8j+7/V8j+5) = −(V8j−1/V8j−3)

for all j ≥ 0, which upon putting j = 2i and j = 2i − 1 gives the desired
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result. We calculate

(V8j+7/V8j+5) = (−V8j+3/V8j+5) = −(V8j+3/V8j+5) = (V8j+5/V8j+3)

= (−V8j+1/V8j+3) = −(V8j+1/V8j+3)

= −(V8j+3/V8j+1) = −(V8j−1/V8j+1)

= −(V8j+1/V8j−1) = −(V8j−3/V8j−1) = −(V8j−1/V8j−3).

We use the above lower bounds for k to obtain lower bounds for |y|,
where (x, y) is a solution to the Thue equation (3.3) arising from a solution
to equation (1.1). In the case of a solution to (1.1) with X2 = V4k+3, we see
from the above construction that

2ry2 =
√

V4k+3 − V2k+1 =
√

V 2
2k+1 + 2tU2

2k+2 − V2k+1.

It follows that

2ry2 =
2tU2

2k+2
√

V 2
2k+1 + 2tU2

2k+2 + V2k+1

.

Dividing the numerator and denominator of this equation by
√

t U2k+2 gives

2ry2 =
2
√

t U2k+2
√

(V 2
2k+1/tU2

2k+2) + 2 + (V2k+1/
√

t U2k+2)
.

By the fact that V2k+1 < U2k+2, it follows that

2ry2 >
√

t U2k+2,

and from the lower bound

U2k+2 > (2t)k > (2t)6,

it follows that

|y| > 2
√

2 t9/4.

In the case of a solution to X2 = V4k+1 with k > 0, we obtain a much
larger lower bound since the equation X2 = V4k+1 was solved using Runge’s
method for 1 ≤ k ≤ 24. In this case, an analysis similar to the one given
above shows that |y| > 210t11.

5. Associated fourth roots of unity. Let

pt(x, y) = x4 + 4tx3y − 12tx2y2 − 8t2xy3 + 4t2y4

and t be a positive integer. Our goal is to find, for fixed t, an upper bound
upon the number of coprime nonzero integer solutions to the inequality

(5.1) 0 < pt(x, y) ≤ 4t2.
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To proceed, let ξ = ξ(x, y) and η = η(x, y) be linear functions of (x, y)
so that

ξ4 = 4(−
√

−t/2 + 1)(x +
√
−2t y)4, η4 = 4(−

√

−t/2 − 1)(x −
√
−2t y)4.

We refer to (ξ, η) as a pair of resolvent forms. Note that ξ4 = −η4 and that

pt(x, y) =
1

8
(ξ4 − η4),

and if (ξ, η) is a pair of resolvent forms then there are precisely three others
with distinct ratios, say (−ξ, η), (iξ, η) and (−iξ, η). Let ω be a fourth root
of unity, (ξ, η) a fixed pair of resolvent forms and set

z = 1 −
(

η(x, y)

ξ(x, y)

)4

.

We say that the integer pair (x, y) is related to ω if
∣

∣

∣

∣

ω − η(x, y)

ξ(x, y)

∣

∣

∣

∣

<
π

12
|z|.

It turns out that each nontrivial solution (x, y) to (3.3) is related to a fourth
root of unity:

Lemma 5.1. Suppose that (x, y) is a positive integral solution to (5.1),
with

∣

∣

∣

∣

ωj −
η(x, y)

ξ(x, y)

∣

∣

∣

∣

= min
0≤k≤3

∣

∣

∣

∣

ekπi/2 − η(x, y)

ξ(x, y)

∣

∣

∣

∣

.

Then

(5.2)

∣

∣

∣

∣

ωj −
η(x, y)

ξ(x, y)

∣

∣

∣

∣

<
π

12
|z(x, y)|.

Proof. We begin by noting that

|z| =

∣

∣

∣

∣

ξ4 − η4

ξ4

∣

∣

∣

∣

=
8pt(x, y)

|ξ4| ,

and from xy 6= 0,

|ξ4(x, y)| ≥ 8
√

2 (
√

t)5,

whence

|z| ≤ 4t2√
2 (

√
t)5

< 1.

Since η = −ξ, it follows that

|η/ξ| = 1, |1 − z| = 1.

Now let 4θ = arg(η(x, y)4/ξ(x, y)4). We have
√

2 − 2 cos(4θ) = |z| < 1,
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and so |θ| < π/12. Since
∣

∣

∣

∣

ωj −
η(x, y)

ξ(x, y)

∣

∣

∣

∣

≤ |θ|,

it follows that
∣

∣

∣

∣

ωj −
η(x, y)

ξ(x, y)

∣

∣

∣

∣

≤ 1

4

|4θ|
√

2 − 2 cos(4θ)

∣

∣

∣

∣

1 − η(x, y)4

ξ(x, y)4

∣

∣

∣

∣

.

From the fact that |4θ|/
√

2 − 2 cos(4θ) < π/3 whenever 0 < |θ| < π/12, we
obtain the desired inequality.

We now put ωi = η(β(i), 1)/ξ(β(i), 1) for 1 ≤ i ≤ 4. The ωi are the
distinct fourth roots of unity. The following lemma represents a key step
towards the proof of Theorem 1.1.

