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Introduction. In the eighties, B. Gross (see [5]) introduced a conjec-
ture which is close to Stark’s conjectures inasmuch as it postulates a link
between L-values and regulators, but differs from Stark’s conjectures in a
very important aspect: the regulators are not complex numbers, arising as
determinants of logarithms of certain algebraic numbers, but they lie in an
appropriate quotient of the augmentation filtration of Z[G], where G is the
Galois group of the abelian field extension K/F under consideration, and
they are obtained as determinants of matrices made up from certain local
Artin symbols.

In a previous version of [1], David Burns formulated a conjecture which
combines Stark-type and Gross-type conjectures. (Note: in the most recent
version [1], this is formulated not as a conjecture but as a conditional result
(Corollary 4.1) assuming the equivariant Tamagawa number conjecture for
an appropriate motive. This result requires a very sophisticated proof.) We
sketch Burns’s conjecture for an abelian extension K/Q now; this involves
two steps. One starts out with a Stark unit ηK (whose existence is proven in
this case, not just a conjecture), and then one obtains a description of the
“position of ηK inside an appropriate exterior power of O×K” in terms of a
Gross regulator. At the first stage, the Stark unit is essentially determined
by a classical regulator, that is, a determinant involving the logarithms of
the conjugates of ηK . At the second stage, the Gross regulator is an algebraic
object living in a subquotient of an integral group ring. (The whole setup
generalizes to base fields other than Q.) For details, see §1.

In subsequent work of Hayward ([6], [7]), where Burns’s conjectures are
discussed and in some cases proved, another conjecture arises which may
be considered as the “minus part” of Burns’s conjecture for extensions K/F
where F is an imaginary quadratic field and K is absolutely abelian. (The
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methods in Hayward’s proofs are much more accessible than those of [1].)
We will explain this in §1 without striving for maximum generality, so as to
keep things a little simpler. This “Minus Conjecture” equates, up to explicit
constant factors, the leading term of a Stickelberger element and a regulator
constructed from S-units in the minus part. We hasten to mention two things:
firstly, our Minus Conjecture is in fact a special case of what is called “the
conjecture of Gross on tori”, on which not much seems to be known, and
secondly we are indebted to Henri Darmon for his suggestion that we might
look at leading terms of Stickelberger elements in the minus part. Let us
also remark that Darmon deals with an interesting analogous situation in [3]
where F is a real quadratic field.

The Minus Conjecture (MC) is intimately linked to the conjecture of
Burns (B) for K+/Q and K/F respectively: if we assume the validity of (B)
for K+/Q, then the Minus Conjecture can be shown to imply the validity
of (B) for K/F (this is a result of Hayward, aptly called “base change for
Conjecture (B)”), and the converse implication, which entails a kind of divi-
sion argument, works under some hypotheses (Theorem 2.5). We will review
Hayward’s argument in detail in §2, in order to make clear just when the
division argument is possible. The idea is, very crudely speaking, that (B)
for K+/Q is the “plus part of (B) for K/F ”, and the Minus Conjecture (MC)
is “the minus part of (B) for K/F ”, and the problem is to neatly separate
the plus and minus parts.

We repeat that the division argument does not always work. The prob-
lem is simply “division of zero by zero”. Our main objective in the sec-
ond part of this paper (§§5–8) is thus to find a direct proof of the Mi-
nus Conjecture, which appears to be deeper than (B). Hayward proved the
above-mentioned instances of (B) by a nice argument involving Euler sys-
tems and a matrix-tree theorem. As things stand, this is not always suffi-
cient for (MC), although it does lead the way to our proof of the weaker
conjecture (VOC) on the order of vanishing (see below and §4). In our
direct proof of (MC), we are only able to handle s = 1 and s = 2, but
still have to use (along with a lot of calculation) the Gross–Koblitz for-
mula in §7. The situation in [3] is somewhat similar: the order of vanishing
(Theorem 4.2, loc.cit.) is easier to obtain than the results on the leading
coefficient.

Actually, we impose some more hypotheses in order to simplify things:
We assume K/F elementary l-abelian with l a fixed odd prime; we suppose
that K = K+F , and K+ is ramified at the primes p1, . . . , ps that are distinct
from l, and we also suppose that all pi split in F . Let wF , f and hF denote
the number of roots of unity, the conductor and the class number of F ,
respectively. We make the blanket assumption that l -wF . Then we can prove
(MC) for s = 1 and l - f (see §3), and for cyclic K, s = 2 and l - fhF



A conjecture concerning minus parts 3

(Theorem 8.9). We also have a positive result for s = 2 and noncyclic K
(Theorem 8.8), but this requires that one of p1, p2 is an lth power modulo
the other prime, and again l - fhF .

The Vanishing Order Conjecture (VOC), which is a weakened form of
(MC), says that the Stickelberger element associated to K is contained in
the power IsG, where IG is the augmentation ideal of Zl[G] and s is the
number of ramified primes in K+/Q. We prove this under some assumptions
in §4 for all s. This shows that the invariant predicted to vanish by (MC)
lives in the filtration quotient IsG/I

s+1
G .

It should be said that the case s = 1 of (MC) can already be deduced
from our Theorem 2.5 together with [7]. The latter is an unpublished Ph.D.
thesis, and we decided to present our own approach anyway, since we also
feel that it might be of independent arithmetic interest. Hayward’s argument
makes essential use of elliptic units. While this is quite natural in the setting
of [7], one may argue that in our case even the top field K is abelian over Q,
so one should try to stick to the cyclotomic framework all the way, and we
show that this is possible.

In a forthcoming paper [4] we will explain how to prove (MC) for an
arbitrary s under the assumption that l ≥ 3(s+ 1) and l -wFhF .

Notation will be introduced in §1 and further along as needed. We only
mention here that X/l means X/lX or X/X l depending on whether the
abelian group X is written additively or multiplicatively.

Acknowledgements. The second author was supported within the
project MSM0021622409 of the Ministry of Education of the Czech Republic.
The first author acknowledges support from the DFG.

1. The setup, and statement of the conjectures. We fix an odd
prime l for the entire paper. First we state Burns’s conjecture (B) on abelian
Galois extensions K/k in a situation which is appropriate for our setting,
always assuming that l -wk. We only look at the case where the parameter r
(see [6]) has value 1. This suggests taking k = Q andK real, or taking k to be
an imaginary quadratic field, since these are the obvious examples of abelian
extensions where exactly one infinite place is totally split. To keep things
simple we also assume G = Gal(K/k) is l-elementary. Let S be a nonempty
finite set of finite places of k including all places that ramify in K, and let
s denote the cardinality of S. Stark’s conjecture in its strong form for rank
one is known to be true for k the rationals or imaginary quadratic, and we
will write ηK/k,S for the Stark unit. For more details see [6] or [11]. Note that
ηK/k,S depends on the choice of the set S, and also in a harmless way on
the choice of a place at infinity for K. Note moreover that in general ηK/k,S
only belongs to US(K)1/wK , so certainly belongs to Zl⊗ZUS(K). We always
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suppose K given as a subfield of C, and then there is the obvious choice of
the infinite place.

In the statement of the conjecture we follow [6], except that we consis-
tently eliminate the auxiliary set T which is used there to make certain unit
groups torsion-free. The price for this is a denominator wk, and we pay it
gladly since all our conjectures amount to equalities that take place in groups
of exponent l, and the absence of T does help.

There is a linear map

RegK/k,S :
∧s−1

Z US(k)→ Is−1
G /IsG,

u1 ∧ · · · ∧ us−1 7→ det (rv(ui)− 1)1≤i≤s−1, v∈S∗ .

Here rv is the local reciprocity map x 7→ (x,Kw/kv) ∈ Gv ⊆ G (note that
the choice of the place w in K above v does not matter), and S∗ denotes S
with any one place deleted. This regulator map is well-defined up to sign;
we will specify the sign shortly, before stating the central conjecture.

We note at once that rv is trivial on roots of unity in k, since wk is
assumed to be coprime to |G|.

To obtain a regulator from the regulator map, one has (in contrast with
Stark’s conjecture) to introduce an extra parameter running over a Hom
group. For any G-module X and any ϕ ∈ HomZ[G](X,Z[G]), let ϕ1 ∈
HomZ(XG,Z) be defined by the property that ϕ(u) = ϕ1(u) ·

∑
σ∈G σ for

all u ∈ XG. Then ϕ1 canonically induces a linear map
∧s

ZX
G →

∧s−1
Z XG

which will again be written ϕ1, to wit

ϕ1(x1 ∧ · · · ∧ xs) =
s∑
i=1

(−1)i+1ϕ1(xi) · (x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xs).

We now pick any Z-basis u1, . . . , us of US(k)/US(k)tor and we define

RegϕK/k,S = RegK/k,S(ϕ1(u1 ∧ · · · ∧ us)) ∈ Is−1
G /IsG

for all ϕ ∈ HomZ[G](US(K),Z[G]). Note that this is well-defined (indepen-
dent of the choice of the basis) up to sign.

We have to fix the sign of the regulator before we state Burns’s conjecture.
For this we use ad hoc terminology. Let us fix an ordering v1, . . . , vs of the
set S. (In contrast to Hayward’s work, the infinite place is not counted as a
member of S.) An independent system u1, . . . , us of S-units is called adapted
to the given ordering of S (or just adapted, in context) if ui is a unit outside
vi and has positive value at vi. A basis u1, . . . , us of US(k)/US(k)tor is called
well-oriented if the transition matrix from this basis to any adapted system
has positive determinant. (In many cases, e.g. if hF = 1, we will even be able
to pick a basis which is itself adapted.) Unless otherwise stated, we always
make two assumptions:
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(1) S and the basis u1, . . . , us are ordered so that the basis is well-
oriented.

(2) In the calculation of the regulator, the last place in S is omitted.
We may now state:
Conjecture (B). For all ϕ ∈ HomZ[G](US(K),Z[G]) one has

ϕ(ηK/k,S) ≡ (−1)s+1 hk,S
wk

RegϕK/k,S (mod IsG).

The letterϕ here stands for the extension ofϕ inHomZl[G](Zl⊗US(K),Zl[G]).
The prediction about the sign comes from [1] and is also explained in [7].

Our way of stating things is different from [7] (and a bit more explicit), so
we have to show compatibility. [7] uses the sign ξ = (−1)|T |+1 sign(R) where
R is a certain real-valued regulator. Since we work with empty T , we just
have to show that the sign of R is exactly (−1)s under our assumptions.

The real-valued regulator R used by Hayward is constructed as follows:
one takes an ordered basis u1, . . . , us as above but a slightly different set of
places v0 := ∞, v1, . . . , vs−1 (unfortunately Hayward’s indexing is different,
starting at 1), and one considers the determinant

R = det (−log |ui|vj−1)1≤i,j≤s.

If one extends R by an (s + 1)th column by letting j run up to j = s + 1,
then the resulting matrix has zero row sums. By the usual argument we have

R = (−1)s det (−log |ui|vj )1≤i,j≤s.
Now if u1, . . . , us is an adapted system, the matrix inside the last det is
diagonal, with positive entries ai log N(vi) (where ai denotes the valuation of
ui at vi). Thus the determinant is positive, and the same holds if u1, . . . , us
is well-oriented. This shows sign(R) = (−1)s and ξ = (−1)s+1 as claimed.

In order to show that our version conforms with Hayward’s formulation
on p. 104 of [6], we also have to remark the following: Hayward’s formula
is invariant under enlarging T , as long as US,T (k) is assumed torsion-free to
begin with. We put in an extra denominator wk,T on the right in his formula,
and we claim that then the formula is invariant under changing T , without
any condition. Indeed, if we replace T by T ′ = T ∪ {v} (v some finite place
of k outside S ∪T ), then ηK/k,S,T ′ = ηαK/k,S,T with α = 1−N(v) ·Frob−1

v , so
ϕ(ηK/k,S,T ′) = αϕ(ηK/k,S,T ), and we only need to know α modulo IG, so we
just get the factor 1 − N(v). A standard argument using formula (3) in [6]
then shows that hk,S,T RegϕK/k,S,T /wk,T is multiplied by the factor N(v)− 1
when T is replaced by T ′. Setting T = ∅ gives our version, since of course
hk,S,∅ = hk,S and wk,∅ = wk.

