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On covers of abelian groups by cosets
by

GUNTER LETTL (Graz) and Zu1-WEI SUN (Nanjing)

1. Introduction. As in any textbook on group theory, for a subgroup
H of a group G with the index [G : H] finite, G can be partitioned into
k =[G : H] left cosets of H in G, i.e., all the k left cosets of H form a
disjoint cover of G.

In 1954 B. H. Neumann [N1, N2] discovered the following basic result on
covers of groups.

THEOREM 1.1 (Neumann). Let {asG}*_; be a cover of a group G by
(finitely many) left cosets of subgroups Gi,...,Gy. Then G is the union of
those a;G 5 with [G : Gs] < co. In other words, if {asGs}szt is not a cover
of G then |G : Gy] < c0.

In 1966 J. Mycielski (cf. [MS]) posed an interesting conjecture on disjoint
covers of abelian groups. Before stating the conjecture we give a definition.

DEFINITION 1.1. The Mycielski function f: 2T ={1,2,...} - {0,1,...}
is given by

(L1) f) =3 ord,(n)(p - 1),

pEP(n)

where P(n) denotes the set of prime divisors of n and ord,(n) represents
the largest nonnegative integer « such that p® | n.

REMARK 1.1. Since p < 2P~ for any prime p, (1.1) implies that n < 2/
(i'e'a f(n) Z 10g2 n)
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MYCIELSKI'S CONJECTURE. Let G be an abelian group, and {asGs}*_;
be a disjoint cover of G by left cosets of subgroups. Then k > 14 f([G : Gy])
foreacht=1,... k.

When G is the additive group Z of integers, Mycielski’s conjecture says
that for any disjoint cover {a,(ns)}*_, of Z by residue classes (where a, € Z,
ns € ZT and as(ns) = as+nsZ) we have k > 1+ f(ny) for every t = 1,... k.
This was first confirmed by S. Znam [Z66]. For problems and results on
covers of Z, the reader is referred to [G04], [PS], [S03] and [S05].

DEFINITION 1.2. For a subnormal subgroup H of a group G with finite
index, we define

(1.2) zn: Hi:Hi]—1),

where Hy = H C Hy C --- C H, = (G is any composition series from H
to G.

By [S90, Theorem 6] and [S01, Theorem 3.1}, for any subnormal subgroup
H of a group G with [G : H| < oo, we have d(G,H) > f([G : H]), and
equality holds if and only if G/H¢ is solvable, where Hg = () gec 9H g tis
the core of H in G (i.e., the largest normal subgroup of G contained in H).

The following result is stronger than Mycielski’s conjecture.

THEOREM 1.2 (I. Korec, Z. W. Sun). Let a1Gq,...,arGy be left cosets
of subnormal subgroups G1,...,Gy of a group G. If A= {asG}*_, forms
an exact m-cover of G, i.e., A covers each element of G exactly m times,
then [G : ﬂ];:l Gs] < 00 and

vz mera(e.()6) 2 m+ ([o: (6]).

where the lower bound m + d(G, ﬂ];:l Gy) is best possible.

In the case m = 1 and G = Z, Theorem 1.2 was first conjectured by
Znédm [Z69]. When m = 1 and Gy, ..., Gy are normal in G, Theorem 1.2 was
obtained by Korec [K74] in 1974. In 1990 Sun [S90] deduced Theorem 1.2 in
the case m = 1 by a method different from that of Korec. The current version
of Theorem 1.2 was established by Sun [SO1] in 2001; the proof depends
heavily on the condition that A covers all the elements of GG the same number
of times. Under the conditions of Theorem 1.2, Sun [S04] also showed that
the indices [G : Gs] (1 < s < k) cannot be distinct providing & > 1.

Call a coset in an abelian group not containing the identity element
a proper coset. In 2003 W. D. Gao and A. Geroldinger [GG] proved the
following conjecture for any elementary abelian p-group G (they did not
explicitly state this conjecture in [GG]).
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GAO—GEROLDINGER CONJECTURE. Let G be a finite abelian group with
identity e. If G\ {e} is a union of k proper cosets a1G1,...,apGy then
k> f(IG]).

With the notations of the Gao—Geroldinger conjecture, if we set ag = e
and Gy = {e} then {a,G,}*_, forms a cover of G with agGyNasGs = 0 for
all s = 1,..., k. Thus, by the result of [Z69], the Gao—Geroldinger conjecture
holds when G is cyclic.

