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Dispersion of ratio block sequences and asymptotic density
by

FERDINAND FILIP (Komérno), LADISLAV MISIK (Ostrava) and
JANOS T. TOTH (Ostrava)

1. Introduction. We first recall some basic definitions. Denote by N
and RT the sets of all positive integers and positive real numbers, respec-
tively. For X C N let X(n) = #{x € X : 2 < n}. In the whole paper we
will assume that X is infinite. Denote by R(X) = {z/y:z € X, y € X} the
ratio set of X and say that a set X is (R)-dense if R(X) is (topologically)
dense in R". The concept of (R)-density was defined and first studied in [10]
and [11]. The quantities

X _ X
d(X) = liminf i”), 4(X) = lim sup i”),
X
d(X) = lim X(n)

n—oo N

are the lower asymptotic density, upper asymptotic density, and asymptotic
density (if defined), respectively. Relations between (R)-density, asymp-
totic density and logarithmic density have been studied, among others,
in [5], [6], [14] and [15].

Now let X = {x1,x9,...} where x, < x,41 are positive integers. Then
1 T1 T1 T2 T1 T2 T3 T1 T2 Tn
is called the ratio block sequence of the set X. It is formed by the blocks
X1, Xo,..., where

X:<__ _) n=1.2....

9 b )
Tn Tn Tn

This kind of block sequences have been studied in [16], [18] and [1]. Also
other kinds of block sequences have been studied by several authors (see [2],
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[4], [7], [12] and [17]). Let Y = (y,) be an increasing sequence of positive
integers. In [9], extending a result of [3], a sequence of blocks of the type

1 2
Y, = (--y—")
Yn Yn Yn

was investigated. The authors obtained a complete theory of uniform distri-
bution of the related block sequence (Y7,).
For every n € N let
r1 To— X Titl — T Ty, — Ty
D(X,) :max{_lgLn_nl}

In Tn Tn Tn

be the maximum distance between two consecutive terms in the nth block.
We will consider the quantity (see [18])

D(X) =liminf D(X,,),

called the dispersion of the block sequence (1) derived from X, and its
relations to the previously mentioned asymptotic density of the original
set X.

To end this section, let us mention the concept of dispersion of a general
sequence of numbers in the interval [0, 1]. Let (x,,)22, be a sequence in [0, 1].
For every N € N let z;, < --- < x;,, be a nondecreasing rearrangement of
its first NV terms and define

1
dy = 5 max{max{z;,,, — ¥

cj=1,...,N—1},x;, 1 —z;,}

to be the dispersion of the finite sequence xg, x1,...,xn. The properties of
this concept can be found for example in [8] where it is also proved that

1
limsup Ndy > ——
N—oo 10g4

for every one-to-one infinite sequence x,, € [0,1). Notice that the density of
the whole sequence (z,,)52 is equivalent to limy_.o dy = 0. The dispersion
of block sequences defined in the present paper does not have the analogous
property. Much more on these and related topics can be found in [13].

2. Results. When calculating D(X), the following theorems are often
useful (see [18, Theorem 1 and Corollary 1]).

(A1) Let

X ={z1,25,...} = [ J(en,dn] NN,
n=1

where x, < zp41 and ¢, < d, < cp41, for n € N, are positive



Dispersion of ratio block sequences 185

integers. Then

max{ciH—di:i: 1,...,77,}

D(X) = liminf
n—0o0 dn1

(A2) Let X be as in (Al). Suppose that there exists a positive integer
ng such that
Cn41 — d, < Cn4+2 — dn+1 for all n > ny.
Then J
D(X) = liminf 4L~ %
oo dppr
The following theorem relates the asymptotic density of a set X C N
and the dispersion of the block sequence (1).
THEOREM 1. Let X C N. Then

(i) If d(X) > 0 then D(X) = 0.
(ii) Ifa=d(X) < d(X) =b then
(1=b)(b—a)
(iii) If d(X) =0 then D(X) can be any number in the interval [0, 1].
Proof. Write X = (J°7 (cn,dn] NN and define h(n) = X(n)/n for

n=1
n € N. For the purposes of this proof we introduce the following nota-

tion. For every n € N let u(n) be the smallest integer in {1,...,n} such
that

Cun)4+1 — dyn) = max{ciy1 —d; 1i=1,...,n}.
Notice that in this notation (A1) says that

n —d n
2) D(X) = lim inf 2L~ T
n—00 dn+1

Now there are two possibilities:

(a) p= lim p(n) < oo,

(b) = lim p(n) = oo.
In case (a), (2) clearly yields D(X) = 0 and the statement of the theorem
holds. Thus in the following we assume that (b) holds.