Lemma 5.2. If X2 = V4k+1 is solvable, with X an integer and k > 0, and

if (x, y), given by (3.2), is the corresponding solution to the Thue equation

(3.3), then (x, y) is associated to ω4.

If X2 = V4k+3 is solvable, with X an integer and k > 0, and if (x, y),
given by (3.4), is the corresponding solution to the Thue equation (3.3), then

(x, y) is associated to ω1.

Proof. Assume that X2 = V4k+3, as the other case is proved in the same
way. The goal is to prove that

∣

∣

∣

∣

η(β(1), 1)

ξ(β(1), 1)
− η(x, y)

ξ(x, y)

∣

∣

∣

∣

<
π

12

∣

∣

∣

∣

1 −
(

η(x, y)

ξ(x, y)

)4∣
∣

∣

∣

.

Obtaining a common divisor for the left side, expanding and simplifying
shows that the above inequality is the same as

|2
√
−2t| |x − β(1)y|

|β(1) +
√
−2t| |x + y

√
−2t|

<
|2Pt(x, y)|
|ξ(x, y)4| .

Cross-multiplying the above and dividing through by |y|4, we reduce the
problem to proving the inequality

(5.3)
|2
√
−2t| |2 −

√
−2t| |x/y +

√
−2t|3

|β(1) +
√
−2t|

< |x/y − β(2)| |x/y − β(3)| |x/y − β(4)|.
Lemma 3.1 shows that x/y is very close to β(1). Indeed, Lemma 3.1, together
with the lower bound for |y| determined in Section 4, shows that |x/y − β(1)|
< 1/(28t10). This difference is sufficiently small that we can replace x/y in
(5.3) by β(1), which entails that we need to prove the inequality

(5.4) |2
√
−2t| |2 −

√
−2t| |β(1) +

√
−2t|2

< |β(1) − β(2)| |β(1) − β(3)| |β(1) − β(4)|.
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Expanding the left-hand side of (5.4) gives an estimate with leading terms
16t2 +20t, while that for the right-hand side has leading terms 16t2 +24t.

6. The main lemma. The following represents the most crucial lemma
of this paper, as it provides an absolute bound for the number of integer
solutions to equation (1.1).

Lemma 6.1. There is at most one solution of (5.1) related to each fourth

root of unity.

Because of the lower bound for k obtained in Section 4, we may assume
that k > 6. Furthermore, since ξ4

i = 4(−
√

−t/2 + 1)(xi +
√
−2t yi)

4, via
calculus one may conclude that

(6.1) |ξ1|4 > t14.

6.1. Approximating polynomials. The following lemma gives a family of
dense approximations to ξ/η from rational function approximations to the
binomial function (1 − z)1/4.

Lemma 6.2. Let r be a positive integer and g ∈ {0, 1}. Put

Ar,g(z) =
r
∑

m=0

(

r − g + 1/4

m

)(

2r − g − m

r − g

)

(−z)m,

Br,g(z) =

r−g
∑

m=0

(

r − 1/4

m

)(

2r − g − m

r

)

(−z)m.

(i) There exists a power series Fr,g(z) such that for all complex num-

bers z with |z| < 1,

(6.2) Ar,g(z) − (1 − z)1/4Br,g(z) = z2r+1−gFr,g(z)

and

(6.3) |Fr,g(z)| ≤
(r−g+1/4

r+1−g

)(r−1/4
r

)

(2r+1−g
r

) (1 − |z|)−(2r+1−g)/2.

(ii) For all complex numbers z with |1 − z| ≤ 1 we have

(6.4) |Ar,g(z)| ≤
(

2r − g

r

)

.

(iii) For all complex numbers z 6= 0 and for h ∈ {1, 0} we have

(6.5) Ar,0(z)Br+h,1,1(z) 6= Ar+h,1(z)Br,0(z).

Proof. See the proof of Lemma 4.1 of [1].
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Combining the polynomials of Lemma 6.2 with the resolvent forms ξ(x, y)
and η(x, y), we will consider the complex sequences Σr,g given by

Σr,g =
η2

ξ2
Ar,g(z1) − (−1)r η1

ξ1
Br,g(z1)

where z1 = 1 − η4
1/ξ4

1 . Define

(6.6) Λr,g =
ξ4r+1−g
1 ξ2

(−t/2 − 1)1/4
Σr,g.

We will show that Λr,g is either an integer in Q(
√
−2t) or a fourth root

of such an integer. If Λr,g 6= 0, this provides a lower bound upon |Λr,g|. In
conjunction with the inequalities derived in Lemma 6.2, this will induce a
strong “gap principle”, guaranteeing that solutions to inequality (5.1) must,
in a certain sense, increase rapidly in height.

Lemma 6.3. If (x1, y1) and (x2, y2) are two pairs of rational integers

then

ξ(x1, y1)η(x2, y2)

(−t/2 − 1)1/4
, ξ(x1, y1)

3ξ(x2, y2) and η(x1, y1)
3η(x2, y2)

are integers in Q(
√
−2t).

Proof. This is an immediate consequence of the definition of resolvent
forms.