In this paper we aim to generalize Mycielski’s conjecture in a new direc-
tion and prove an extended version of the Gao—Geroldinger conjecture.

DEFINITION 1.3. Let G be a group and let A = {a,G}*_, be a finite

system of left cosets of subgroups Gy, ..., Gk. The covering function of A is
given by
(1.3) walx) ={1<s<k:z€aGs} (xz€q).

Let m be a positive integer. We call A an m-cover of G if wa(z) > m for
all z € G. If A forms an m-cover of G but none of its proper subsystems
does, then A is said to be a minimal m-cover of G.

Now we state our main result, which (in the special case m = 1) implies
the Gao—Geroldinger conjecture for arbitrary finite abelian groups.

THEOREM 1.3. Let A = {asGs}¥_; be an m-cover of an abelian group
G by left cosets. Then, for any a € G with w(a) = m, we have

(1.4) N, = [G: ﬂ GS} < 28=™ and furthermore k> m+ f(N,).

1<s<k
aGaSGs

In particular, if {asGs}se fails to be an m-cover of G, then we have the
inequalities

(1.5) G:G ) <2F"™ and k>m+ f([G:GY),

the bounds of which are best possible.

REMARK 1.2. When G = Z, Theorem 1.3 was proved by Znam [Z75] in
the case m = 1, and we can say something stronger in Section 2. Also, in
the second inequality of (1.4), N, cannot be replaced by [G : ﬂ];:l Gs] as
illustrated by the following example.

EXAMPLE 1.1. Let G be the abelian group C),, x C},, where p is a prime
and C), is the cyclic group of order p. Then any element a # e of G has
order p. Let G1,...,Gy be all the distinct subgroups of G with order p. If
1 <i<j<k, then G;NG; = {e}. Thus {G5}*_, forms a minimal 1-cover
of G with N*_, G, = {e}. Since 1+ k(p — 1) = |U"_, G.| = |G| = p?, we
have

k=p+121+f([G:Gs]) =1+ f(p) =p.
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However,
k

k:p+1§2p—1:1+f([G:{€}]):1+d<G,ﬂGs)v
s=1
and the last inequality becomes strict when p > 2.

Example 1.1 also shows that we do not have an analogue of [S01, The-
orem 2.1] for minimal m-covers of the abelian group C, x C,, (where p is a
prime), thus we cannot prove our Theorem 1.3 by the method in [SO01]. To
obtain Theorem 1.3 we employ some tools from algebraic number theory as
well as characters of abelian groups.

COROLLARY 1.1. Let A = {a,Gs}*_, be an m-cover of a group G by

left cosets. Provided that a € G and wa(a) = m, for any abelian subgroup
K of G we have

(1.6) E—m>|{1<s<k:a¢asGs and K Z G,}|
k
> f([K:Km N G])
e

In particular, if {asGs}se fails to be an m-cover of G, then for any abelian
subgroup K of G not contained in G; we have

(1.7) {1<s<k:KZG} >1+ f(K:G:NK)).

Proof. We define J = {1 < s < k: a;Gs NaK # (0}. For each s € J,
a"ta,GsNK is a coset of G, N K in K. Observe that {a=ta,GsN K}y is
an m-cover of K with [{s € J : e € a ta;Gs N K}| = |I,| = m where

I,={1<s<k:ac€aGs}.

Applying Theorem 1.3 to the abelian group K we get the inequality |J|—m >
FUK :Nyer, GsNK]). If s € J and K C G, then a”'a,Gs N K = K and
hence s € I,. Thus
[J—m=|{scJ:ega ta;G;NK}
<Hl<s<k:adasGsand K L Gz} <k—m
and hence (1.6) follows.

Now suppose that {a;Gs}s+¢ is not an m-cover of G and K is an abelian
subgroup of G with K Z G;. Then w(z) = m for some = € a;G;. In light
of the above,

Hl1<s<k:s#tand K L Gs}| > |{1<s<k:xdasGs and K  G,}|

This proves (1.7) and we are done. m
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COROLLARY 1.2. Let R be any ring. Let a1, ..., ay be elements of R and
Iy,..., Iy ideals of R. If {as + I,}*_, is an m-cover of R with the coset
at + Iy irredundant, then for the quotient ring R/I;, we have |[R/I;| < 2F—™
and furthermore k > m + f(|R/I]).