By definition of the upper asymptotic density, for every p € N there
exists a k = k(p) € N such that k(p) — 0o as p — oo and

(3) h(dy+1) > d(X) = 1/p.
To simplify the writing, set

Cuty+1 =N =n(p);  cumy+1—duk) =t =1p);  dpr1—Cu@y+1 = u = u(p).
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Notice that n,t,u are positive integers and
(4) h(n+u) > h(n).

Also, the conditions n — oo and p — oo are equivalent.
Using (A1) and observing that {d(,)};2; is a subsequence of {d}32,
we find that

n —d n
(5) D(X) = liminf Cu(m+1 7 Cu(n)

< lim inf Culkp)+1 du(k(p)) = lim inf A
T pooo di(p)+1 p—co n(p) + u(p)

To upper bound the last fraction (notice that X (n —t) = X (n))
X(n)  X(n)

t n—(Mm—t) k)  hn—b
- - X(n ’
n+u n+u h((n))+u

we estimate u from below as follows. We have
X(n+u) - X(n)+u

h(n+u): n+u - n+u

)

and consequently
nh(n +u) — X(n)
u =
1—h(n+u)

Thus
t )~ A R~ A
h(n h(n—t h(n h(n—t
(6) < X(n) nh(n+u)—X(n) - nh(ntu) 4

) T 1-R(ntu) T s

1 1 h(n—t)—h(n)

h(n) h(n—t) h(n)h(n—t)
h{ntuw) 1 1—h(n)

1 ) my(A—h(ntu))

h(n) + 1—h(n+u)
h(n —t) — h(n)
=(1—-h .
(L= hln ) o =T = h(n)
(i) Suppose that d(X) > 0. Then lim, . (n(p) — t(p)) = oo. Using the
previously derived relations and taking into account (4), we have
D(X) < liminf 1 —h(n+wu) h(in —t) — h(n)
n—oo 1 —h(n) h(n —t)
< lim h(n —t) — h(n)
n—00 h(n —t)
The last equality follows from the fact that n — ¢t — oo as p — oo and
d(X) = limy,—o0 h(m) > 0.

=0.
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(ii) Let a = d(X) < d(X) = b. Then
Jim h(n(p) +u(p)) =b, liminfh(n(p)) 2 a, limsuph(n(p) - ¢(p)) <b.

p—00
A simple analysis of the last term in (6) shows that it is increasing in h(n—t)
and decreasing in h(n). Thus, by (5), (6) and taking into account (3), we
have, for n = n(p),u = u(p) and t = t(p),

limsup,,_,o, h(n —t) — liminf, o h(n)

D(X)<(1— lim h
D(X) = ( oo (n+u)) lim sup,,_, o, A(n — t)(1 — liminf, . h(n))
< (1—-0)(b—a)
~  b(l—a)
(iii) Let a € (0,1). Then put @ = 1/(1 —a) > 1 and consider the set
X ={[a"] : n € N}. Then
n
d(X)= lim — =0.
n—o0 [a”]
Moreover, X satisfies the conditions of (A2) and so
@™ —1—[a"] a-1

D(X) = hnrr_l)loréf (] =—=uo

Now let a = 0. Then set X = {n? : n € N}. One can easily show that
d(X) = 0 and, again using (A2), also D(X) =0 = a.

Finally, let & = 1. Then set X = {22" : n € N}. It can be easily shown
that d(X) = 0 and, once again by (A2), also D(X)=1=a. n

Item (ii) of the above theorem implies that if d(X) = b = 1 then we
immediately have D(X) = 0. In [18, Theorem 2] it is proved that D(X) =0
implies density of the block sequence (1). This gives the result of [10] that
d(X) =1 implies (R)-density of X.

The following theorem says that the bound in (ii) is the best possible,
as the set of values of the dispersion of sets with d(X) = a and d(X) = b is
the whole interval [0, @] where

(1—-0)(b—a)

b(l—a)

THEOREM 2. Let 0 < a < b < 1 and o € [0,a] with @ defined above.
Then there exists a set X C N such that d(X) = a, d(X) =b and D(X) = .

Proof. First we consider the case o = @. We have two possibilities: a > 0
and a = 0.