This shows at once that our version implies Hayward’s. But the converse
is equally true. For this we point out that one can always take T = {v}
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in Hayward’s situation so that l does not divide N(v) − 1 (here we have to
use the assumption that wk is coprime to l). This ensures that the above
argument works both ways. Note in this context that the term (−1)|T | in
Hayward’s sign definition is due to the fact that the sign changes whenever
an element is put into or taken out of T , as can be seen by the preceding
argument.

We will be concerned with Conjecture (B) in two concrete cases which
we now describe. Let F be an imaginary quadratic field of conductor f .
Let hF denote the class number of F and wF the number of roots of unity
in F . We recall that we assume l -wF , and we stress that this hypothesis will
be in force throughout the paper. We always assume that K is absolutely
abelian, contains F , and K+ is elementary l-abelian over Q. Then K =
FK+ and G = Gal(K/F ) may be identified with Gal(K+/Q). Let τ always
stand for complex conjugation. Then both Gal(K/K+) and Gal(F/Q) can
be identified with {1, τ}. Letm be the conductor ofK+. We also assume that
there is no wild ramification in K+/Q. Then m has the form m = p1 · · · ps
where the pi are all congruent to 1 mod l. Finally, we assume all pi are split
in F .

Theorem 1.1. Under all these assumptions, Conjecture (B) is true for
K+/Q with S = {p1, . . . , ps} (the minimal possible choice of S).

Proof. This is due to Hayward. In the published work [6], this result can
be found up to sign (see Theorem 5.10 and Remark 5.11 there). The sharp
version including the sign is only proved in Hayward’s thesis (top of page 98).
We have to explain the role of the auxiliary integer b by which both sides of
the conjecture are multiplied in [6]. It has to satisfy two conditions: bmust be
a multiple of wk, and there must be a section s of the natural epimorphism
R → Clk such that sb is a homomorphism, where R denotes the ray class
group of conductor p1 · · · ps in k. Since k = Q here, the class group is trivial,
and the second condition is void; so we may take b = wQ = 2, which is prime
to l, and we may cancel b in Hayward’s theorem on both sides.

We make a few comments:

(i) As a basis for US(Q) modulo torsion one can take the set {p1, . . . , ps}.
Note this is well-oriented (with the obvious ordering of S) and even
adapted.

(ii) The Stark unit appears as NQ(ζm)/K+(1−ζm)1/2 where ζm 7→ e2πi/m

fixes the choice of place at infinity.
(iii) The factor preceding the regulator on the right is simply hQ,S/wQ

= 1/2.

On the upper level we have:



A conjecture concerning minus parts 7

Theorem 1.2. If l -hF then Conjecture (B) is true for K/F with S = SF
the set of places above any of the pi, i = 1, . . . , s (the minimal possible choice
of S).

Proof. This is again due to Hayward. He actually proves much more, us-
ing elliptic units; the big field K only needs to be abelian over k, not neces-
sarily over Q. The requirements on the integer b have already been explained,
but here k = F , and we have to be more careful. Let b be wF multiplied with
the greatest factor of

∏s
i=1(pi− 1) that is prime to l. Then b annihilates the

non-l-part of the kernel of R→ ClF , and b is prime to l. Since we assumed hF
to be prime to l, there is a section s : ClF → R with image contained in the
non-l-part of R. Then sb is a homomorphism, so Hayward’s theorem (p. 98
in [7]) applies again, and we may cancel b as in the proof of Theorem 1.1.

Again, a few comments:

(iv) Now the set SF has cardinality 2s, so we are looking at an equation
in I2s−1

G /I2s
G .

(v) In the particular case that interests us in §3 and §§5–8, we will fix
an explicit basis of US(F ).

(vi) One can express ηK/F,S in terms of ηK+/Q,S ; this will be made pre-
cise at an appropriate later moment.

(vii) The denominator is legal since we are assuming l -wF .

We now turn to the Minus Conjecture (MC). To state it, we have to
introduce certain Stickelberger elements.

The notation
∑

amod× n means that the sum runs over all a = 1, . . . , n−1
which are coprime to n. Let σa denote the automorphism ζfm 7→ ζafm for
a coprime to fm. We likewise denote by σa the restriction of this to K =
FK+ ⊆ Q(ζfm). We define

ΘK =
1
fm

∑
amod× fm

(
a− fm

2

)
σ−1
a ∈ Q[Gal(K/Q)].

We note that τ ∈ Q[Gal(K/Q)] is just σ−1, and comparing coefficients shows
that ΘK is a multiple of 1− τ , more precisely,

ΘK = (1− τ)Θ̃K , Θ̃K =
1
fm

∑
amod× fm
σa|F=1

(
a− fm

2

)
σ−1
a .

Note that Θ̃K is now in Q[Gal(K/F )].
We also need a regulator built from minus-units. For each i ∈ {1, . . . , s}

pick a prime ideal pi above pi in F . Let S′ be the ordered set (p1, . . . , ps). The
abelian group (US(F )/US(F )tor)1−τ is free of rank s. We choose an ordered
basis for it, (u1−τ

1 , . . . , u1−τ
s ) say. We again have a notion of well-orientedness



8 C. Greither and R. Kučera

as follows. For each i we choose a positive power of pi which is principal,
and a generator xi of it. Then the family x1−τ

1 , . . . , x1−τ
s is a Q-basis of

Q⊗ (US(F )/US(F )tor)1−τ (an analog of the “adapted systems” we used be-
fore), and we decree that (u1−τ

1 , . . . , u1−τ
s ) is well-oriented with respect to

the ordered set S′ if (x1−τ
1 , . . . , x1−τ

s ) can be obtained by a Q-linear transfor-
mation with positive determinant from the ordered set (u1−τ

1 , . . . , u1−τ
s ). All

this simplifies a lot when hF = 1. Then one takes ui to be a generator of pi.
No parameter ϕ is needed, and no place has to be omitted in the following

definition:

Reg−K,S = det (rw(u1−τ
i )− 1)1≤i≤s, w∈S′ ∈ IsG/Is+1

G .

This is indeed well-defined. In order to state the Minus Conjecture, we repeat
our assumptions for convenience: K = K+F , l -wF , K+/Q is l-elementary
with Galois group G, exactly s rational primes ramify (tamely) in K+, and
all these primes are split in F .

Conjecture (MC). Let (u1−τ
i )i be an ordered basis of the minus units

as above which is well-oriented with respect to S′. Then

Θ̃K ≡ −
hF,S
wF

Reg−K,S (mod Is+1
G ).

We will call this the “Minus Conjecture” in the following.
We point out that in the notation of [6] (p. 118), Θ̃K = −1

2Θ(0, ω)
(note the minus sign, which comes from the usual formula linking an L-
value at 0 to a generalized Bernoulli number), so (MC) reads as Θ(0, ω) ≡
(2hF,S/wF ) Reg−K,S , and the constant 2hF,S/wF should be interpreted as
(hF,S/wF )/(hQ/wQ), which agrees with the general idea that (MC) is “the
quotient of (B) for K/F by (B) for K+/Q.” There is one intentional discrep-
ancy with [6]:

Remark. In our minus regulator we take a basis of (US(F )/US(F )tor)1−τ

whereas Hayward takes a basis of the group (US(F )/US(F )tor)−, which may
be slightly larger. This makes our regulator larger by the index of the smaller
group inside the latter; and so we get rid of the index factor which is needed
in the statements of Proposition 7.2 and Conjecture 7.4 in [6].

The following important consequence of the Minus Conjecture is much
easier to state, and also easier to prove (see Theorem 4.4).

Conjecture (VOC). The element Θ̃K always lies in the sth power of
the augmentation ideal IG.

2. Base change for (B) and the division argument for (MC). In
simple terms, we are going to show: If (MC) holds, then Theorem 1.2 is a
direct consequence of Theorem 1.1 (it would be slightly misleading to say
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that the one implies the other, since both statements are true); and under
specific conditions this argument can be reversed, leading to a proof of (MC).
The former part of this is due to Hayward. We explain the argument in detail
for the reader’s convenience before discussing the converse implication.

We keep all assumptions and notations from the previous section.

Proposition 2.1 (Hayward). We have a base change property for Con-
jecture (B), that is: Theorem 1.2 can be deduced from Theorem 1.1 and the
validity of (MC).

Proof. The main idea is that both sides in the statement of (B) for K/F
can be conveniently written as the product of two factors.

In [6] Hayward defines a twisted Stickelberger element ΘK/K+/Q,S(0, ω).
One can check that it equals −2Θ̃K . By the formula (13) of [6] it satisfies
the product formula

Θ′K/F,S(0) = ΘK/K+/Q,S(0, ω) ·Θ′K+/Q,S(0),

where the equivariant L-functions ΘK/F,S(z) and ΘK+/Q,S(z) are defined
for instance in [11, Chapter IV, §1]. Note that the idempotent eωχ two lines
below formula (13) of [6] should read eχ.

Lemma 2.2. The Stark units satisfy ηK/F,S = η−
eΘK

K+/Q,S.

Proof. This was proved by Hayward under Hypothesis 7.1 of [6]. An
argument is necessary here as we are not assuming that hypothesis.

Let ∞1 be an infinite place of K+; we identify it with the place of K
above it. Let v be a place of K+ above p1, and w be a place of K above v. We
denote by w the K/K+ conjugate of w which may or may not be equal to w.

Similarly to [6] we deduce the following two formulas:

λK(η−
eΘK

K+/Q) = −Θ′K+/Q,S(0)Θ̃K · (2∞1 − w − w)

= Θ′K/F,S(0) · (∞1 − w/2− w/2),

λK(ηK/F ) = Θ′K/F,S(0) · (∞1 − w).

We want to conclude that the arguments of λK in two preceding formulas
are equal but we cannot do so directly since λK is not injective in general.

Let eK ∈ C[G] be the idempotent which is the sum of all eχ such that χ
is nontrivial on all decomposition groups of primes in S. We claim that

eK(∞1 − w/2− w/2) = eK(∞1 − w).

If w = w, this is trivial. If not, suppose eχ is one of the idempotents whose
sum is eK . Then χ must be nontrivial on the decomposition group of w and
of w. But then eKw = eKw = 0.

Since λK is injective in the eK-part, we have proved the eK-part of the
lemma. We will be done if we establish that both sides of the equality are
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already in the eK-part. The support of an element x of a C[G]-module is
by definition the set of all χ ∈ Ĝ with eχx 6= 0. We know the following:
ηK/F has the same support as Θ′K/F,S(0) and ηK+/Q has the same support
as Θ′K+/Q,S(0). Then using the product formula stated before Lemma 2.2 we
deduce that both sides of the equality in Lemma 2.2 have the same support,
in particular they are both in the eK-part.

From the preceding lemma it follows that ϕ(ηK/F,S) = −Θ̃Kϕ(ηK+/Q,S)
for all ϕ ∈ HomZ[G](US(K),Z[G]).

We fix an ordering of the primes p1, . . . , ps; for each i we fix a prime pi
above pi in F and we choose the ordering (p1, . . . , ps, p

τ
1 , . . . , p

τ
s) on S.

Lemma 2.3. Recall S′ = {p1, . . . , ps}. If u′ = (u1, . . . , us) is an ordered
basis of US′(F )/US′(F )tor, then u = (u1, . . . , us, p1, . . . , pn) is an ordered
basis of US(F )/US(F )tor, and u is well-oriented with respect to S iff u′ is
well-oriented with respect to S′.

