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Dispersion of ratio block sequences and asymptotic density

by

Ferdinánd Filip (Komárno), Ladislav Mǐśık (Ostrava) and
János T. Tóth (Ostrava)

1. Introduction. We first recall some basic definitions. Denote by N

and R
+ the sets of all positive integers and positive real numbers, respec-

tively. For X ⊂ N let X(n) = #{x ∈ X : x ≤ n}. In the whole paper we
will assume that X is infinite. Denote by R(X) = {x/y : x ∈ X, y ∈ X} the
ratio set of X and say that a set X is (R)-dense if R(X) is (topologically)
dense in R

+. The concept of (R)-density was defined and first studied in [10]
and [11]. The quantities

d(X) = lim inf
n→∞

X(n)

n
, d(X) = lim sup

n→∞

X(n)

n
,

d(X) = lim
n→∞

X(n)

n

are the lower asymptotic density, upper asymptotic density, and asymptotic

density (if defined), respectively. Relations between (R)-density, asymp-
totic density and logarithmic density have been studied, among others,
in [5], [6], [14] and [15].

Now let X = {x1, x2, . . . } where xn < xn+1 are positive integers. Then
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x1

x1
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x1

x2
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x2

x2
,

x1

x3
,

x2

x3
,

x3

x3
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x1

xn

,
x2

xn

, . . . ,
xn

xn

, . . .

is called the ratio block sequence of the set X. It is formed by the blocks
X1, X2, . . . , where

Xn =

(

x1

xn

,
x2

xn

, . . . ,
xn

xn

)

, n = 1, 2, . . . .

This kind of block sequences have been studied in [16], [18] and [1]. Also
other kinds of block sequences have been studied by several authors (see [2],
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[4], [7], [12] and [17]). Let Y = (yn) be an increasing sequence of positive
integers. In [9], extending a result of [3], a sequence of blocks of the type

Yn =

(

1

yn

,
2

yn

, . . . ,
yn

yn

)

was investigated. The authors obtained a complete theory of uniform distri-
bution of the related block sequence (Yn).

For every n ∈ N let

D(Xn) = max

{

x1

xn

,
x2 − x1

xn

, . . . ,
xi+1 − xi

xn

, . . . ,
xn − xn−1

xn

}

be the maximum distance between two consecutive terms in the nth block.
We will consider the quantity (see [18])

D(X) = lim inf
n→∞

D(Xn),

called the dispersion of the block sequence (1) derived from X, and its
relations to the previously mentioned asymptotic density of the original
set X.

To end this section, let us mention the concept of dispersion of a general
sequence of numbers in the interval [0, 1]. Let (xn)∞n=0 be a sequence in [0, 1].
For every N ∈ N let xi1 ≤ · · · ≤ xiN be a nondecreasing rearrangement of
its first N terms and define

dN =
1

2
max{max{xij+1 − xij : j = 1, . . . , N − 1}, xi1 , 1 − xiN}

to be the dispersion of the finite sequence x0, x1, . . . , xN . The properties of
this concept can be found for example in [8] where it is also proved that

lim sup
N→∞

NdN ≥
1

log 4

for every one-to-one infinite sequence xn ∈ [0, 1). Notice that the density of
the whole sequence (xn)∞n=0 is equivalent to limN→∞ dN = 0. The dispersion
of block sequences defined in the present paper does not have the analogous
property. Much more on these and related topics can be found in [13].

2. Results. When calculating D(X), the following theorems are often
useful (see [18, Theorem 1 and Corollary 1]).

(A1) Let

X = {x1, x2, . . . } =
∞
⋃

n=1

(cn, dn] ∩ N ,

where xn < xn+1 and cn < dn < cn+1, for n ∈ N, are positive



Dispersion of ratio block sequences 185

integers. Then

D(X) = lim inf
n→∞

max{ci+1 − di : i = 1, . . . , n}

dn+1
.

(A2) Let X be as in (A1). Suppose that there exists a positive integer
n0 such that

cn+1 − dn ≤ cn+2 − dn+1 for all n > n0.

Then

D(X) = lim inf
n→∞

cn+1 − dn

dn+1
.

The following theorem relates the asymptotic density of a set X ⊂ N

and the dispersion of the block sequence (1).