For a polynomial P (z) of degree n, we will denote byP ∗(x, y) = xnP (y/x)
an associated binary form. Let Ar,g and Br,g be as in Lemma 6.2, and set

Cr,g(z) = Ar,g(1 − z), Dr,g(z) = Br,g(1 − z).

For z 6= 0, we have Dr,0(z) = zrCr,0(z
−1), hence

A∗
r,0(z, z + z) = zrAr,0(1 + z/z) = zrCr,0(−z/z)

= (−1)rzrDr,0(−z/z) = (−1)rzrBr,0(1 + z/z)

= (−1)rB∗
r,0(z, z + z) = (−1)rB

∗
r,0(z, z + z).

Lemma 6.4. For any pair of integers (x, y), both A∗
r,g(ξ

4(x, y), ξ4(x, y)

− η4(x, y)) and B∗
r,g(ξ

4(x, y), ξ4(x, y) − η4(x, y)) are algebraic integers in

Q(
√
−2t).

Proof. It is clear that A∗
r,g(ξ

4(x, y), ξ4(x, y)−η4(x, y)) and B∗
r,g(ξ

4(x, y),

ξ4(x, y) − η4(x, y)) belong to Q(
√
−2t); we need only show that they are

algebraic integers. From the definitions of A∗
r,g(x, y), B∗

r,g(x, y), ξ(x, y) and

η(x, y) (in particular, since ξ4(x, y) − η4(x, y) = 8pt(x, y)), this is an im-
mediate consequence of Lemma 4.1 of [6], which, in this case, implies that
(a/4

n

)

8n is, for fixed nonnegative integers a and n, a rational integer.
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Proposition 6.1. Let Λr,g be the complex number defined in (6.6). Then

Λr,0 belongs to Z[
√
−2t] and Λr,1 is a fourth root of an integer in Q(

√
−2t).

Proof. We have

Λr,g =
ξ1−g
1 η2

(−t/2 − 1)1/4
A∗

r,g(ξ
4
1 , ξ

4
1 − η4

1) −
(−1)rξ2g

1 ξ2η1

(−t/2 − 1)1/4
B∗

r,g(ξ
4
1 , ξ

4
1 − η4

1).

By Lemmas 6.3 and 6.4, Λr,0 ∈ Z
√
−2t. Similarly, Lemmas 6.3 and 6.4

imply that Λ4
r,1 is an algebraic integer in Q(

√
−2t). We claim that it is not

a rational integer. To see this, let us start by noting that

Σr,g

(−t/2 − 1)1/4
=

η2

ξ2
Ar,g(z1) − (−1)r η1

ξ1
Br,g(z1)

=
η

ξ

(

η2/η

ξ2/ξ
Ar,g(z1) − (−1)r η1/η

ξ1/ξ
Br,g(z1)

)

,

where η = (
√

−t/2 − 1)1/4 and ξ = (
√

−t/2 + 1)1/4. By Lemma 6.4,

η2/η

ξ2/ξ
Ar,g(z1) − (−1)r η1/η

ξ1/ξ
Br,g(z1) ∈ Q(

√
−2t)

and so

f = Q(
√
−2t, Σr,g) = Q(

√
−2t, (−t/2 − 1)1/4η/ξ)

= Q(
√
−2t, (−t/2 + 1 −

√
−2t)1/4).

If we choose a complex number X so that ξ(X, 1) = η(X, 1) then X ∈ f and

pt(X, 1) =
1

8
(ξ4(X, 1) − η4(X, 1)) = 0.

Since pt is irreducible, X and Σr,g both have degree 4 over Q(
√
−2t).

Suppose that Λ4
r,1 ∈ Z. Then we deduce for some ̺, ̺1 ∈ {±1,±i} that

Λr,1 = ̺Λr,1 and (−t/2−1)1/4 = ̺1(−t/2 − 1)1/4, whence, from Lemma 6.3,

Σr,1 = (−t/2 − 1)1/4ξ−4r
1 ξ−1

2 ̺Λr,1

= ξ−4r
1 ξ−1

2 η4r
1 η2̺̺1

(

ξ2

η2
Ar,1

(

1 − ξ4

η4

)

− (−1)r ξ1

η1
Br,1

(

1 − ξ4

η4

))

= ̺̺1
η4r
1

ξ4r
1

(

Ar,1

(

1 − ξ4
1

η4
1

)

− (−1)r ξ1η2

ξ2η1
Br,1

(

1 − ξ4
1

η4
1

))

.

This together with Lemmas 6.3 and 6.4 implies that Σr,1 ∈ Q(
√
−2t, ̺̺1),

which contradicts the fact that Σr,1 has degree 4 over Q(
√
−2t). We conclude

that Λr,1 cannot be a rational integer.

From the well-known characterization of algebraic integers in quadratic
fields, we know that for any square-free integer d, the ring of integers
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Q(
√

d) is

{m + n
√

d | m, n ∈ Z} if d ≡ 2, 3 (mod 4)

and
{

m + n
1 +

√
d

2

∣

∣

∣

∣

m, n ∈ Z

}

if d ≡ 1 (mod 4).

We may therefore conclude that, if Λr,g 6= 0, g ∈ {0, 1}, then

(6.7) |Λr,g| ≥ 2−g/4(2t)1/2−3g/8.