Proof. We begin by noting that US(F )/US(F )tor is the direct sum of
US′(F )/US′(F )tor and US(Q)/US(Q)tor = 〈p1, . . . , ps〉. Pick xi ∈ F so that
xi generates a positive power of pi. Then x = (x1, . . . , xs, x

τ
1 , . . . , x

τ
s) is an

adapted system with respect to S, and one checks that the transition from it
to (x1, . . . , xs, p1, . . . , ps) has positive determinant. So the transition from u
to x has positive determinant iff the transition from u′ to (x1, . . . , xn) does.

We continue the proof of Proposition 2.1, assuming that S, S′, u1, . . . , us
have been chosen so that u is well-oriented. We write us+i for pi (i =
1, . . . , s). We will prove below the following formula (in which the first and
third equalities hold by definition):

RegϕK/F,S = RegK/F,S(ϕ1(u1 ∧ · · · ∧ u2s))

= 1
2(−1)s Reg−K,S ·RegK+/Q,S(ϕ1(us+1 ∧ · · · ∧ u2s))

= 1
2(−1)s Reg−K,S Regϕ

K+/Q,S .

Let us assume this for a moment. For the ensuing calculation, which takes
place in the group I2s−1

G /I2s
G , we note that there is a canonical map IsG/I

s+1
G ×

Is−1
G /IsG → I2s−1

G /I2s
G induced by multiplication. We have

ϕ(ηK/F,S) = −Θ̃K · ϕ(ηK+/Q,S)

=
(

+
hF,S
wF

Reg−K,S

)(
(−1)s+1 1

2 Regϕ
K+/Q,S

)
(use (B) for K+/Q, and (MC))

= (−1)s+1 hF,S
2wF

Reg−K,S Regϕ
K+/Q,S .

This is (B) for K/F .
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To complete the proof, we need another proposition as announced. We
follow Hayward’s reasoning.

Proposition 2.4. With all the previously introduced hypotheses,

(∗) RegK/F,S(ϕ1(u1 ∧ · · · ∧ u2s))

=
1
2

(−1)s Reg−K,S ·RegK+/Q,S(ϕ1(us+1 ∧ · · · ∧ u2s)).

Proof. We have a matrix with row sums in I2
G, whose rows are indexed

by i = 1, . . . , 2s and the columns are indexed as indicated:

p1 . . . ps pτ1 . . . pτs

u1

...
...

... . . . rpj (ui)− 1 . . . . . . rpτj
(ui)− 1 . . .

us
...

...

us+1

...
...

... . . . rpj (ui)− 1 . . . . . . rpτj
(ui)− 1 . . .

u2s

...
...

We may use that rpτj (ui) − 1 = rpj (u
τ
i ) − 1 and uτi = ui if i > s. For any i,

s < i ≤ 2s, we have 2
∑s

j=1(rpj (ui)−1) ∈ I2
G. But IG/I

2
G ' G has no element

of order 2 and so
∑s

j=1(rpj (ui)− 1) ∈ I2
G. We remove the last column from

the matrix and call the resulting matrix A:

p1 . . . ps−1 ps pτ1 . . . pτs−1

u1

...
...

...
... . . . rpj (ui)− 1 . . . rpj (us)− 1 . . . rpj (u

τ
i )− 1 . . .

us
...

...
...

us+1

...
...

...
... . . . rpj (ui)− 1 . . . rpj (us)− 1 . . . rpj (ui)− 1 . . .

u2s

...
...

...

The left hand side of (∗) is then
∑2s

i=1(−1)i+1ϕ(ui) det(Ai), where Ai means
A without the ith row. Before we can compute further, we perform some
column operations on A: We add all the first s − 1 columns to the sth one
and then for each i = 1, . . . , s− 1 we subtract the (i+ s)th column from the
ith one. All computations are done modulo I2

G, and the outcome is
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p1 . . . ps−1 ps pτ1 . . . pτs−1

u1

...
...

...
... . . . rpj (ui)− rpj (u

τ
i ) . . .

sP
j=1

(rpj (ui)− 1) . . . rpj (u
τ
i )− 1 . . .

us
...

...
...

us+1

...
...

...
... . . . 0 . . . 0 . . . rpj (ui)− 1 . . .

u2s

...
...

...

We need to compute the determinant of this matrix if one row is removed. If
the removed row is in the upper half of the matrix, then this (2s−1)×(2s−1)
matrix contains an s×s zero submatrix and so its determinant is zero. But if
we remove one row in the lower half of the matrix, say row number s+k, then
the remaining (2s−1)×(2s−1) matrix contains an (s−1)×s zero submatrix
and its determinant is the product of the determinant D of the upper left
s× s submatrix and the determinant Dk of the lower right (s− 1)× (s− 1)
submatrix. Let us compute D. We multiply the sth column by 2 and then
we subtract the first s− 1 columns from the sth one. Then the ith entry of
the sth column is

2
s∑
j=1

(rpj (ui)− 1)−
s−1∑
j=1

(rpj (ui)− rpj (uτi ))

= rps(ui)− rps(uτi ) +
s∑
j=1

((rpj (ui)− 1) + (rpτj (ui)− 1))

≡ rps(ui)− rps(uτi )

modulo I2
G. Therefore D is congruent to 1

2 det (rpj (u
1−τ
i ) − 1)1≤i,j≤s =

1
2 Reg−K,S . Since pj splits in F/Q, we have Fpj = Qpj and similarly the
completions of K+ and of K coincide, so rpj (ui) = rpj (ui) and we obtain

Dk = RegK+/Q,S(us+1 ∧ · · · ∧ us+k−1 ∧ us+k+1 ∧ · · · ∧ u2s).

From the definition of ϕ1 we finally obtain

RegK/F,S(ϕ1(u1 ∧ · · · ∧ u2s))

= (−1)s · 1
2 Reg−K,S ·RegK+/Q,S(ϕ1(us+1 ∧ · · · ∧ u2s)).

The factor (−1)s comes from the alternating signs in the sum that defines
ϕ1 applied to an s − 1-fold wedge, and to an 2s − 1-fold wedge: summand
number s+ k on the left corresponds to the kth summand on the right.

This argument can be exploited further. Let us return to the part of the
argument immediately preceding Proposition 2.4. We let c(ϕ) = Regϕ

K+/Q,S .
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If we assume that we can find at least one ϕ such that the multiplication
map

_ · c(ϕ) : IsG/I
s+1
G → I2s−1

G /I2s
G

is injective, then the same calculation works backwards. More precisely,
we have Θ̃K · ϕ(ηK+/Q,S) = Θ̃K · ((−1)s+1 1

2c(ϕ)) because of (B) for K+/Q;
and we have −Θ̃K · ϕ(ηK+/Q,S) = ϕ(ηK/F,S) = (−1)2s+1 hF,S

wF
RegϕK/F,S

by virtue of (B) for K/F , and the last term can again be factored as
(−1)s+1 hF,S

2wF
Reg−K,S c(ϕ). Thus under our assumption that multiplication by

c(ϕ) is injective, we may simplify by c(ϕ); the result is (MC).
It remains to see just when such a ϕ can be found.
Let us assume that K+/Q is cyclic (hence cyclic of order l). Let σ be

a fixed generator of G. The genus field of K+ is the compositum K1 · · ·Ks

with Ki the abelian field of conductor pi and degree l. We also fix a generator
σi of Gi = Gal(Ki/Q) for each i, by the prescription that the extension of σi
by identity on the other Kj restricts to σ on K. We define an s× s matrix
A = (aij) by the properties that it has zero row sums and for i 6= j, aij
is an integer such that σaijj equals the Frobenius of pi in Kj . Then up to
sign RegK+/Q,S(p1 ∧ · · · ∧ pi−1 ∧ pi+1 ∧ · · · ∧ ps) equals Ai(σ− 1)s−1 modulo
(σ− 1)s where Ai is the (i, i)-minor of A; see [6, Proposition 5.6]. (Hayward
does specify the sign, but we do not need it.) Note that A and Ai are only
uniquely determined modulo l. We now claim:

Theorem 2.5. If K+/Q is cyclic, l does not divide hF , and at least one
of the minors A1, . . . , As is not zero modulo l, then the validity of (B) for
K+/Q and for K/F taken together imply the Minus Conjecture (MC) for K.
Therefore (MC) holds in this situation as a consequence of Theorems 1.1
and 1.2.

Proof. Assume that Ai is not zero modulo l. Either by the theory of
Gorenstein rings or by using the isomorphism

HomZ[G](X,Z[G]) 3 ϕ 7→ ϕ1 ∈ HomZ(X,Z),

where ϕ1(x) is the coefficient of the identity element in ϕ(x), one shows that
there exists ϕ ∈ HomZ[G](X,Z[G]) with ϕ1(pi′) = 1 if i′ = i and 0 else.
(For the existence of such a ϕ one has to use the fact that the quotient of
US(F )/US(F )tor modulo the subgroup spanned by p1, . . . , ps has no torsion.
Note also that the present definition of ϕ1 extends the previous definition.)
Then Regϕ

K+/Q,S is up to sign just RegK+/Q,S(p1∧· · ·∧pi−1∧pi+1∧· · ·∧ps).
Because of our assumption, this has the form “l-unit times (σ−1)s−1”. Since
for all t > 0, It/It+1 is cyclic of order l, generated by (σ − 1)t, we conclude
that multiplication with c(ϕ) is injective (as explained above) for this choice
of ϕ.
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An aside remark: From a heuristic viewpoint, i.e., if we regard A as a
random matrix with zero row sums, it is highly probable that at least one
Ai is nonzero. More precisely, there are ln(n−1) matrices in (Z/l)n,n with
vanishing row sums, and one can show that exactly

ln(n−1)(1− l−2)(1− l−3) · · · (1− l−n)

among them have the maximal possible rank n−1. By comparison, there are
ln

2 matrices in (Z/l)n,n, and exactly ln2
(1−l−1)(1−l−2)(1−l−3) · · · (1−l−n)

among them are nonsingular; this is a visibly lower proportion.
We ran extensive tests to check on this estimate, only a small part of

which will be mentioned here. We let A be the Frobenius matrix attached to
a cyclic degree l field K+ with s ramified primes p1, . . . , ps, all congruent to
1 modulo the prime l, and we calculated the rank of A for all such fields with
given s and l, under the restriction that all pi < 1000. For s = 3 and l = 3,
the observed and estimated ratios of fields with A of maximal rank s−1 were
0.858024 and 0.855967 respectively (a difference of about 0.2 percent). There
were about 330000 fields. For s = 5 and l = 19, the observed and estimated
ratios were 0.997086 and 0.997076, that is, very close indeed. There were
about 2.2 million fields. For the case s = 3, l = 19, the range of fields was
extended further to pi < 10000, with the result that the observed ratio was
still closer to the estimate than it was for pi < 1000.

If s = 2 the condition on minors simplifies a lot, so Theorem 2.5 reads as

Corollary 2.6. Let K+/Q be cyclic, and assume s = 2 and l -hF . If
at least one of p1, p2 is not an lth power residue modulo the other one, then
the Minus Conjecture (MC) holds for K.

The hypothesis of Corollary 2.6 is satisfied for instance if l = 3, p1 = 13,
p2 = 37. It is not satisfied for instance if l = 3, p1 = 13, p2 = 229. It is
routine to show that there are (for every l) infinitely many pairs p1, p2 for
which the hypothesis is not satisfied, and one even may fix one of the pi.

The main aim of this paper is to give a proof of the Minus Conjecture
in the case not covered by the previous corollary, so (in our opinion) in the
really hard case. Consider the following

Assumption A. s = 2 and p2 is an lth power modulo p1.