Theorem 1. Let X ⊂ N. Then

(i) If d(X) > 0 then D(X) = 0.
(ii) If a = d(X) < d(X) = b then

D(X) ≤
(1 − b)(b − a)

b(1 − a)
.

(iii) If d(X) = 0 then D(X) can be any number in the interval [0, 1].

Proof. Write X =
⋃

∞

n=1(cn, dn] ∩ N and define h(n) = X(n)/n for
n ∈ N. For the purposes of this proof we introduce the following nota-
tion. For every n ∈ N let µ(n) be the smallest integer in {1, . . . , n} such
that

cµ(n)+1 − dµ(n) = max{ci+1 − di : i = 1, . . . , n}.

Notice that in this notation (A1) says that

(2) D(X) = lim inf
n→∞

cµ(n)+1 − dµ(n)

dn+1
.

Now there are two possibilities:

(a) µ = lim
n→∞

µ(n) < ∞,

(b) µ = lim
n→∞

µ(n) = ∞.

In case (a), (2) clearly yields D(X) = 0 and the statement of the theorem
holds. Thus in the following we assume that (b) holds.

By definition of the upper asymptotic density, for every p ∈ N there
exists a k = k(p) ∈ N such that k(p) → ∞ as p → ∞ and

(3) h(dk+1) > d(X) − 1/p.

To simplify the writing, set

cµ(k)+1 = n = n(p); cµ(k)+1−dµ(k) = t = t(p); dk+1−cµ(k)+1 = u = u(p).
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Notice that n, t, u are positive integers and

(4) h(n + u) ≥ h(n).

Also, the conditions n → ∞ and p → ∞ are equivalent.

Using (A1) and observing that {dk(p)}
∞

p=1 is a subsequence of {dn}
∞

n=1

we find that

D(X) = lim inf
n→∞

cµ(n)+1 − dµ(n)

dn+1
(5)

≤ lim inf
p→∞

cµ(k(p))+1 − dµ(k(p))

dk(p)+1
= lim inf

p→∞

t(p)

n(p) + u(p)
.

To upper bound the last fraction (notice that X(n − t) = X(n))

t

n + u
=

n − (n − t)

n + u
=

X(n)
h(n) − X(n)

h(n−t)

X(n)
h(n) + u

,

we estimate u from below as follows. We have

h(n + u) =
X(n + u)

n + u
≤

X(n) + u

n + u
,

and consequently

u ≥
nh(n + u) − X(n)

1 − h(n + u)
.

Thus

t

n + u
≤

X(n)
h(n) − X(n)

h(n−t)

X(n)
h(n) + nh(n+u)−X(n)

1−h(n+u)

=

1
h(n) −

1
h(n−t)

1
h(n) +

nh(n+u)
X(n)

−1

1−h(n+u)

(6)

=

1
h(n) −

1
h(n−t)

1
h(n) +

h(n+u)
h(n)

−1

1−h(n+u)

=

h(n−t)−h(n)
h(n)h(n−t)

1−h(n)
h(n)(1−h(n+u))

= (1 − h(n + u))
h(n − t) − h(n)

h(n − t)(1 − h(n))
.

(i) Suppose that d(X) > 0. Then limp→∞(n(p) − t(p)) = ∞. Using the
previously derived relations and taking into account (4), we have

D(X) ≤ lim inf
n→∞

1 − h(n + u)

1 − h(n)

h(n − t) − h(n)

h(n − t)

≤ lim
n→∞

h(n − t) − h(n)

h(n − t)
= 0.

The last equality follows from the fact that n − t → ∞ as p → ∞ and
d(X) = limm→∞ h(m) > 0.



Dispersion of ratio block sequences 187

(ii) Let a = d(X) < d(X) = b. Then

lim
p→∞

h(n(p) + u(p)) = b, lim inf
p→∞

h(n(p)) ≥ a, lim sup
p→∞

h(n(p) − t(p)) ≤ b.

A simple analysis of the last term in (6) shows that it is increasing in h(n−t)
and decreasing in h(n). Thus, by (5), (6) and taking into account (3), we
have, for n = n(p), u = u(p) and t = t(p),

D(X) ≤ (1 − lim
p→∞

h(n + u))
lim supp→∞

h(n − t) − lim infp→∞ h(n)

lim supp→∞
h(n − t)(1 − lim infp→∞ h(n))

≤
(1 − b)(b − a)

b(1 − a)
.