6.2. Gap principles. Lemma 5.1 shows that each integer pair (x, y) is
related to precisely one fourth root of unity. Let us fix such a fourth root,
say ω, and suppose that we have distinct coprime positive solutions (x1, y1)
and (x2, y2) to inequality (5.1), each related to ω. We will assume that
|ξ(x2, y2)| ≥ |ξ(x1, y1)|. Let us write ηi = η(xi, yi) and ξi = ξ(xi, yi). We will
use the following results to prove that (x1, y1) and (x2, y2) are far apart in
height.

Since

(6.8) |z| =
8pt(x, y)

|ξ|4 ≤ 32t2

|ξ|4 ,

it follows from (5.2) that

|ξ1η2 − ξ2η1| = |ξ1(η2 − ωξ2) − ξ2(η1 − ωξ1)|(6.9)

≤ 8πt2

3

( |ξ1|
|ξ3

2 |
+

|ξ2|
|ξ3

1 |

)

≤ 16πt2|ξ2|
3|ξ3

1 |
.

On the other hand, choosing our fourth root appropriately, we have
( √

2(−
√

−t/2 + 1)1/4
√

2(−
√

−t/2 + 1)1/4
√
−2t√

2(−
√

−t/2 − 1)1/4 −
√

2(−
√

−t/2 − 1)1/4
√
−2t

)(

x1 x2

y1 y2

)

=

(

ξ1 ξ2

η1 η2

)

and so

|ξ1η2 − ξ2η1| = |4(t/2 + 1)1/4
√

2t (x1y2 − x2y1)|.
Since x1y2 − x2y1 is a nonzero integer (recall that we assumed gcd(xi, yi)
= 1), we have

(6.10) |ξ1η2 − ξ2η1| ≥ 4
√

2t(t/2 + 1)1/4,

and thus, combining (6.9) and (6.10), we conclude that if (x1, y1) and (x2, y2)
are distinct solutions to (5.1), related to ω, with |ξ(x2, y2)| ≥ |ξ(x1, y1)| then

(6.11) |ξ2| >
3 t−5/4

4π
|ξ1|3.
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We will now combine inequality (6.7) with upper bounds from Lemma 6.2
to show that solutions to (5.1) are widely spaced:

Lemma 6.5. If Σr,g 6= 0, then

c1(r, g)|ξ1|4r+1−g|ξ2|−3 + c2(r, g)|ξ1|−4r−3(1−g)|ξ2| > 1,

where we may take

c1(r, g) =

√
π 22r+11/4+5g/8

3
√

r
t5/4+3g/8,

c2(r, g) =
21/4+5g/8−2r332r+1−g

π
√

r
t4r+5/4−13g/8.

Proof. By (6.2), we can write

|(t/2 + 1)1/4Λr,g| = |ξ1|4r+1−g|ξ2| |(η2/ξ2 − ω)Ar,g(z1) + ωz2r+1−g
1 Fr,g(z1)|.

Since |1 − z1| = 1 and |z1| ≤ 1, from (5.2), (6.8), (6.3), (6.4), and the
inequality

|ξ1|4 > 8
√

2 t5/2,
we get

|(t/2 + 1)1/4Λr,g|

≤ |ξ1|4r+1−g|ξ2|
((

2r − g

r

)

2πt2

3|ξ4
2 |

+

(

r−g+1/4
r+1−g

)(

r−1/4
r

)

(

2r+1−g
r

)

(

9t2

|ξ4
1 |

)2r+1−g)

.

Comparing this with (6.7), we obtain

c1(r, g)|ξ1|4r+1−g|ξ2|−3 + c2(r, g)|ξ1|−4r−3(1−g)|ξ2| > 1,

where we may take c1 and c2 so that

c1(r, g) ≥ 211/4+5g/8t5/4+3g/8π

3

(

2r

r

)

,

c2(r, g) ≥ 25g/8−1/4332r+1−gt4r+5/4−13g/8

(r−g+1/4
r+1−g

)(r−1/4
r

)

(

2r+1−g
r

) .

Applying the following version of Stirling’s formula (see Theorem (5.44)
of [16]):

1

2
√

k
4k ≤

(

2k

k

)

<
1√
πk

4k

(valid for k ∈ N) leads immediately to the stated choice of c1. One can also
show via Stirling’s formula that for r ∈ N and g ∈ {0, 1}, we have

(r−g+1/4
r+1−g

)(r−1/4
r

)

(

2r+1−g
r

) <

√
2√

r π4r

(see the proof of Lemma 6.1 of [1] for more details). This gives the desired
value for c2(r, g).
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6.3. The proof of Lemma 6.1. We will start this section with the state-
ments of two lemmas from [1]. These lemmas allow us to apply the strong
gap principle provided by Lemma 6.5. We note here that although ξ(x, y)
and η(x, y) are defined differently in [1], those properties of ξ and η used in
the proofs of Lemmas 6.2 and 6.3 of [1] hold for our choice of ξ and η in the
present paper.

Lemma 6.6. If r ∈ N and h ∈ {0, 1}, then at most one of {Σr,0, Σr+h,1}
can vanish.

Lemma 6.7. Suppose that t>1200. For r ∈ {1, . . . , 5}, we have Σr,0 6= 0.