Our main result will be that the Minus Conjecture is true under As-
sumption A. As things stand, we can only do it if l -hF . We repeat our other
hypotheses: l is an odd prime which does not divide the conductor f of F ;
K = FK+, and K+/Q is l-elementary abelian, tamely ramified exactly at
p1 and p2 which both split in F . By Corollary 2.6, the Minus Conjecture
is then true for s = 2 without any restriction on p1 and p2, at least in the
cyclic case.
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We first deal with the case s = 1. Actually, this already follows from
Theorem 2.5, since the condition on the matrix minors is trivially true for
s = 1: the determinant of an empty matrix is 1. But the proof of Theorem 2.5
heavily relies on Hayward’s as yet unpublished thesis, because the sign in
the conjecture is crucial. So we give a complete argument here, also as a
preparation for dealing with s = 2. We think that there is some explicit
arithmetic meaning behind this; see Theorem 3.4 below. We mention right
here that this theorem has the following nontrivial congruence as a special
case f = 4: (

p− 1
4

)
!
−8

≡
∏

amod× 4p
a≡1 (mod 4)

a2a (mod p)

for all primes p ≡ 1 (mod 4). It is actually possible here to divide the
exponents by 2 and to remove the sign ambiguity. V. Trnková (work in
progress) proved that the sign is a minus for all p. The authors do not know
whether this could be done in Theorem 3.4.

3. The case s = 1 of the Minus Conjecture. We start with an
imaginary quadratic field F of conductor f , class number hF and unit-root
number wF . We let S be the singleton set {p}, with p ≡ 1 modulo l and p
split in F , as usual. We assume l - f , which implies l -wF . Using the canonical
isomorphism

ι : IG/I2
G → G, σ − 1 7→ σ, σ ∈ G,

we can rewrite the Minus Conjecture with s = 1 as the following statement:

ι(−wF Θ̃K) = rp(u1−τ )hF,S ∈ G.
We recall the notations: p is a chosen prime of F over p, and u1−τ is a suit-
ably chosen generator of (US(F )/US(F )tor)1−τ . We need to be more precise
however. The order of [p] in ClF = Cl−F is hF /hF,S ; let u be a generator
of phF /hF,S . Then u, p are a Z-basis of US(F )/US(F )tor, and the basis u1−τ

satisfies the sign rule explained in the statement of the conjecture in §1.
Inserting this in the above formula we obtain the following version:

(1) ι(−wF Θ̃K) = rp(ψ1−τ ) ∈ G,
where ψ is a generator of phF .

Let t be the order of p modulo f and q = pt. We consider a standard
Gauss sum g0 = g(ω−(q−1)/f , η) ∈ Q(ζf , ζp), where ω is the Teichmüller
character associated to a prime P over p in Q(ζq−1), and η the standard
additive character. Let D be the decomposition field for p in Q(ζf )/Q, so
F ⊆ D ⊆ Q(ζf ) and Gal(Q(ζf )/D) = 〈σp〉. Let g be obtained from gf0 (which
lies in D—see [12, Lemmas 6.4 and 6.5]) by taking the norm from D to F .



16 C. Greither and R. Kučera

Lemma 3.1. There is an explicit p-power pn such that

g2pnOF = p−2(1−τ)fhF /wF ,

and consequently g2 equals ψ−2(1−τ)f/wF up to a power of p and a root-of-
unity factor in F .

Proof. The primes above p split in D/F and are inert in Q(ζf )/D. From
this one finds that gOF = pβ , where β is the image of the Stickelberger
element without denominator fΘf =

∑
amod× f aσ

−1
a in Z[τ ]. We expo-

nentiate with 1 − τ . Since g1+τ is a p-power, this changes g to g2 times
a p-power (always modulo roots of unity). On the right hand side we get
p(1−τ)β , and (1− τ)β = (1− τ)χ(β) with χ the quadratic character of F ; fi-
nally χ(β) = fB1,χ = −2fhF /wF by [12, Theorem 4.17]. This gives the first
formula in the lemma, and the second statement is a direct consequence.

The next step is now (and this will reappear later) to consider the p-adic
leading term T (g) of g. This is defined as follows: identify F×p with Q×p ,
write g = pzh with z ∈ Z and h ∈ Z×p , and let T (g) be the image of h
in (Z/pZ)×. For 0 ≤ a < q − 1 = pt − 1 we write out a p-adically as
a = a0 + a1p+ · · ·+ at−1p

t−1 with digits ai in the interval [0, p− 1], and we
put

a!! = a0!a1! · · · at−1! and s(a) = a0 + a1 + · · ·+ at−1.

From [12, Remark on p. 97], we obtain the following congruence for any
amod× f :

gσa0 (ζp − 1)−s(a(q−1)/f) ≡ (a(q − 1)/f)!!−1 (mod P′),

where P′ is the prime of Q(ζq−1, ζp) above P. As fs(a(q−1)/f) ≡ a(q−1) ≡
0 (mod p− 1) and (ζp − 1)p−1(−p)−1 ≡ 1 (mod P′), we obtain by means of
a well-known computation of p-adic digits

gfσa0 (−p)−fs(a(q−1)/f)/(p−1) ≡
t−1∏
i=0

(
p

〈
〈api/f〉(q − 1)

p

〉)
!
−f

(mod P′),

where angular brackets mean the fractional part of a rational number.
Let χ be the nontrivial Dirichlet character attached to F . Recalling that

χ(p) = 1 by hypothesis, we see that if σa runs over Gal(D/F ) then f〈api/f〉
runs over all c mod× f , χ(c) = 1, and so

T (g) = ±
∏

cmod× f
χ(c)=1

(p〈c(q − 1)/(pf)〉)!−f .

From this formula and Lemma 3.1 we obtain (writing σ(a) instead of σa):
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Lemma 3.2.

rp(ψ(1−τ)) = σ
( ∏
cmod× f
χ(c)=1

(p〈c(q − 1)/(pf)〉)!
)−wF

.

(A comment on signs: Both Lemma 3.1 and the preceding formula for
T (g) have a minus sign in their exponent; these cancel on putting things
together; however a new exponent −1 arises, since the local Artin map sends
a to σ−1

a .)
The next step is to calculate with the element Θ̃K . Recall K is the com-

positum of F and the degree l field of conductor p, and (1−τ)Θ̃K equals ΘK
as defined in §1; by the way, ΘK just differs from the “standard” Stickelberger
element attached to K by a multiple of the norm element.

Lemma 3.3.
ι(−fΘ̃K) =

∏
amod× pf
χ(a)=1

σaa ∈ G.

Proof. As χ(p) = 1, the Frobenius of p on F is trivial and so Θ̃K belongs
to IG. This gives

2pfΘ̃K =
∑

amod× pf
χ(a)=1

(2a− pf)σ−1
a =

∑
amod× pf
χ(a)=1

(2a− pf)(σ−1
a − 1)

and the lemma follows using the fact that
∏
a σa = 1 ∈ G.

Our task is to show formula (1), which is, by means of Lemmas 3.2
and 3.3, equivalent to

σ

( ∏
cmod× f
χ(c)=1

(
p

〈
c(q − 1)
pf

〉)
!
)−f

=
∏

amod× pf
χ(a)=1

σaa ∈ G,

and this in turn is equivalent to∏
cmod× f
χ(c)=1

(
p

〈
c(q − 1)
pf

〉)
!
−f
≡l

∏
amod× pf
χ(a)=1

aa ∈ (Z/pZ)×,

where ≡l means equality up to a factor which is an lth power. In fact, we will
prove the above formula up to 4-torsion in the multiplicative group (Z/pZ)×.
We will prove the following congruence modulo p (where one can even show
that the sign is always “+” if f is even):
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Theorem 3.4.∏
cmod× f
χ(c)=1

(
p

〈
c(q − 1)
pf

〉)
!
−2f

≡ ±
∏

amod× pf
χ(a)=1

a2a (mod p).

We shall see that Theorem 3.4 can be obtained as a consequence of the
still sharper results that follow, namely Theorems 3.5 and 3.8. The integers
v(c) are defined later on.

Theorem 3.5. For all 0 < c < f with χ(c) = 1 we have(
p

〈
c(q − 1)
pf

〉)
!
−2f

≡ ±f−fv(c)
∏

amod× pf
a≡c (mod f)

a2a (mod p).

Proof. Let xc denote the product on the right hand side. Let yc denote
a similar product with p being replaced by q = pt, namely

yc =
∏

amod× qf
a≡c (mod f)

a2a.

Lemma 3.6. xc ≡ yc (mod p).

Proof. We fix a ∈ {1, . . . , fp} coprime to fp. We can write down the set
of all α ∈ {1, . . . , fq} coprime to fq that map to a modulo fp: this is simply
the set I = {a+ ipf | i = 0, . . . , pt−1 − 1}. From this we find∏

αmod× qf
α 7→a

α2α ≡ a2s (mod p),

where s is the sum of all elements in I; it equals pt−1a+ 1
2p
t−1(pt−1 − 1)pf .

In particular 2s is congruent to 2a modulo p− 1; hence a2s ≡ a2a (mod p).
Since this argument works for all choices of a, the lemma follows.

We continue with the proof of Theorem 3.5.
The next step is to calculate yc by a certain trick (symmetry). We define

Ic = {a = 1, . . . , fq − 1 | (a, fq) = 1; a ≡ c (mod f)}.
Then the set Ic carries an involution ε, which induces identity modulo f
and multiplication by −1 modulo q. In more explicit terms, using the least
nonnegative residue j(c) =

〈
2c
f

〉
· f of 2c modulo f :

ε(a) =
{−a+ j(c)q, a < j(c)q,
−a+ j(c)q + fq, a > j(c)q.

It is easily checked that
∏
a∈Ic a maps to −1 modulo p (Wilson’s theo-

rem). We put I ′c = {a ∈ Ic | a > j(c)q} (the set corresponding to the second
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case in the above description of ε) and we calculate mod p:

yc ≡
∏
a∈Ic

aaε(a)ε(a) ≡ ±
∏
a∈Ic

aa+ε(a)

≡ ±
∏
a∈I′c

afq ·
∏
a∈Ic

aj(c)q ≡ ±zfc ,

where we have put zc =
∏
a∈I′c a, and used again

∏
a∈Ic a ≡ −1 (mod p).

We need a better description of I ′c. Taking the residue modulo q gives
the natural map ν: Ic → {i = 1, . . . , q − 1 | (p, i) = 1}, which is bijective.

Lemma 3.7.

(a) If c < f/2, then

ν(I ′c) = {d = 1, . . . , q − 1 | (p, d) = 1; c/f < 〈d/f〉 ≤ 1− c/f}.

(b) If c > f/2, then

ν(I ′c) = {d = 1, . . . , q−1 | (p, d) = 1; 〈d/f〉≤ ĉ/f or 1− ĉ/f <〈d/f〉},

where ĉ = f − c. Note that the condition on d is exactly the negation
of the condition in (a), with c replaced by ĉ.

Proof. Let d in {1, . . . , q − 1} be prime to p. The preimage ν−1(d) ∈ Ic
has the form d+ iq, 0 ≤ i < f . We can find i by noting that q ≡ 1 (mod f),
so d + i ≡ c (mod f), that is, i is the least nonnegative residue of c − d
modulo f . Moreover ν−1(d) ∈ I ′c iff i ≥ j(c).

We now first treat case (a), that is, c < f/2. Then j(c) = 2c, and i ≥ j(c)
happens iff c−d is congruent to 2c, 2c+1, . . . , f−1 modulo f , which translates
to d ≡ c+ 1, c+ 2, . . . , f − c (mod f).

In case (b) we have c > f/2, and j(c) = 2c − f . Then i ≥ j(c) iff
c − d is congruent to 2c − f, 2c − f + 1, . . . , f − 1 modulo f ; this happens
iff d ≡ c + 1, c + 2, . . . , f − 1, 0, 1, . . . , f − c (mod f). The latter condition
translates to: either d ≡ 0, . . . , ĉ (mod f) or d ≡ f− ĉ+1, . . . , f−1 (mod f).
This proves the lemma.