Proof. Since R is an additive abelian group, this follows from Theo-
rem 1.3 immediately. m

In the next section we will present a new approach to Mycielski’s problem
on covers of Z. In Section 3 we are going to work with covers of abelian
groups and extend some ideas from Section 2; this will lead to our proof of
Theorem 1.3.

2. A new approach to Mycielski’s problem. Let Q denote the
algebraic closure of the rational field Q and Z the ring of all algebraic integers

in Q.

LEMMA 2.1. For s = 1,...,k let (s € Z be a root of unity with order
ns > 1. Then n € Z* divides Hle(l —(s) in Z if and only if

k
1
(2.1) > ord,(n)  for any prime p,
; p(ns) 8
P(ns)={p}

where ¢ is the well-known Fuler function.

Proof. For each prime p, let v, : Q — Q denote any extension of the
p-adic valuation ord,(-) to Q, normed by v,(p) = 1. It is well known (cf.
[W, Chap. 2]) that

vy(1—¢) = { 1/po(ns) if n, is a power of p,
’ ) 0 otherwise.

Now n divides lezl(l —(,) in Z if and only if for each valuation v : Q — Q
one has v(n) < 2521 v(1—(s). Since any valuation v of Q is (equivalent to)
an extension of ord,(-) for some prime p, we immediately obtain the desired
result. m

COROLLARY 2.1. Let n > 1 be an integer. Then f(n) is the smallest
positive integer k such that there are roots of unity (1, ...,k different from 1
for which Hl;:l(l —(s) € nZ. Furthermore, this holds with k = f(n) if and
only if for any prime divisor p of n there are exactly ordy(n)(p — 1) of
(1,...,Cr having order p.
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Proof. For s =1,....k let (5 be a root of unity with order ns > 1. By
Lemma 2.1, n divides Hf::l(l — (s) in Z if and only if (2.1) holds. Clearly

k
1 1<s<k:P(ng) =
Z < {1 <s< (n5) = {p}}] for every prime p.
—1 @(ns) p—1
P(ns)={p}

If (2.1) is valid, then
k> Y [{1<s<k:Pn,)={p}}> D ordy(n)(p—1) = f(n).
pEP(n) pEP(n)
Now assume that k¥ = f(n). When (2.1) is valid, equality holds in the
last three inequalities and hence
{l<s<k:ns=p}=[{l<s<k:P(ns)={p}} =ordy(n)(p—1)
for any prime p. Conversely, (2.1) holds if {1 < s < k : ny = p}| =
ordy(n)(p — 1) for all p € P(n).
Combining the above we have completed the proof. m
LEMMA 2.2. Suppose that A = {as(ns)}i_, is an m-cover of Z by
residue classes and a € 7 is covered by A exactly m times. Let N, be

the least common multiple of those ng with a € as(ns), and let ms € Z for
s€Jwhere J={1<s<k:adas(ns)}. Then for any 0 < a < 1 we have

(22) CO(OZ) = 01<Ck) == CNa—l(a);

where

23)  Cila) = 2 (=)l e (oaams/n:
ICJ

{ZSEI mS/n;}:(a+T)/Na
for every r =0,1,...,N, — 1, and we use {0} to denote the fractional part
of a real number 6.

Proof. This follows from [S99, Lemma 2]. m

THEOREM 2.1. Let A = {as(ns)}*_, be an m-cover of 7, and suppose
that a is an integer with wa(a) = m. Then k > m+ f(N,) where N, is the
least common multiple of those ng with a € as(ns). Furthermore, for any
prime p we have

1
Q1) UOIZ Y e 2 (N - 1)
s€l(p)

where
(2.5) J(p):{1gsgk;: s

gmws —a but ngtas —a}.
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Proof. Let J ={1 < s <k:a¢as(ns)} Foreach s € J, let m, be an
integer not divisible by n,/(ns,as — a) > 1. Then (, = e>(@s—a)ms/ns jg 5
primitive dsth root of unity where ds = ng/(ns, (as — a)ms) > 1.