Assume that there are two distinct coprime solutions (x1, y1) and (x2, y2)
to inequality (5.1) with |ξ2| > |ξ1|. We will show that |ξ2| is arbitrarily large
in relation to |ξ1|. In particular, we will demonstrate via induction that

(6.12) |ξ2| >

√
r

t4r+7/4

(

4

332

)r

|ξ1|4r+3

for each positive integer r. So by (6.1),

|ξ2| > t13r

for arbitrary r, a contradiction.

To prove inequality (6.12) for r = 1, we use (6.11) and (6.1) to get

c1(1, 0)|ξ1|5|ξ2|−3 <
243/4√π

3
t5|ξ1|−4 < 0.01,

and hence, since Σ1,0 6= 0, Lemma 6.5 yields

c2(1, 0)|ξ1|−7|ξ2| > 0.09,

which immediately implies (6.12). We now proceed by induction. Suppose
that (6.12) holds for some r ≥ 1. Then

c1(r + 1, 0)|ξ1|4r+5|ξ2|−3 <

√
π√

3 r2
t12r+26/4

(

336

26

)r

|ξ1|−8r−4,

and hence from (6.1), and the fact that t ≥ 1200,

c1(r + 1, 0)|ξ1|4r+5|ξ2|−3 < 0.1.

If Σr+1,0 6= 0, then by Lemma 6.5,

c2(r + 1, 0)|ξ1|−4(r+1)−3|ξ2| > 0.9,

which again leads to (6.12). If, however, Σr+1,0 = 0, then by Lemmas 6.6
and 6.7, both Σr+1,1 and Σr+2,1 are nonzero and r ≥ 2. Using the induction
hypothesis, we find as previously that

c1(r + 1, 1)|ξ1|4r+4|ξ2|−3 < 0.001,
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and thus by Lemma 6.5 conclude that

c2(r + 1, 1)|ξ1|−4r−4|ξ2| > 0.999.

It follows that

|ξ2| >

√
r + 1

27/8t4r+29/8

(

4

332

)r+1

|ξ1|4r+4.

Consequently, from (6.1), r ≥ 6 and t > 1200,

c1(r + 2, 1)|ξ1|4r+8|ξ2|−3 < 0.001.

Therefore Lemma 6.5 implies that

c2(r + 2, 1)|ξ1|−4r−8|ξ2| > 0.999,

and so

|ξ2| >
π

27/8

√
r + 2

(

4

332

)r+2

t−4r−61/8|ξ1|4r+8.

From (6.1), it follows that

|ξ2| >

√
r + 1

t4r+4+7/4

(

4

332

)r+1

|ξ1|4r+7,

as desired. This completes the proof of inequality (6.12), and hence we con-
clude that there is at most one solution to (5.1) related to each fourth root
of unity.

We conclude from the above, in conjunction with Lemma 5.2, that there
are at most three solutions in positive integers to equation (1.1). In partic-
ular, there is the solution (X, Y ) = (1, 1), and for both i = 1 and i = 3, at
most one integer k for which X2 = V4k+i is solvable. We now proceed to the
proof that for t large enough, the equation X2 = V4k+1 is not solvable for
all k > 0.

7. An effective measure of approximation. In this section we will
apply the hypergeometric method to obtain effective measures of approxi-
mation to the two roots β(3) and β(4). Because of the relation β(3)β(4) = −2t,
we will only need to deal with one of the roots, say β(3).

Our first lemma is Thue’s “Fundamentaltheorem” [17] together with its
relation to the hypergeometric function, as discovered by Siegel. The reader
is also referred to Proposition 1 in [10], or Lemma 3.1 in [18].

Lemma 7.1. Let α1, α2, c1 and c2 be complex numbers with α1 6= α2.

For n ≥ 2, we define the following polynomials:

a(X) =
n2 − 1

6
(α1 − α2)(X − α2), c(X) =

n2 − 1

6
α1(α1 − α2)(X − α2),

b(X) =
n2 − 1

6
(α2 − α1)(X − α1), d(X) =

n2 − 1

6
α2(α2 − α1)(X − α1),
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and

u(X) = −c2(X − α2)
n, z(X) = c1(X − α1)

n.

Putting λ = (α1 − α2)
2/4, for any positive integer r, we define

(
√

λ)rAr(X) = a(X)X∗
n,r(z, u) + b(X)X∗

n,r(u, z),

(
√

λ)rBr(X) = c(X)X∗
n,r(z, u) + d(X)X∗

n,r(u, z).

Then, for any root β of P (X) = z(X) − u(X), the polynomial

Cr(X) = βAr(X) − Br(X)

is divisible by (X − β)2r+1.

Proof. This is a simplified version of Lemma 2.1 from [5], obtained by
noting that if P (X) satisfies the differential equation given there, with
U(X) = (X − α1)(X − α2), then P (X) must be of the form given here,
which allows us to determine the above expressions.

Lemma 7.2. With the above notation, put w(x) = z(x)/u(x) and write

w(x) = µeiϕ with µ ≥ 0 and −π < ϕ ≤ π. Put w(x)1/n = µ1/neiϕ/n.