We turn to the final part of the proof of Theorem 3.5 now, which consists
in an explicit calculation of zc.

We first assume c < f/2 and put u(c) = |I ′c|. The last lemma gives

zc ≡
f−c∏
i=c+1

∏
dmod× q
d≡i (mod f)

d = fu(c)
f−c∏
i=c+1

∏
dmod× q
d≡i (mod f)

d

f
(mod p).
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The inner product can be simplified using the p-adic Gamma function:∏
dmod× q
d≡i (mod f)

d

f
=

(q−1)/f∏
j=1

− Γp((i+ jf)/f)
Γp((i− f + jf)/f)

= ±Γp((i+ q − 1)/f)
Γp(i/f)

≡ ±Γp((i− 1)/f)
Γp(i/f)

(mod p)

as Γp preserves congruences modulo p. Therefore

zc ≡ ±fu(c)
f−c∏
i=c+1

Γp((i− 1)/f)
Γp(i/f)

= ±fu(c) Γp(c/f)
Γp((f − c)/f)

(mod p).

Lemma 3.7 gives

zc · zf−c ≡
∏

dmod× q

d ≡ −1 (mod p)

and so

zf−c ≡ −z−1
c ≡ ±f−u(c)

Γp((f − c)/f)
Γp(c/f)

(mod p).

Therefore we no longer have to distinguish whether c < f/2 or not. Setting
v(c) = u(c) for c < f/2 and v(c) = −u(f − c) for c > f/2, in both cases we
have

zc ≡ ±fv(c)
Γp(c/f)

Γp((f − c)/f)
(mod p).

In the next step we use the functional equation:

zc ≡ ±fv(c)Γp(1− c/f)−2 ≡ ±fv(c)Γp(1 + c(q − 1)/f)−2

≡ ±fv(c)Γp(1 + p〈c(q − 1)/(pf)〉)−2

= ±fv(c)(p〈c(q − 1)/(pf)〉)!−2 (mod p).

It follows that

yc ≡ ±zfc ≡ ±ffv(c)(p〈c(q − 1)/(pf)〉)!−2f (mod p)

and Theorem 3.5 follows.

It remains to prove the following result which shows that all the f -powers
which we picked up in Theorem 3.5 to prove Theorem 3.4 do not matter in
the end.

Let us define an integer V by

V = f
∑

cmod× f
χ(c)=1

v(c).

We then have the following result:
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Theorem 3.8. There is an equality

V = (p− 1)pt−1 2fhF
wF

;

in particular V is divisible by p− 1, and so fV ≡ 1 (mod p).

Proof. We first remark that we did not find a simple argument showing
just (p − 1) |V ; apparently we have to calculate the exact value and use
wF | 2f .

We recall, slightly adapting our notation:

v(c) = εc|{dmod× q | ĉ/f < 〈d/f〉 ≤ 1− ĉ/f}|,

where εc is +1 or −1, and ĉ is either c or f − c, both according to whether
c < f/2 or c > f/2.

Via the involution c 7→ f − c, the residues c > f/2 with χ(c) = 1
correspond bijectively to the residues c < f/2 with χ(c) = −1, because of
χ(−1) = −1. Hence we can rewrite the sum as follows:

V = f
∑

cmod× f
c<f/2

(
χ(c)

∑
dmod× q

c/f<〈d/f〉≤1−c/f

1
)

= f
∑

dmod× q

∑
cmod× f
c<f/2

c/f<〈d/f〉≤1−c/f

χ(c).

We define β(r) =
∑r−1

c=1 χ(c) for any positive integer r. Then β(r) depends
only on the residue of r modulo f because

∑f
c=1 χ(c) = 0.

We shall show that the inner sum over c in the last displayed formula
equals β(d). Let d′/f = 〈d/f〉. If d′ < f/2 then the inner sum in question is
simply β(d′). For the complementary case d′ > f/2, the condition c < d′ ≤
f − c is tantamount to c ≤ f − d′. By the change of variables c 7→ f − c we
obtain

f−d′∑
c=1

χ(c) =
f−1∑
c=d′

χ(f − c) = −
f−1∑
c=d′

χ(c) = −(β(f)− β(d′)) = β(d′).

So we end up with β(d′) = β(d) in both cases. Therefore

V = f
∑

dmod× q

β(d) = f(V ′ − V ′′),

where

V ′ =
q∑

d=1

β(d) and V ′′ =
q/p∑
d=1

β(pd).
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The analytic class number formula gives
f∑
d=1

β(d) =
f∑
d=1

d−1∑
c=1

χ(c) =
f−1∑
c=1

f∑
d=c+1

χ(c) =
∑

cmod× f

(f − c)χ(c)

= −
∑

cmod× f

cχ(c) =
2fhF
wF

.

From this we get (recalling that q = pt ≡ 1 (mod f))

V ′ =
q − 1
f

f∑
d=1

β(d) = (q − 1)
2hF
wF

.

This takes care of V ′. We shall concentrate on V ′′ now:

V ′′ =
q/p∑
d=1

β(pd) =
q/p∑
d=1

β(f〈pd/f〉) =
q/p∑
d=1

f〈pd/f〉−1∑
c=1

χ(c) =
f−1∑
c=1

rcχ(c),

where rc means the number of d ∈ {1, . . . , pt−1} satisfying c < f〈pd/f〉. So
rc is the number of pairs (d, e) with 1 ≤ d ≤ pt−1 and 1 ≤ e ≤ f − c − 1
such that pd ≡ f − e (mod f), i.e. d ≡ −ept−1 (mod f), which means
f | ept−1 + d. But ept−1 + d runs through pt−1 + 1, pt−1 + 2, . . . , (f − c)pt−1

without repetitions. So

rc =
[

(f − c)pt−1

f

]
−
[
pt−1

f

]
= pt−1 −

[
pt−1

f

]
+
[
−cp

t−1

f

]
= pt−1 −

[
pt−1

f

]
− 1−

[
cpt−1

f

]
,

where we have used f - cpt−1. Thus, considering χ also as a ring homomor-
phism Q[Gal(Q(ζf )/Q)]→ Q, we have

V ′′ = −
f−1∑
c=1

[
cpt−1

f

]
χ(c) = −χ

( ∑
cmod× f

[
cpt−1

f

]
σ−1
c

)

= −χ
(

(pt−1 − σpt−1)
∑

cmod× f

c

f
σ−1
c

)
= (pt−1 − 1)

2hF
wF

,

because χ(p) = 1. This gives V ′−V ′′ = (q− pt−1)2hF /wF and Theorem 3.8
follows.

We now see at once that Theorem 3.4 follows from Theorems 3.5 and 3.8.
Since Theorem 3.4 implies formula (1), which in turn is equivalent to the
Minus Conjecture, we have proved:

Theorem 3.9. The Minus Conjecture is true in case s = 1 and l - f .
(The notation and the setup are explained at the beginning of this section.)
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4. Transformation of Θ̃K and the Vanishing Order Conjecture.
In this section we allow all imaginary fields F (the conductor is written f)
and all values s ≥ 1, as in §§1–2. We repeat that l -wF and we also suppose
until further notice that K+ equals its own genus field K1 · · ·Ks (recall Ki

is the degree l conductor pi field). Recall that all primes p1, . . . , ps split in F .
Before starting the proof of the Minus Conjecture it is necessary to pro-

cess the quantity Θ̃K . As a byproduct we will deduce that it is always in IsG
(so conjecture (VOC) holds). The expression we are going to get for Θ̃K looks
complicated, but for s = 2 it will fit quite well into the Minus Conjecture
since on the regulator side the same structure will appear.

Some notation is required. For all T ⊆ {1, . . . , s} let KT denote the
compositum of allKi with i ∈ T ; hereK∅ = Q. Let GT = Gal(KT /Q), which
is always tacitly identified with the product of the G{i} = Gi for i ∈ T . Note
that K{1,...,s} = K+. We also need matrices of Frobenius symbols, related
to the matrix A of §2 but with entries in IG. To begin with, let αij be the
Frobenius of pi in Kj (i 6= j). For V ( U ⊆ {1, . . . , s} define a matrix
M̃U
V = (m̃U

ij)i,j∈U−V over IGU as follows: for i 6= j, we set m̃U
ij = α−1

ij − 1.
For i = j we set

m̃U
ii =

∏
j∈U, j 6=i

αij − 1.

It is easy to see that the row sums of each matrix M̃U
∅ are zero modulo I2

G.
Finally, let ÃUV = det M̃U

V . For V = U this has to be interpreted as 1 (the
determinant of the empty matrix).

For each T ⊆ {1, . . . , s} we set mT =
∏
i∈T pi (this is the conductor of

KT ), and we have a Stickelberger element ΘT attached to FKT the same
way as ΘK was attached to K:

ΘT = (1− τ)Θ̃T , Θ̃T =
∑
λ∈GT

aT (λ)λ−1,

with

aT (λ) =
∑

tmod× fmT
σt|F=1
σt|KT=λ

(
t

fmT
− 1

2

)
.

Next we associate to every T 6= ∅ a term R̃T which will later give a
contribution towards the leading term of Θ̃K .

Definition. The map g̃T : GT → I
|T |
G is given by

g̃T

(∏
i∈T

γi

)
=
∏
i∈T

(γi − 1) (where γi ∈ Gi for all i ∈ T ).
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Now, for ∅ 6= T ⊆ {1, . . . , s}, let

R̃T =
∑
λ∈GT

aT (λ)g̃T (λ−1).

If life were simple, R̃{1,...,s} would be equal to Θ̃K . This is not the case. We
will see that R̃{1,...,s} is only the “principal term” in a representation of Θ̃K
as a sum with many terms.

Proposition 4.1. For any nonempty subset U of {1, . . . , s} we have

Θ̃U ≡
∑
∅6=T⊆U

ÃUT R̃T (mod I
|U |+1
GU

).

Proof. We have to begin with a lemma.

Lemma 4.2. For any sets V ⊆ U ⊆ {1, . . . , s} and any λ ∈ GU−V we
have ∑

µ∈GV

aU (λµ) =
∑
J⊆V

(−1)|J |aU−V
(
λ
∏
u∈J

FrobU−V (pu)−1
)
,

where FrobT (q) means Frobenius of q in Gal(KT /Q) = GT .

Proof. It is easy to see that our ΘU is equal to e−θ′fmU (−1) in the nota-
tion of Sinnott (see [10]). Using well-known norm relations (see Lemma 12
in [9] for example) we obtain

resFKU/FKU−V ΘU = ΘU−V
∏
u∈V

(1− FrobU−V (pu)−1)

= (1− τ)
∑

λ∈GU−V

aU−V (λ)λ−1
∑
J⊆V

∏
u∈J

(−FrobU−V (pu)−1)

= (1− τ)
∑

λ∈GU−V

λ−1
∑
J⊆V

(−1)|J |aU−V
(
λ
∏
u∈J

FrobU−V (pu)−1
)
.

On the other hand, from the fact that we can decompose GU into a direct
product GU = GV ×GU−V , we obtain

resFKU/FKU−V ΘU = (1− τ)
∑

λ∈GU−V

∑
µ∈GV

aU (λµ)λ−1.

Comparing coefficients gives the lemma.

Continuing with the proof of Proposition 4.1, we note that l does not
divide the number of roots of unity in FK{1,...,s} (since l -wF ). Proposition
2.1 in [10] implies that aT (λ) is l-integral for any T ⊆ {1, . . . , s}, and so
R̃T ∈ I |T |GT

. We shall use induction with respect to |U |.
If |U | = 1 then from the definition and the fact that the coefficients aU (λ)

sum to zero (see Lemma 4.2 for V = U) we find at once that Θ̃U = R̃U .
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Since we have set ÃUU = 1, the assertion of Proposition 4.1 holds true in this
case.