(iii) Let α ∈ (0, 1). Then put a = 1/(1 − α) > 1 and consider the set
X = {[an] : n ∈ N}. Then

d(X) = lim
n→∞

n

[an]
= 0.

Moreover, X satisfies the conditions of (A2) and so

D(X) = lim inf
n→∞

[an+1] − 1 − [an]

[an+1]
=

a − 1

a
= α.

Now let α = 0. Then set X = {n2 : n ∈ N}. One can easily show that
d(X) = 0 and, again using (A2), also D(X) = 0 = α.

Finally, let α = 1. Then set X = {22n

: n ∈ N}. It can be easily shown
that d(X) = 0 and, once again by (A2), also D(X) = 1 = α.

Item (ii) of the above theorem implies that if d(X) = b = 1 then we
immediately have D(X) = 0. In [18, Theorem 2] it is proved that D(X) = 0
implies density of the block sequence (1). This gives the result of [10] that
d(X) = 1 implies (R)-density of X.

The following theorem says that the bound in (ii) is the best possible,
as the set of values of the dispersion of sets with d(X) = a and d(X) = b is
the whole interval [0, α] where

α :=
(1 − b)(b − a)

b(1 − a)
.

Theorem 2. Let 0 ≤ a < b < 1 and α ∈ [0, α] with α defined above.

Then there exists a set X ⊆ N such that d(X) = a, d(X) = b and D(X) = α.

Proof. First we consider the case α = α. We have two possibilities: a > 0
and a = 0.

The case a > 0. Let 0 < a < b < 1. Choose a real number d0 such that

(7) min

{

d0
b

a
; d0

1 − a

1 − b

}

> d0 + 1
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and define the sequences {cn}
∞

n=1 and {dn}
∞

n=1 as follows:

(8) cn =
b

a
dn−1 and dn =

b(1 − a)

a(1 − b)
dn−1 for all n ∈ N.

Then (7) and (8) imply

[cn] < [dn] < [cn+1] for all n ∈ N,(9)

n2 = o(cn) and n2 = o(dn).(10)

By (8) and (9), we can apply both statements (A1) and (A2) to the set
X ⊂ N defined by

(11) X =
∞
⋃

n=1

([cn], [dn]] ∩ N.

We are going to show that d(X) = a, d(X) = b and D(X) = α. From the
definition of X, clearly

d(X) = lim inf
n→∞

X([cn])

[cn]
,(12)

d(X) = lim sup
n→∞

X([dn])

[dn]
.(13)

From (8), (10) and (11) one can derive

X([dn])

[dn]
=

∑n
i=1([di] − [ci])

[dn]
=

∑n
i=1(di − ci)

dn

+ o(1)

=

∑n
i=1

(( b(1−a)
a(1−b) −

b
a

)

di−1

)

dn

+ o(1) =
b(b − a)

a(1 − b)

n
∑

i=1

di−1

dn

+ o(1)

=
b(b − a)

a(1 − b)

n
∑

i=1

(

a(1 − b)

b(1 − a)

)i

+ o(1).

The above relations yield

d(X) = lim sup
n→∞

X([dn])

[dn]
= lim

n→∞

X([dn])

[dn]
(14)

=
b(b − a)

a(1 − b)
lim

n→∞

n
∑

i=1

(

a(1 − b)

b(1 − a)

)i

=
b(b − a)

a(1 − b)

a(1−b)
b(1−a)

1 − a(1−b)
b(1−a)

= b.

Similarly, from (8), (14) and the definition of X we obtain

d(X) = lim inf
n→∞

X([cn])

[cn]
= lim inf

n→∞

[dn−1]

[cn]

X([cn])

[dn−1]

= lim inf
n→∞

[dn−1]

[cn]

X([dn−1])

[dn−1]
=

a

b
b = a.
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By the definitions of {cn}
∞

n=1 and {dn}
∞

n=1,

(15) [cn+1] − [dn] ≤ [cn+2] − [dn+1]

for all sufficiently large n ∈ N. By use of (A2) we obtain

D(X) = lim inf
n→∞

[cn+1] − [dn]

[dn+1]
= lim inf

n→∞

cn+1

dn
− 1

dn+1

dn

=
(1 − b)(b − a)

b(1 − a)
= α.