(i) For any x ∈ C such that w = w(x) is not a negative real number or

zero,

(
√

λ)rCr(x)

= {β(a(x)w(x)1/n + b(x)) − (c(x)w(x)1/n + d(x))}Xn,r(u, z)

− (βa(x) − c(x))u(x)rRn,r(w),

with

Rn,r(w) =
Γ (r + 1 + 1/n)

r!Γ (1/n)

w\
1

((1 − t)(t − w))rt1/n−r−1 dt,

where the integration path is the straight line from 1 to w.

(ii) Let w = eiϕ, 0 < ϕ < π and put
√

w = eiϕ/2. Then

|Rn,r(w)| ≤ nΓ (r + 1 + 1/n)

r!Γ (1/n)
ϕ|1 −

√
w|2r.

Proof. This is Lemma 2.5 of [5].

Lemma 7.3. Let u, w and z be as above. Then

|X∗
n,r(u, z)| ≤ 4|u|r Γ (1 − 1/n)r!

Γ (r + 1 − 1/n)
|1 +

√
w|2r−2.

Proof. This is Lemma 2.6 of [5].

Lemma 7.4. Let N4,r be the greatest common divisor of the numerators

of the coefficients of X4,r(1 − 2x) and let D4,r be the least common multi-

ple of the denominators of the coefficients of X4,r(x). Then the polynomial
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(D4,r/N4,r) X4,r(1 − 2x) has integral coefficients. Moreover , N4,r = 2r and

D4,r
Γ (3/4)r!

Γ (r + 3/4)
< 0.8397 · 5.342r and D4,r

Γ (r + 5/4)

Γ (1/4)r!
< 0.1924 · 5.342r.

Proof. Using the so-called Kummer transformation, we can write

X4,r(1 − 2x) =
r(r + 1) · · · (2r)

(3/4)(7/4) · · · (r − 1/4)
= 2F1(−r,−r − 1/4;−2r; 2x).

Expanding the right-hand side, we find that

X4,r(1−2x) =
r
∑

i=0

(−1)i (r + 1) · · · (2r − i)

3 · 7 · · · (4r − 1)

(

r

i

)

(4r−4i+1) · · · (4r+1)22r−ixi.

Therefore, 2r divides N4,r, and by examining the coefficient of xr, we see
that N4,r = 2r. We now turn to the inequalities.

From the arguments in the proof of Proposition 2(c) from [10], we obtain

D4,r < exp(1.6708r + 3.43 3
√

r) < 5.341227r

for r ≥ 20 000. Since exp(0.000073r) > exp(1.46) > 2 for such values of r,
the upper bound for D4,r holds for r ≥ 20 000.

For r ≥ 2,

Γ (r + 5/4)

Γ (1/4)r!
=

5

16

r
∏

i=2

i + 1/4

i
<

5

16
exp

(r\
1

log

(

x + 1/4

x

)

dx

)

<
5

16
exp

(r\
1

dx

4x

)

≤ 5

16
r1/4.

As a consequence, the inequalities in the statement of the lemma hold for
r ≥ 20 000. A computation, similar to those described in the proof of Propo-
sition 2 from [10], shows that the same inequalities holds for all smaller values
of r.

Lemma 7.5. Let α1, α2, Ar(X), Br(X) and P (X) be defined as in

Lemma 7.1 and let a, b, c and d be complex numbers satisfying ad − bc 6= 0.
Define

Kr(X) = aAr(X) + bBr(X), Lr(X) = cAr(X) + dBr(X).

If (x − α1)(x − α2)P (x) 6= 0, then

Kr+1(x)Lr(x) 6= Kr(x)Lr+1(x)

for all r ≥ 0.

Proof. This is Lemma 2.7 of [5].
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Lemma 7.6. Let θ ∈ R. Suppose that there exist k0, l0 > 0 and E, Q > 1
such that for all r ∈ N, there are rational integers pr and qr with |qr| < k0Q

r

and |qrθ − pr| ≤ l0E
−r satisfying prqr+1 6= pr+1qr. Then for any rational

integers p and q with |q| ≥ 1/(2l0), we have
∣

∣

∣

∣

θ − p

q

∣

∣

∣

∣

>
1

c|q|κ+1
, where c = 2k0Q(2l0E)κ and κ =

log Q

log E
.

Proof. This is Lemma 2.8 from [5].

For the remainder of this section, we shall assume that t is a fixed integer
greater than 37. We shall also simplify our notation here to reflect the fact
that we have n = 4. We shall use Rr and Xr instead of R4,r and X4,r.

We now determine the quantities defined in Lemma 7.1. Put

α1 =
√
−2t, α2 = −

√
−2t, c1 = (1 +

√

−t/2)/2, c2 = (1 −
√

−t/2)/2.

Then

pt(X) = X4 + 4tX3 − 12tX2 − 8t2X + 4t2.

We define

τ =

√
t +

√
t + 2√

2
, ̺ =

√

τ2 + 1 =

√

t + 2 +
√

t2 + 2t

for any positive integer t.
The preliminary results above will now be used in order to obtain an

effective measure of approximation to β(3). By Lemma 7.2, we want to choose
x so that

β(3) =
c(x)w(x)1/4 + d(x)

a(x)w(x)1/4 + b(x)
,

and for this purpose we will select x = 0. We have

w = w (0) =
2 +

√
−2t

−2 +
√
−2t

,

(

τ − i

τ + i

)2

= w,

(

τ − i

̺

)2

=
τ − i

τ + i
,

and so

w1/4 =
τ − i

̺
.