Let us suppose |U | > 1 and that the assertion has been proved for all
smaller nonempty sets. Using again the fact that for any T ⊆ U we can
decompose GU into a direct product GU = GT ×GU−T , the definition of g̃U
gives, by multiplying out,

R̃U =
∑
T⊆U

(−1)|U−T |
∑
λ∈GT

∑
µ∈GU−T

aU (λµ)λ−1.

Lemma 4.2 implies

R̃U =
∑
T⊆U

(−1)|U−T |
∑
λ∈GT

λ−1
∑

J⊆U−T
(−1)|J |aT

(
λ
∏
u∈J

FrobT (pu)−1
)

=
∑
T⊆U

∑
λ∈GT

λ−1
∑

J⊆U−T
(−1)|U−T−J |

(∏
u∈J

FrobT (pu)−1
)
aT (λ)

=
∑
T⊆U

∑
J⊆U−T

(−1)|U−T−J |
(∏
u∈J

FrobT (pu)−1
)
Θ̃T

=
∑
T⊆U

Θ̃T
∏

u∈U−T
(FrobT (pu)−1 − 1).

Using the induction hypothesis we get (the congruence is modulo I |U |+1
U )

R̃U − Θ̃U =
∑
∅6=J⊆U

Θ̃U−J
∏
u∈J

(FrobU−J(pu)−1 − 1)

≡
∑
∅6=J⊆U

(∏
u∈J

(FrobU−J(pu)−1 − 1)
) ∑
∅6=T⊆U−J

ÃU−JT R̃T

=
∑
∅6=T(U

R̃T
∑

∅6=J⊆U−T

ÃU−JT

∏
u∈J

(FrobU−J(pu)−1 − 1).

Since
FrobU−J(pu)−1 − 1 =

∏
j∈U−J

α−1
uj − 1 ≡

∑
j∈U−J

(α−1
uj − 1) (mod I2

U−J),

we have
R̃U − Θ̃U ≡

∑
∅6=T(U

R̃T
∑

∅6=J⊆U−T

ÃU−JT

∏
u∈J

∑
j∈U−J

(α−1
uj − 1) (mod I

|U |+1
U ).

At this point we need to modify the matrix M̃U−J
T slightly, in order to work

with a matrix that has all row sums equal to zero. Define a new matrix
MU

V for V ( U ⊆ {1, . . . , s}. First, MU
∅ has the same entries as M̃U

∅ off the
diagonal, and we fill the diagonal in such a way that all row sums become
zero. Second, MU

V is obtained from M̃U
∅ simply by omitting the rows and

columns with indices in V . Then MU
V and M̃U

V are congruent modulo I2
U .
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We also let AUV = detMU
V . The right hand side in the last formula will stay

the same modulo I |U |+1
U if Ã is replaced by A. The proposition will thus be

proved if we can show that

(2)
∑

J⊆U−T
AU−JT

∏
u∈J

∑
j∈U−J

(α−1
uj − 1) = 0

for any ∅ 6= T ( U . To show this, we use the following very convenient
theorem of Chaiken and Kleitman [2] on matrices and trees.

Theorem 4.3. Let M = (mij)i,j∈{1,...,n} be a matrix over any commuta-
tive ring with zero row sums. For any forest L on {1, . . . , n} put

M(L) =
∏

(i→j) is an edge inL

(−mij).

Then for any T ⊆ {1, . . . , n},

det (mij)i,j∈{1,...,n}−T =
∑
L

M(L),

where L runs over the set of all forests on {1, . . . , n} whose set of roots is T .

In our case, we fix J ⊆ U − T and obtain

AU−JT =
∑

L is a forest onU−J√
L=T

MU−J
∅ (L),

where the sum is taken over all forests on the set of vertices U − J and the
set of roots T . Since MU−J

∅ and the corresponding submatrix of MU
∅ have

the same entries off the diagonal, we get

AU−JT

∏
u∈J

∑
j∈U−J

(−(α−1
uj − 1)) =

∑
L is a forest onU√

L=T
J⊆`(L)

MU
∅ (L),

where the sum is taken over all forests L on the set of vertices U and the set
of roots T , whose set of leaves `(L) contains J . So the left hand side of (2)
equals∑

J⊆U−T
(−1)|J |

∑
L is a forest onU√

L=T
J⊆`(L)

MU
∅ (L)

=
∑

L is a forest onU√
L=T

MU
∅ (L)

∑
J⊆(U−T )∩`(L)

(−1)|J | = 0,

because U − T 6= ∅ and hence also (U − T ) ∩ `(L) 6= ∅. Proposition 4.1 is
now proved.
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Since each term ÃUT is the determinant of a matrix of size |U | − |T | with
entries in IU and each term R̃T is clearly in I |T |T , we see at once that Θ̃U is
in I |U |U . On setting U = {1, . . . , s} we now conclude that (VOC) is true, that
is, we have:

Theorem 4.4. Under the assumptions stated at the beginning of the sec-
tion, the element Θ̃K = Θ̃{1,...,s} lies in IsG. In other words, the congruence
in (MC) is at least true modulo IsG and just says 0 ≡ 0.

5. Simplification of the Minus Conjecture for s = 2. Until The-
orem 8.9 at the very end of the paper we assume from now on that s = 2,
S = {p1, p2} and that K+ is its own genus field, that is, K+ = K1K2.

In the proof of Proposition 4.1 we showed that R̃U = Θ̃U for |U | = 1, and
we write Θ̃i for Θ̃{i}. We will now spell out the assertion of Proposition 4.1
for the case s = 2. Let αij be defined as in §4, i.e. αij is the Frobenius of pi
in Kj for i 6= j, and set α11 = α−1

12 , α22 = α−1
21 . Then

M̃1,2
∅ =

(
α−1

11 − 1 α−1
12 − 1

α−1
21 − 1 α−1

22 − 1

)
.

The quantities Ã{1,2}{i} are obtained by deleting the ith row and column from
this matrix and taking the determinant (i = 1, 2). Therefore Proposition 4.1
amounts to

Θ̃K ≡ R̃1,2 + (α−1
11 − 1)R̃2 + (α−1

22 − 1)R̃1(3)

≡ R̃1,2 + (α−1
11 − 1)Θ̃2 + (α−1

22 − 1)Θ̃1 (mod I3
G).

We now show that the minus-unit regulator has a very similar decomposition.
Let p1 and p2 be prime ideals in F above p1 and p2, respectively.

Set

t1 =
hF

hF,{p1}
, t2 =

hF
hF,{p2}

, t3 =
hFhF,S

hF,{p1}hF,{p2}
,

t′1 =
hF,{p1}

hF,S
=
t2
t3
, t′2 =

hF,{p2}

hF,S
=
t1
t3
.

Then t2 is the smallest positive integer such that pt22 = (u2) is principal.
Similarly t′2 is the smallest positive integer for which there is an integer t such
that p

t′2
1 pt2 = (u1) is principal. Then u1, u2, p1, p2 is a basis of US(F )/US(F )tor

and u1−τ
1 , u1−τ

2 is a basis of (US(F )/US(F )tor)1−τ and it is well-oriented with
respect to p1, p2.

With this choice we get Reg−K,S = det (rpj (u
1−τ
i ) − 1)i,j=1,2, with rpj (x)

denoting the local Artin symbol (x,Kpj/Fpj ). Note that (here and else-
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where), by a harmless abuse of notation, this symbol stands for (x,KP/Fpj )
with P being a prime above pj in K.

Let βij = (u1−τ
i , (FKj)pj/Fpj ) ∈ Gj ⊆ G, for all i, j ∈ {1, 2} (including

i = j). Let M̃− = (βij − 1)i,j=1,2.

Proposition 5.1. The following congruence holds modulo I2
G:

(rpj (u
1−τ
i )− 1)i,j=1,2 ≡ M̃− +

(
t′2(α−1

11 − 1) t(α−1
22 − 1)

0 t2(α−1
22 − 1)

)
.

Proof. We have

rp1(u1−τ
1 ) = (u1−τ

1 , (FK1)p1/Fp1)(u1−τ
1 , (FK2)p1/Fp1) = β11α

t′2
12,

because (FK2)p1/Fp1 is unramified and the p1-valuation of u1−τ
1 is t′2. Simi-

larly

rp1(u1−τ
2 ) = (u1−τ

2 , (FK1)p1/Fp1)(u1−τ
2 , (FK2)p1/Fp1) = β21,

rp2(u1−τ
1 ) = (u1−τ

1 , (FK1)p2/Fp2)(u1−τ
1 , (FK2)p2/Fp2) = αt21β12,

rp2(u1−τ
2 ) = (u1−τ

2 , (FK1)p2/Fp2)(u1−τ
2 , (FK2)p2/Fp2) = αt221β22.

The proposition follows using the canonical isomorphism IG/I
2
G
∼= G.

On taking determinants in Proposition 5.1 we find:

Corollary 5.2. The following congruence holds modulo I3
G:

Reg−K,S ≡ det(M̃−) + t′2(α−1
11 − 1)(β22 − 1) + t2(α−1

22 − 1)(β11 − 1)

+ t2t
′
2(α−1

11 − 1)(α−1
22 − 1)− t(α−1

22 − 1)(β21 − 1).

It is easy to see that u1−τ
2 is a basis of (Up2(F )/Up2(F )tor)1−τ and so

the definition of the regulator in case s = 1 gives Reg−FK2,S
= β22 − 1.

Writing the principal ideal pt11 in the form p
t3t′2
1 = ((u1) · p−t2 )t3 shows that

t2 | tt3 and pt11 = (ut31 u
t′
2 ) with t′ = −tt3/t2. Then (ut31 u

t′
2 )1−τ is a basis of

(Up1(F )/Up1(F )tor)1−τ and

((ut31 u
t′
2 )1−τ , (FK1)p1/Fp1) = (u1−τ

1 , (FK1)p1/Fp1)t3(u1−τ
2 , (FK1)p1/Fp1)t

′

= βt311β
t′
21,

hence

(4) Reg−FK1,S
≡ t3(β11 − 1)− tt3

t2
(β21 − 1) (mod I2

G1
).

Therefore substituting t2(β11 − 1) ≡ t(β21 − 1) + (t2/t3) Reg−FK1,S
into the
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congruence of Corollary 5.2 gives

Reg−K,S ≡ det(M̃−) + t′2(α−1
11 − 1) Reg−FK2,S

+ (α−1
22 − 1)(t(β21 − 1) + t′1 Reg−FK1,S

)

+ t2t
′
2(α−1

11 − 1)(α−1
22 − 1)− t(α−1

22 − 1)(β21 − 1).

After rearrangement and simplification this gives

Corollary 5.3. Modulo I3
G we have

Reg−K,S ≡ det(M̃−) +
hF,{p2}

hF,S
(α−1

11 − 1) Reg−FK2,S

+
hF,{p1}

hF,S
(α−1

22 − 1) Reg−FK1,S

+
hF
hF,S

(α−1
11 − 1)(α−1

22 − 1).

We now return to formula (3). Since (MC) is proved for s = 1, we may
replace the theta terms by minus regulators as follows:

Θ̃K ≡ R̃1,2 −
hF,{p2}

wF
(α−1

11 − 1) Reg−FK2,S

−
hF,{p1}

wF
(α−1

22 − 1) Reg−FK1,S
(mod I3

G).

On comparing this with Corollary 5.3 we see that Θ̃K ≡ −(hF,S/wF ) Reg−K,S
if and only if

R̃1,2 ≡ −
hF,S
wF

det(M̃−)− hF
wF

(α−1
11 − 1)(α−1

22 − 1) (mod I3
G).