The case a > 0. Let 0 < a < b < 1. Choose a real number dy such that

b 1—a
7 in< dy—;do —— do+1
") win {do 2y 1= b > do +
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and define the sequences {c,}72, and {d, }72; as follows:

(8) Cn = gdn_l and d, = % dn_1 foralln e N.
Then (7) and (8) imply

9) [en] < [dn] < [ent1] for allm € N,

(10) n?=o(c,) and n?=o(d,).

By (8) and (9), we can apply both statements (Al) and (A2) to the set
X C N defined by

(11) X = U ([Cn]’ [dn“ NN.

n=1

We are going to show that d(X) = a, d(X) = b and D(X) = @. From the
definition of X, clearly

(12 () = it {10,
(13) d(X) = hran—igp %

X([dn]) _ 2ima(dd] = [ai]) _ oimq(di — ci)
A R R M
TL_ b(1—a) b dl'f . n
_ it ((““:i’;) o)) +o(1) = Z(ﬁ - b; =1 dél: +o(1)
_ b(b—a) " a(l1-0b)\"
) 2 (i) +o
The above relations yield
(14)  d(X) = liin_)sgp X[(CEZTD = nh—{go X[(CEZT])
n ; a(1-b)
_bb—a) . a(l=0b)\" _ blb—a) ia)
“an i (ima) “ah gy
Similarly, from (8), (14) and the definition of X we obtain
g X)) ] X ()
A0 =B e ~ R T )
= lim inf (1] X(ldn-1]) g N—

n—oo ey 1] b
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By the definitions of {¢,}72; and {d,}5°,

(15) [ent1] = [dn] < [en+o] — [dn1]
for all sufficiently large n € N. By use of (A2) we obtain

- Entl 1 . .
D(X) = liminf 7[%“] [dn] — lim inf —%» = (L= 0)(b—a) =a.
n—oo [dTL-H] n—o0 dg_Jrl b(l — a)

The case a = 0. Let 0 = a < b < 1. Choose dy € RT such that

1-b
(16) do > 3
Now define
(17) ¢, =ndy,—1 and d, = % dp—1 forall n e N.

By (16) and (17), we see that (9) and (10) hold again, so we can apply (A1)
and (A2) to

X = U ([Cn]7 [dn]] NN.
n=1

Again, we are going to show that d(X) = a, d(X) = b and D(X) = @. One
can easily check the following bounds:

[dn] = [ca] _ X([dn)) Doy (di] = [ei]) _ [dn] = [cn] | [dn-1]
B T N % e 7 B FA R
By (17) we have
. [dn] — [cn] o an im [dp—1] _
Jm (] =b and  lim [d] 0-

Again, the definition of X allows us to use (12) and (13) giving

d = lim su M = lim M —
d(X) = limsup ) Jim ) b,

= limin X([en]) = limin (1] X(ldn-1]) = lim 1,_
ﬂX%meth lim inf o T lim = b =0,

The definitions of {¢, }72 ; and {d, }5° ; imply (15) once more, so using (A2)
we obtain
D(X) = liminf Lot Zdnl e ™

1-b=a,

proving our statement in the case when o = @.

The above sequences {cp}neny and {d, }nen and the set X will also be
used to prove the statement of our theorem for any 0 < o < @.

We will distinguish two cases: @ > 0 and o = 0.
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Let 0 < a < @. Define
7= n@l {[dn] + k[%([cnﬂ] - [dn])} k=1,... ,mn},
where
18) 1| (enial ~[du])| < [enial = [dn] < o+ 1) | (cnial~[dn]) .

First we show that d(Z) = 0. To see this, let z € N and [¢,] < 2 < [¢p41]-
Then, using (10) and (18), we obtain

T [cn]
which yields d(Z) = 0.
Set Y = X UZ. As d(Z) = 0, we have
dY)=d(X)=a and d(Y)=d(X)=0.
It remains to show that D(Y) = a.
By definition of Y, we can apply (A1) to obtain

= n - dn
DY) — gt L)~ D] _
Now let @ = 0. Define

- [ent1] = [dn]
7 = dy] + [ Z 10y L
U o+ '
Again d(Z) = 0, as for every x € N with [¢,] < © < [¢y41] we have

Z(x) _ Shyi O(ﬁ) — o(1).

O (% [cn]
Put Y = X U Z. We have immediately
dY)=d(X)=a and d(Y)=d(X)="0.

By definition of Y, we can apply (Al) to obtain

ol e
Ql
Il
Q

1
= —|d 1
D(Y) = liminf [ ([en 1] = [dn))] = lim —@ =0,
n—00 [dn—i-l] n—oo N
finishing the proof. =
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