Using the fact that ̺2 = τ2 + 1, one can check that

−iτ − 1 + i̺

−τ + i − ̺
= −τ + ̺,

and since

a(0) = −10t, b(0) = −10t, c(0) = −10t
√
−2t, d(0) = 10t

√
−2t,

it follows that

β(3) =
c(0)w1/4 + d(0)

a(0)w1/4 + b(0)
.
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Therefore, the first term in the expression for (−2t)r/2Cr(0) in Lemma 7.2
disappears.

We now construct our sequence of rational approximations to β(3). By
Lemmas 7.1 and 7.2, we have λ = −2t, and moreover,

(−2t)r/2Ar(0) = a(0)X∗
r (z(0), u(0)) + b(0)X∗

r (u(0), z(0)),

(−2t)r/2Br(0) = c(0)X∗
r (z(0), u(0)) + d(0)X∗

r (u(0), z(0)),

(−2t)r/2Cr(0) = −(β(3)a(0) − c(0))u(0)rRr(w).

Therefore,

(−2t)r/2Ar(0) = −10t[X∗
r (z(0), u(0)) + X∗

r (u(0), z(0))],

(−2t)r/2Br(0) = 5(−2t)3/2[X∗
r (z(0), u(0)) − X∗

r (u(0), z(0))],

(−2t)r/2Cr(0) = 10t2r+1[β(3) −
√
−2t](−2 +

√
−2t)rRr(w).

These quantities will form the basis for our approximations. We first elim-
inate some common factors. We can write u(0) = t2(−2 +

√
−2t) and

z(0) = t2(2 +
√
−2t). Using Lemmas 7.2 and 7.3, and the triangular in-

equality, we obtain

|Ar(0)| ≤ 80t(3r+2)/2(2 + t)r/2 Γ (3/4)r!

Γ (r + 3/4)
|1 +

√
w|2r−2,

|Br(0)| ≤ 80
√

2 t(3r+3)/2(2 + t)r/2 Γ (3/4)r!

Γ (r + 3/4)
|1 +

√
w|2r−2,

|Cr(0)| ≤ 40t(3r+2)/2ϕ|β(3) −
√
−2t|(2 + t)r/2 Γ (r + 5/4)

r!Γ (1/4)
|1 −

√
w|2r.

On the other hand, after some routine manipulations, we find that

(−2t)r/2Ar(0) =
−10t2r+1N4,r

D4,r

{

D4,r

N4,r
[(2 +

√
−2t)rXr(1 − 2η)

+ (−2 +
√
−2t)rXr(1 − 2η)]

}

,

and

(−2t)r/2Br(0) =
5(−2)3/2t2r+3/2N4,r

D4,r

{

D4,r

N4,r
[(−2 +

√
−2t)rXr(1 − 2η)

− (2 +
√
−2t)rXr(1 − 2η)]

}

,

where η = 2/(2 +
√
−2t ).

By Lemma 7.4, the quantities inside the braces can be expressed as
(−1)r(e − f

√
−2t) ± (e − f

√
−2t), where e and f are rational integers, and

recalling from Lemma 7.4 that N4,r = 2r, considering the cases of r being
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even or odd separately, we find that

(7.1) Pr =
D4,rBr(0)

20 · t[(3r+3)/2]
, Qr =

D4,rAr(0)

20 · t[(3r+3)/2]

are rational integers. We note for future reference that if r is even, then
Pr is divisible by t. The numbers Pr/Qr are those that will be used as the
rational approximations to β(3). We have

Qrβ
(3) − Pr = Sr, where Sr =

D4,rCr(0)

20 · t[(3r+3)/2]
.

We wish to show that these are good approximations. This will be done by
estimating |Pr|, |Qr| and |Sr| from above. It is readily verified that

|1 +
√

w(0)| =
2τ√

τ2 + 1
= 2 − 1

2t
+ O

(

11

16t2

)

;

in particular,

|1 +
√

w(0)| < 2.

Therefore, we have, for t ≥ 37,

|Qr| ≤ 3.36(22
√

t)r.

Similarly, for t ≥ 37 one obtains

|Pr| ≤ 4.75
√

t (22
√

t)r.

Also,

|1 −
√

w(0)|2 =
4

τ2 + 1
≤ 2

t
.

With ϕ as in Lemma 7.2, it can be shown that 2ϕ/π ≤ sinϕ and

sinϕ = Imw(0) = −2
√

2t/(t + 2) ≥ −2
√

2/t.

From the estimates for the roots of pt(X) given in Section 3, we know that
0 < β(3) < 0.5, and so

ϕ|β(3) −
√
−2t| ≤ π(2 + 1/

√
2t) ≤ π(2 + 1/

√
2).

Combining these inequalities with Lemma 7.4, we obtain

|Sr| < 3.3(11/
√

t)r

for t ≥ 37. Note also that since β(3)β(4) = −2t, we have

2tQr + β(4)Pr = −β(4)Sr.

With these estimates, Lemma 7.6 gives the following.