Under Assumption (A), the automorphism α21 and hence also α11 is the
identity. In any case l(α−1

11 − 1)(α−1
22 − 1) ∈ I3

G. So we have proved:

Corollary 5.4. Under Assumption (A), or if l |hF , the Minus Conjec-
ture (MC) for s = 2 is equivalent to the following congruence:

R̃1,2 ≡ −
hF,S
wF

det(M̃−) (mod I3
G).

Actually both sides of this congruence are in the submodule IG1IG2 of I2
G.

This will further simplify our task. It is easily verified that the canonical map

IG1
/I2
G1
⊗Z IG2

/I2
G2
→ I2

G/I
3
G

is well-defined and injective. (Indeed, both IG1/I
2
G1

and IG2/I
2
G2

are copies
of Z/lZ, so it suffices to see that the map is not zero.) Putting together the
canonical isomorphisms ιj : IGj/I

2
Gj
→ Gj , we get a canonical isomorphism

ι = ι1,2 : IG1
/I2
G1
⊗Z IG2

/I2
G2
→ G1 ⊗Z G2.
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It is our intention to consider the formula in Corollary 5.4 above as an
equality (to be proven) in G1⊗Z G2. We want to avoid working with chosen
generators of G1 and G2 as long as possible. In other words, we would like
to keep the argument “coordinate-free” as long as feasible. However, a quaint
little problem of notation comes up. The groups Gj are naturally multiplica-
tive groups, but one should rather work with additively written groups when
looking at tensor products over Z. On the other hand, additive notation for
Gj would look awful (try it!). For lack of a better idea we introduce, for any
multiplicative abelian group Γ , an additive group lgΓ , which is just a copy
of Γ . The symbol lg is just formal (reminiscent of a logarithm), and

lgΓ = {lg γ | γ ∈ Γ}, lg γ + lg δ = lg(γδ) ∀γ, δ ∈ Γ.

Now we put R1,2 = ι1,2(R̃1,2). We note that

ι1,2g̃1,2(γ1γ2) = lg γ1 ⊗ lg γ2

and
ι1,2 det(M̃−) = lg β11 ⊗ lg β22 − lg β21 ⊗ lg β12.

Thus,

R1,2 =
∑
γ1∈G1

∑
γ2∈G2

a1,2(γ1γ2) lg(γ−1
1 )⊗ lg(γ−1

2 )

=
∑
γ1∈G1

∑
γ2∈G2

a1,2(γ1γ2)(− lg γ1)⊗ (− lg γ2)

=
∑
γ1∈G1

∑
γ2∈G2

a1,2(γ1γ2) lg γ1 ⊗ lg γ2

and the formula of Corollary 5.4 can be rewritten as follows.

Corollary 5.5. (Assumptions as in Corollary 5.4.) The Minus Conjec-
ture is equivalent to the following equality in lgG1 ⊗Z lgG2:

(5)
∑
γ1∈G1

∑
γ2∈G2

a1,2(γ1γ2) lg γ1 ⊗ lg γ2

= −
hF,S
wF

(lg β11 ⊗ lg β22 − lg β21 ⊗ lg β12).

6. A formula for R1,2. In this section we shall continue to assume
s = 2. For convenience, we will very often write p for p1 and q for p2. (Thus,
q will never denote a p-power.) To explain the outcome of this section we need
some notation (slightly different from earlier notations): For u ∈ (Z/pZ)× let
σu ∈ G1 = Gal(FK1/F ) be given by the condition that σu is the restriction
of ζp 7→ ζup on K1 and identity on F . We define τv ∈ G2 = Gal(FK2/F )
similarly for v ∈ (Z/qZ)×. (No relation with τ = complex conjugation.)
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Recall that χ is the nontrivial Dirichlet character attached to F and that f
is the conductor of F (and so also of χ).

Theorem 6.1. If γ(u) stands for Γq(u/(fp)), then

R1,2 =
∑

amod× pf
χ(a)=1

lg σa ⊗ lg τγ(a).

Since this formula is probably not very enlightening at first sight, we give
a numerical example. Take l = 3, f = 4, p = 13, and omit the lg symbols
for simplicity. Then (the dependence on q is hidden in γ):

R1,2 = σ5 ⊗ τγ(5) + σ9 ⊗ τγ(9) + σ4 ⊗ τγ(17) + σ8 ⊗ τγ(21)

+ σ12 ⊗ τγ(25) + σ3 ⊗ τγ(29) + σ7 ⊗ τγ(33) + σ11 ⊗ τγ(37)

+ σ2 ⊗ τγ(41) + σ6 ⊗ τγ(45) + σ10 ⊗ τγ(49) ∈ G1 ⊗G2
∼= Z/3Z.

Note that we omitted σ1 ⊗ τγ(1) since lg σ1 ⊗ lg τγ(1) is the zero element of
lgG1 ⊗ lgG2.

Before we enter the proof of Theorem 6.1, let us mention that it arose as
the result of at least two successive generalizations, which make it very tech-
nical and unfortunately not very enlightening. However, we think we would
lose more by abandoning generality than we would gain. The strange-looking
Lemma 6.3 (which was also seriously tested by computer, to minimize error
probability) has the purpose of eliminating an ungainly obstruction term,
which unavoidably appears in the main part of the proof. Proposition 6.2
is just a preparation for this important lemma. It is recommended to skip
over Proposition 6.2 and Lemma 6.3 at the first reading (going directly to
the not so long proof of Theorem 6.1) and refer back to them later.

For any integer a we define nonnegative integers r(a) < fpq, h(a) < fp
by the following conditions:

r(a) ≡ h(a) ≡ 2a (mod f),
r(a) ≡ h(a) ≡ 0 (mod p),
r(a) ≡ pf (mod q).

Notice that both r(a) and h(a) only depend on a modulo f . The follow-
ing proposition holds true for any odd quadratic Dirichlet character χ of
conductor f and any primes p, q such that p 6= q and χ(p) = χ(q) = 1:

Proposition 6.2. Let u = #{tmod× f | χ(t) = 1, 〈2t/f〉 < 1/q} (so in
particular u = 0 for f ≤ 4). Let v = q(p−1)/3 if f = 3, v = q(p−1)/2 if f = 4,
and v = (−1)u if f > 4. Then

(6)
∏

0<a<r(a)
χ(a)=−1
q|a, p-a

a ≡ v ·
∏

0<a<pf
χ(a)=1
q|a, p-a

a ·
∏

h(a)<a<pf
χ(a)=1
p-a

a (mod p).
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Proof. Let n1, n2, n3 be the number of factors in the three products
above. By means of the substitution b = a + pqt, where t is determined
by −pqt ≡ a (mod f), we obtain

n1 =
∑

tmod× f
χ(t)=1

#{b | pqt < b < r(−pqt) + pqt, qf | b, p - b}

=
∑

tmod× f
χ(t)=1

([
r(−pqt) + pqt

qf

]
−
[
pqt

qf

]
−
[
r(−pqt) + pqt

pqf

]
+
[
pqt

pqf

])
.

It is easy to check that r(−pqt) ≡ −2pqt+ pf (mod pqf) and so r(−pqt) =
pqf〈−2t/f + 1/q〉 = −2pqt+ pf − pqf [−2t/f + 1/q], which gives

n1 =
∑

tmod× f
χ(t)=1

([
−pt
f

+
p

q
− p
[
−2t
f

+
1
q

]]
−
[
pt

f

]
−
[
− t
f

+
1
q
−
[
−2t
f

+
1
q

]]
+
[
t

f

])
≡

∑
tmod× f
χ(t)=1

([
−pt
f

+
p

q

]
−
[
pt

f

]
−
[
− t
f

+
1
q

]
+
[
t

f

])
(mod p− 1).

Therefore the first product in (6) is∏
0<a<r(a)
χ(a)=−1
q|a, p-a

a ≡ (fq)n1
∏

tmod× f
χ(t)=1

∏
pqt<b<r(−pqt)+pqt

qf |b, p-b

b

fq
(mod p)

= (fq)n1(−1)c1
∏

tmod× f
χ(t)=1

Γp

(
1 +

[
−pt
f

+
p

q

]
− p
[
−2t
f

+
1
q

])
Γp

(
1 +

[
pt

f

])−1

≡ (fq)n1(−1)c1
∏

tmod× f
χ(t)=1

Γp

(
1 +

[
−pt
f

+
p

q

])
Γp

(
1 +

[
pt

f

])−1

(mod p),

where c1 =
∑

tmod× f, χ(t)=1([−pt/f + p/q]− p[−2t/f + 1/q]− [pt/f ]).
The second product in (6) can be treated by means of the substitution

b = a− pqt, where t is determined by pqt ≡ a (mod f). We obtain

n2 =
∑

tmod× f
χ(t)=1

#{b | −pqt < b < pf − pqt, qf | b, p - b}
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=
∑

tmod× f
χ(t)=1

([
pf − pqt
qf

]
−
[
−pqt
qf

]
−
[
pf − pqt
pqf

]
+
[
−pqt
pqf

])

=
∑

tmod× f
χ(t)=1

([
−pt
f

+
p

q

]
−
[
−pt
f

]
−
[
− t
f

+
1
q

]
+
[
− t
f

])

and∏
0<a<pf
χ(a)=1
q|a, p-a

a ≡ (fq)n2
∏

tmod× f
χ(t)=1

∏
−pqt<b<pf−pqt

qf |b, p-b

b

fq
(mod p)

= (fq)n2(−1)c2
∏

tmod× f
χ(t)=1

Γp

(
1 +

[
−pt
f

+
p

q

])
Γp

(
1 +

[
−pt
f

])−1

,

where c2 =
∑

tmod× f, χ(t)=1([−pt/f + p/q]− [−pt/f ]).
Similarly by means of the substitution b = a− pt, where t is determined

by pt ≡ a (mod f), we obtain

n3 =
∑

tmod× f
χ(t)=1

#{b | h(pt)− pt < b < pf − pt, f | b, p - b}

=
∑

tmod× f
χ(t)=1

([
pf − pt
f

]
−
[
h(pt)− pt

f

]
−
[
pf − pt
pf

]
+
[
h(pt)− pt

pf

])
.

It is easy to check that h(pt) ≡ 2pt (mod pf) and so h(pt) = pf〈2t/f〉 =
2pt− pf [2t/f ], which gives

n3 =
∑

tmod× f
χ(t)=1

([
p− pt

f

]
−
[
pt

f
− p
[

2t
f

]]
−
[
1− t

f

]
+
[
t

f
−
[

2t
f

]])

≡
∑

tmod× f
χ(t)=1

([
−pt
f

]
−
[
pt

f

]
−
[
− t
f

]
+
[
t

f

])
(mod p− 1).

Thus the third product in (6) is∏
h(a)<a<pf
χ(a)=1
p-a

a ≡ fn3
∏

tmod× f
χ(t)=1

∏
h(pt)−pt<b<pf−pt

f |b, p-b

b

f
(mod p)
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= fn3(−1)c3
∏

tmod× f
χ(t)=1

Γp

(
1 + p+

[
−pt
f

])
Γp

(
1 +

[
pt

f

]
− p
[

2t
f

])−1

≡ fn3(−1)c3
∏

tmod× f
χ(t)=1

Γp

(
1 +

[
−pt
f

])
Γp

(
1 +

[
pt

f

])−1

(mod p),

where c3 =
∑

tmod× f, χ(t)=1(p+ [−pt/f ]− [pt/f ] + p[2t/f ]).
Putting these results together yields n1 − n2 − n3 ≡ 0 (mod p− 1) and∏
0<a<r(a)
χ(a)=−1
q|a, p-a

a ·
∏

0<a<pf
χ(a)=1
q|a, p-a

a−1 ·
∏

h(a)<a<pf
χ(a)=1
p-a

a−1 ≡ qn3(−1)c1−c2−c3 (mod p).