Set
S = {{N(LZZZ} :IQJ}.
sel %
Then
H(l — () = Z(_1)|I\627riZse,(as—a)ms/ns
seJ ICJ
— Z Z (=) 127 Eser(@s—a)ms/ns
aes ICJ

{Na ZSEI ms/nst=a

-y i Cr(@) = No Y _ Co(a),

acS r=0 acsS
where C.(a) (0 <7 < N,) are given by (2.3). So N, divides [T, ;(1 — ()

in the ring Z. By Corollary 2.1, we have k —m = |J| > f(N,). In view of
Lemma 2.1,

1
Z > ordy(N,) for each prime p.
seJ cp(ds)

P(ds)={p}
Now we simply let mgs = 1 for all s € J. By the above, for any prime p
we have

1
Z > ord,(N,),

€1 (p) p(ns/(ns,as — a))

which is equivalent to (2.4). This concludes the proof. m

3. Working with abelian groups. We first recall some well-known
facts from the theory of characters of finite abelian groups (see, e.g.,
[W, pp. 22-23)).

For a finite abelian group G, let G denote the group of all complex-valued
characters of G. One has G = G. For any subgroup H of G let H L denote
the group of those characters x € G with ker(y) = {z € G : x(z) = 1}
containing H. Then we get a canonical isomorphism H+ = G//\H by putting
x(aH) = x(a) for any a € G and any y € H-~. Furthermore, for each
a € G\ H there exists some y € Ht with x(a) # 1.

Proof of Theorem 1.3. Choose a minimal I, C {1,...,k} such that the
system {asGs}ser, forms an m-cover of G. As I, = {1 <s<k:a€ a;Gs}
has cardinality m, we see that I, is contained in I,.. So we can simply assume
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that A is a minimal m-cover of G (i.e., I. = {1,...,k}). By [S90, Corol-
lary 1], H = ﬂ’::l G is of finite index in G. Instead of the minimal m-cover
A = {a,G,}*_; of G, we may consider the minimal m-cover A = {@,G,}*_,;
of the finite abelian group G = G/H, where @, = a,H and G, = G,/H
(hence [G : G,] = [G : G]). Therefore, without any loss of generality, we
can assume that G is finite.

Put H, = (\,¢;, Gs; then |H | =[G : Hy] = Ni.

Note that J = {1 < j < k : a ¢ a;G;} has cardinality k — m. For
each j € J we may choose a x; € GjL with ¢; := xj(a"ta;) # 1. For any
z € G\ Hy we have ax & (,c; aGs = (),¢;, asGs. Since A is an m-cover
of G, there exists some j € J with az € a;G;, and therefore x;(x) = (; by
the choice of x; and the definition of ;.

For z € G we define

w(z) = [T = ¢).
jed
If x € HE and yx(x) # 1, then & ¢ H, and hence ¥(x) = 0 by the above.
Thus Wy = V¥ for all x € H-.
Observe that

v@) =Y ([Tu@) II (=) = Y cwa),

ICJ jeI jeINT vel@

cw)y="> ][] -wez

ICJ  jel\I
[erxi=v

Let C be the complex field. As the set G is a basis of the C-vector space
CY = {g: g is a function from G to C}

(cf. [J, p. 291]), for any x € HE- we have c(1x) = c(1) for all ¢ € G because
Uyl =v.
Clearly,

where

[T =) =2(e) =D cw)ple) = > c(¥).

J€J pelG el
Let ¢y H- U--- U HE be a coset decomposition of G where [ = [é c HE.
Then l

l l
Z CW) = Z Z C(wr‘X) = Z ’Hal|c(¢)r) = N, ZC(¢T)
IL'ECA? r=1yeH] r=1 r—=1

(That c(¢rx) = c(ip,.) for all x € H;- is an analogy of Lemma 2.2.) Therefore
N, divides [[,¢ ;(1 —¢;) in Z, and Corollary 2.1 gives k —m = |J| > f(N,),
and consequently N, < 28¥=™ by Remark 1.1.
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If {asGs}se is not an m-cover of G, then for some z € a,G; we have
wa(x) = m, hence k —m > f(N,) > f([G: G]) and [G : G4] < N, < 2k—m
by the above.

By [S01, Example 1.2], for any subgroup H of G (with [G : H] < o0)
and an arbitrary element = of G, the coset xH and m — 1+ d(G,H) =
m — 1+ f([G : H]) other cosets of subgroups containing H form an (exact)
m-cover of G with zH irredundant. Also, m — 1 copies of 0(1), together with
the £ — m + 1 residue classes

1(2),2(2%),...,2Fm=(2k=m) o(2k—™),

clearly form an (exact) m-cover of Z with the residue class 0(2¢~™) irre-
dundant. So the inequalities in (1.5) are really best possible and we are
done. =
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