The case a = 0. Let 0 = a < b < 1. Choose d0 ∈ R
+ such that

(16) d0 >
1 − b

b
.

Now define

(17) cn = ndn−1 and dn =
n

1 − b
dn−1 for all n ∈ N.

By (16) and (17), we see that (9) and (10) hold again, so we can apply (A1)
and (A2) to

X =
∞
⋃

n=1

([cn], [dn]] ∩ N.

Again, we are going to show that d(X) = a, d(X) = b and D(X) = α. One
can easily check the following bounds:

[dn] − [cn]

[dn]
≤

X([dn])

[dn]
=

∑n
i=1([di] − [ci])

[dn]
≤

[dn] − [cn]

[dn]
+

[dn−1]

[dn]
.

By (17) we have

lim
n→∞

[dn] − [cn]

[dn]
= b and lim

n→∞

[dn−1]

[dn]
= 0.

Again, the definition of X allows us to use (12) and (13) giving

d(X) = lim sup
n→∞

X([dn])

[dn]
= lim

n→∞

[dn] − [cn]

[dn]
= b,

d(X) = lim inf
n→∞

X([cn])

[cn]
= lim inf

n→∞

[dn−1]

[cn]

X([dn−1])

[dn−1]
= lim

n→∞

1

n
b = 0.

The definitions of {cn}
∞

n=1 and {dn}
∞

n=1 imply (15) once more, so using (A2)
we obtain

D(X) = lim inf
n→∞

[cn+1] − [dn]

[dn+1]
= lim inf

n→∞

n
n+1
1−b

= 1 − b = α,

proving our statement in the case when α = α.

The above sequences {cn}n∈N and {dn}n∈N and the set X will also be
used to prove the statement of our theorem for any 0 ≤ α < α.

We will distinguish two cases: α > 0 and α = 0.
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Let 0 < α < α. Define

Z =

∞
⋃

n=1

{

[dn] + k

[

α

α
([cn+1] − [dn])

]

: k = 1, . . . , mn

}

,

where

(18) mn

[

α

α
([cn+1]−[dn])

]

≤ [cn+1]−[dn] < (mn+1)

[

α

α
([cn+1]−[dn])

]

.

First we show that d(Z) = 0. To see this, let x ∈ N and [cn] < x ≤ [cn+1].
Then, using (10) and (18), we obtain

0 ≤
Z(x)

x
≤

∑n
i=1 mi

[cn]
= O

( α
α

n

[cn]

)

= o

(

1

n

)

,

which yields d(Z) = 0.
Set Y = X ∪ Z. As d(Z) = 0, we have

d(Y ) = d(X) = a and d(Y ) = d(X) = b.

It remains to show that D(Y ) = α.
By definition of Y , we can apply (A1) to obtain

D(Y ) = lim inf
n→∞

[

α
α

([cn+1] − [dn])
]

[dn+1]
=

α

α
α = α.

Now let α = 0. Define

Z =
∞
⋃

n=1

{

[dn] + k

[

[cn+1] − [dn]

n

]

: k = 1, . . . , n

}

.

Again d(Z) = 0, as for every x ∈ N with [cn] < x ≤ [cn+1] we have

Z(x)

x
≤

∑n
i=1 i

[cn]
= O

(

n2

[cn]

)

= o(1).

Put Y = X ∪ Z. We have immediately

d(Y ) = d(X) = a and d(Y ) = d(X) = b.

By definition of Y , we can apply (A1) to obtain

D(Y ) = lim inf
n→∞

[

1
n
([cn+1] − [dn])

]

[dn+1]
= lim

n→∞

1

n
α = 0,

finishing the proof.
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[1] F. Filip and J. T. Tóth, On estimations of dispersions of certain dense block se-
quences, Tatra Mt. Math. Publ. 31 (2005), 65–74.

[2] E. Hlawka, The Theory of Uniform Distribution, AB Academic Publishers, London,
1984.



Dispersion of ratio block sequences 191
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