Lemma 7.7. Suppose that t ≥ 37. Define

κ =
log(22

√
t)

log(
√

t/11)
.
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For j = 3, 4 and any rational integers p and q, we have

|p − β(j)q| >
1

cj |q|κ
for |q| ≥ 1, where

c3 = 147.84
√

t (0.6
√

t)κ, c4 = 4598
√

t (0.44t)κ.

Proof. In each case we will apply Lemmas 7.5 and 7.6. First notice that
PrQr+1 − Pr+1Qr is a nonzero multiple of Ar+1(0)Br(0) − Ar(0)Br+1(0).
Applying Lemma 7.5, with a = d = 1, b = c = 0 and x = 0, we see
that PrQr+1 6= Pr+1Qr. For β(3), we put pr = Pr and qr = Qr, and apply
Lemma 7.6 with k0 = 3.36, l0 = 3.3, E =

√
t/11 and Q = 22

√
t. For

β(4), we take advantage of the fact that P2r is divisible by t. In this case,
we set pr = −2Q2r, qr = P2r/t, sr = S2rβ

(4)/t, and apply Lemma 7.6
accordingly. Since −4t−2 < β(4) < −4t, we can put k0 = 4.75/

√
t, l0 = 13.2,

E = t/112 = (
√

t/11)2, and Q = 484t = (22
√

t)2. We see therefore that the
value of κ in this case is the same as in the case of β(3).

8. Completion of the proof of Theorem 1.1. The goal now is to
solve equation (2.1) for all t > 40 000. We remark that the analysis here will
use the fact that, by not restricting that a solution (x, y) have the property
that x/y is close to β(4), as asserted in Lemma 3.1, we can restrict to the
case that s in equation (3.3) satisfies the inequality s <

√
2t. This can be

seen by considering once again the equation

s2B4 − 4tsAB3 − 12tA2B2 + 4rtBA3 + r2A4 = 1

appearing in Section 3. Since rs = 2t, we define s0 = min(r, s), and multiply
the above equation through by s2

0. By defining (x, y) = (−sB, A) if s0 = s
and (x, y) = (rA, B) if s0 = r, one obtains the Thue equation

x4 + 4tx3y − 12tx2y2 − 8t2xy3 + 4t2y4 = s2
0,

where, as discussed above, s0 divides 2t, and also, s0 ≤
√

2t. It is not difficult
to verify that if s0 = s, then the closest root of pt(X) to x/y is β(4), while
if s0 = r, then the closest root of pt(X) to x/y is β(3). The consequence of
this remark is that one then only needs to solve the Thue inequality

|pt(x, y)| ≤ 2t,

as opposed to having 4t2 on the right-hand side.
We first obtain a lower bound for |y| for any solution to the Thue in-

equality. We will assume, in the construction of pt given in Section 3, that
r <

√
2t, as the case s <

√
2t actually gives a larger lower bound for |y|.

Recall that y = A, where

X − V2k+1 =
√

V4k+1 − V2k+1 = 2rA2.
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Recall also that r < 2t. We make use of the inequality U2k > (2t)k−1,
which is easily proved by induction. We note that because of the relation
V4k+1 = V 2

2k+1 + 2tU2
2k, we can deduce the following expression:

√

V4k+1 − V2k+1 =

√
2t U2k

√

V2k+1/
√

2t U2k + 1 + V2k+1/
√

2t U2k

.

Therefore,

y2 = A2 >

√
2t U2k

4t
> (

√
2t)2k−1.

By the fact that k > 24, we deduce that

|y| > (2t)47/4.

As remarked earlier, the assumption s <
√

2t implies that x/y is closest
to β(3). In other words, |x−β(3)y| = mini=1,2,3,4 |x−β(i)y|, and since |Pt(x, y)|
≤ 2t, it follows that |x − β(3)y| < (2t)1/4. Therefore, as y > 4, x/y >
β(3) − (2t)1/4/4, and so

|x/y − β(4)| > β(3) − (2t)1/4/4 − β(4) > 4t − (2t)1/4/4 + 3 − 21/(16t) + · · · .

Similarly, for i = 1, 2,

|x/y − β(i)| >
√

2t − (2t)1/4/4 − 1/2 + · · · .

Therefore, because t > 40 000, it is readily deduced that

|x/y − β(3)| <
1

15.9ty4
.

A similar argument for β(4) gives

|x/y − β(4)| <
1

31.9t2y4
.

Combining the above upper bound for |x/y − β(3)| with the lower bound
proved in Lemma 7.7, we find that

|y|3−κ <
c3(t)

15.9t
.

For t > 40 000, κ < 2.9, and we conclude that

3t2 >
147.84

√
t (0.6

√
t)3

15.9t
>

147.84
√

t (0.6
√

t)κ

15.9t
> |y|0.1 > (221t23)0.1 > 4t2,

which is not possible.

Similarly, for β(4), combining the upper and lower bounds for |x/y−β(4)|
gives

|y|3−κ <
c3(t)

31.9t2
.
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Again since t > 40 000, we have that κ < 2.9, and we therefore conclude
that

13t1.5 >
4598

√
t (0.44t)3

31.9t2
>

4598
√

t (0.44t)κ

31.9t2
> |y|0.1 > (221t23)0.1 > 4t2,

which is not possible for t > 10.
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