The proposition will be proved if we show that the right hand side is con-
gruent to v. If p = 2 then the parity of c1 − c2 − c3 is not important, while
if p is odd then

c1 − c2 − c3 ≡
∑

tmod× f
χ(t)=1

(
1 +

[
2t
f

]
+
[
−2t
f

+
1
q

])

≡
∑

tmod× f
χ(t)=1

([
2t
f

]
−
[

2t
f
− 1
q

])
≡ u (mod 2).

We have the following congruence modulo p− 1:

n3 ≡ 2
∑

tmod× f
χ(t)=1

([
t

f

]
−
[
pt

f

])
= 2

∑
tmod× f
χ(t)=1

(
t

f
− pt

f
−
〈
t

f

〉
+
〈
pt

f

〉)

=
2(1− p)

f

∑
tmod× f
χ(t)=1

t =
1− p
f

∑
tmod× f

(1 + χ(t))t

= (1− p)
(
ϕ(f)

2
− 2hF
wF

)
(mod p− 1).

If f = 3 then n3 ≡ (1 − p)(1 − 1/3) ≡ 1
3(p − 1), if f = 4 then n3 ≡

(1 − p)(1 − 1/2) ≡ 1
2(p − 1). Finally, if f > 4 then n3 ≡ 0. In all cases

qn3(−1)c1−c2−c3 ≡ v (mod p) and the proposition is proved.

Lemma 6.3. Let d be any integer satisfying pfd ≡ 1 (mod q). Then the
integer
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n =
∏

amod× pf
q-a, χ(a)=1

aq〈da/q〉−1

is an lth power modulo p.

Proof. Since 0 < fp− h(a) + fpq〈dh(a)/q〉 < fpq and

fp− h(a) + fpq〈dh(a)/q〉 ≡


fp(1 + dh(a))− h(a) ≡ pf (mod q),
−h(a) ≡ 0 (mod p),
−h(a) ≡ −2a (mod f),

we have r(−a) = fp− h(a) + fpq〈dh(a)/q〉. The left hand side of (6) is∏
0<a<r(a)
χ(a)=−1
q|a, p-a

a =
∏

0<−a<r(−a)
χ(a)=1
q|a, p-a

(−a) =
∏

0>a>h(a)−fp−fpq〈dh(a)/q〉
χ(a)=1
q|a, p-a

(−a)

= (−1)n1

q−1∏
y=0

(( ∏
−fpy>a>h(a)−fp−fpy
χ(a)=1, y≡dh(a) (mod q)

q|a, p-a

a
)
·

∏
0>a>−fpy

χ(a)=1, y≡dh(a) (mod q)
q|a, p-a

a
)
,

where n1 again means the number of factors of the product on the left hand
side of (6). By means of the substitution b = a + fp(y + 1) for the former
inner product and of the substitution b = a + fpx, x = 1, 2, . . . , y, for the
latter we obtain the following congruence modulo p:∏
0<a<r(a)
χ(a)=−1
q|a, p-a

a ≡ (−1)n1

q−1∏
y=0

(( ∏
h(b)<b<fp

χ(b)=1, y≡dh(b) (mod q)
p-d, db≡y+1 (mod q)

b
)
·
y∏

x=1

∏
0<b<fp

χ(b)=1, y≡dh(b) (mod q)
p-b, db≡x (mod q)

b
)

= (−1)n1

( ∏
h(b)<b<fp
χ(b)=1, p-b

db≡dh(b)+1 (mod q)

b
)
·

∏
0<b<fp
χ(b)=1, p-b

0<〈db/q〉≤〈dh(b)/q〉

b (mod p).

Let us consider the following partition of the set I={amod× fp | χ(a) = 1}:
I1 = {a ∈ I | q | a, a < h(a)},

I2 = {a ∈ I | q | a, a > h(a), dh(a) ≡ −1 (mod q)},

I3 = {a ∈ I | q | a, a > h(a), dh(a) 6≡ −1 (mod q)},

I4 = {a ∈ I | q - a, a < h(a), 〈da/q〉 ≤ 〈dh(a)/q〉},

I5 = {a ∈ I | q - a, a < h(a), 〈da/q〉 > 〈dh(a)/q〉},

I6 = {a ∈ I | q - a, a > h(a), dh(a) ≡ −1 (mod q)},
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I7 = {a ∈ I | q - a, a > h(a), dh(a) 6≡ −1 (mod q),
〈da/q〉 ≤ 〈(1 + dh(a))/q〉},

I8 = {a ∈ I | q - a, a > h(a), dh(a) 6≡ −1 (mod q),
〈da/q〉 > 〈(1 + dh(a))/q〉}.

Tedious evaluation of all possibilities shows that Proposition 6.2 can be
stated also in the following form:

(7) (−1)n1v ·
∏
a∈I3

a2 ·
∏

a∈I1∪I2∪I8

a ·
∏
a∈I4

a−1 ≡ 1 (mod p).

Let us consider the involution ε on the set I such that ε(a) ≡ a (mod f)
and ε(a) ≡ −a (mod p). Then

n2 ≡ ±
∏

amod× fp
q|a, χ(a)=1

a2 ·
∏

amod× fp
χ(a)=1

aq〈da/q〉+q〈dε(a)/q〉−2 (mod p).

Wilson’s theorem implies∏
amod× fp
χ(a)=1

aq〈dh(a)/q〉−1 =
∏

tmod× f
χ(t)=1

( ∏
amod× fp
a≡t (mod f)

a
)q〈dh(t)/q〉−1

≡ ±1 (mod p).

Therefore

(8) n2 ≡ ±
∏

amod× fp
q|a, χ(a)=1

a2 ·
∏

amod× fp
χ(a)=1

aq(〈da/q〉+〈dε(a)/q〉−〈dh(a)/q〉)−1 (mod p).

It is easy to see that

a+ ε(a) =
{
h(a) if a < h(a),
h(a) + fp otherwise,

and so

〈d(a+ ε(a))/q〉 =
{ 〈dh(a)/q〉 if a < h(a),
〈(1 + dh(a))/q〉 otherwise.

Moreover

〈da/q〉+ 〈dε(a)/q〉 =
{ 〈d(a+ ε(a))/q〉 if 〈da/q〉 ≤ 〈d(a+ ε(a))/q〉,
〈d(a+ ε(a))/q〉+ 1 otherwise,

and

〈(1 + dh(a))/q〉 − 〈dh(a)/q〉 =
{

1/q if dh(a) 6≡ −1 (mod q),
(1− q)/q otherwise.
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If we go again through all eight cases, we find

q(〈da/q〉+ 〈dε(a)/q〉 − 〈dh(a)/q〉)− 1 =



−1 if a ∈ I1 ∪ I4,
0 if a ∈ I3 ∪ I6 ∪ I7,
−q if a ∈ I2,
q − 1 if a ∈ I5,
q if a ∈ I8,

and (8) gives the following congruence modulo lth powers:

n2 ≡l ±
∏

amod× fp
q|a, χ(a)=1

a2 ·
∏

a∈I1∪I2∪I4

a−1 ·
∏
a∈I8

a (mod p).

The lemma follows from (7) and the fact that both −1 and v are lth powers
modulo p.

Proof of Theorem 6.1. As a first step, we define a(u, v) to be the integer
between 0 and fpq − 1 which is congruent to u modulo fp, and congruent
to v modulo q. Then by definition

fpqR1,2 =
∑
u∈I

q−1∑
v=1

(
a(u, v)− 1

2fpq
)
· lg σu ⊗ lg τv,

where I = {umod× fp | χ(u) = 1}. For any u ∈ I and any positive integer
v < q let b(u, v) = (a(u, v)− u)/(fp). It is easy to see that b(u, v) is an
integer and 0 ≤ b(u, v) < q. Moreover fp · b(u, v) ≡ v − u (mod q). Recall
that the integer d satisfies fpd ≡ 1 (mod q), so b(u, v) ≡ d(v − u) (mod q),
which gives
b(u, v) = q〈d(v − u)/q〉

= d(v − u)− q[d(v − u)/q] = d(v − u)− q([dv/q] + [−du/q] + αu,v),

where αu,v = 1 if 〈dv/q〉+ 〈−du/q〉 ≥ 1 and αu,v = 0 otherwise. Therefore

a(u, v) = u+ fp · b(u, v)
= fp(dv − q[dv/q])− fp(du+ q[−du/q]) + u− fpqαu,v.

Wilson’s theorem shows that
∑q−1

v=1 lg τv = lg τ−1 = 0 and
∑

u∈I lg σu =
lg σ−1 = 0. Consequently, any sum of the form

∑
u∈I
∑q−1

v=1 c(u, v) lg σu⊗lg τv
where the function c(u, v) is independent of u or independent of v will be
zero. This shows, given the above expression for a(u, v), that

R1,2 = −
∑
u∈I

q−1∑
v=1

αu,v lg σu ⊗ lg τv =
q−1∑
v=1

∑
u∈I

(1− αu,v) lg σu ⊗ lg τv.

Since αu,v = 0 if and only if 〈dv/q〉 < 1− 〈−du/q〉, which is the case if and
only if either q |u or 〈dv/q〉 < 〈du/q〉, we obtain
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R1,2 =
q−1∑
v=1

(∑
u∈I
q|u

lg σu +
∑
u∈I

〈du/q〉>〈dv/q〉

lg σu
)
⊗ lg τv

=
q−2∑
b=1

∑
u∈I

〈du/q〉>b/q

lg σu ⊗ lg τfpb,

where we have used the identity
∑q−1

v=1 lg τv = 0 and the substitution v = fpb.
Since γ(u) = Γq(u/fp) ≡ Γq(du) (mod q) and Γq(a) = (−1)a(a− 1)! for any
a ∈ {1, . . . , q}, the right hand side of the equality in Theorem 6.1 equals∑

u∈I
lg σu ⊗ lg τγ(u) =

q−1∑
a=1

∑
u∈I

du≡a (mod q)

lg σu ⊗ lg τ(a−1)!

=
q−1∑
a=1

a−1∑
b=1

∑
u∈I

du≡a (mod q)

lg σu ⊗ lg τb

=
q−2∑
b=1

q−1∑
a=b+1

∑
u∈I

du≡a (mod q)

lg σu ⊗ lg τb

=
q−2∑
b=1

∑
u∈I

〈du/q〉>b/q

lg σu ⊗ lg τb.

We have lg τfpb = lg τb + lg τfp, so to prove Theorem 6.1 we need to show
that ( q−2∑

b=1

∑
u∈I

〈du/q〉>b/q

lg σu
)
⊗ lg τfp = 0.

It is easy to see that
q−2∑
b=1

∑
u∈I

〈du/q〉>b/q

lg σu =
∑

u∈I, q-u

(q〈du/q〉 − 1) lg σu.

We shall show that this sum is zero. In multiplicative notation this amounts
to proving that

∏
u∈I, q-u u

q〈du/q〉−1 is an lth power modulo p; but this is
exactly the statement of Lemma 6.3.

We return to our numerical example l = 3, f = 4, p = 13. (It is not
necessary to specify q; the dependence on q is hidden in γ.) Let us identify



A conjecture concerning minus parts 39

G1 = (Z/13Z)×
/

3 with Z/3Z via the following isomorphism κ: ±1 and ±5
(the cubes modulo 13) map to 0̄; ±2,±10 map to 1̄; and ±4,±6 map to
2̄ = −1. Thus G1 ⊗G2 becomes identified with G2, and we can do without
the lg notation. Then R1,2, or rather its image in G2 = (Z/qZ)×/3, turns
out to be

γ(9)−1 γ(17)−1 γ(29) γ(33)−1 γ(37) γ(41) γ(45)−1 γ(49).

Again we do not pretend that this is very enlightening yet. The picture will
become clearer in the next section.

7. Establishing the connection with a Gauss sum. In this section
we shall assume Assumption A: s = 2 and q = p2 is an lth power modulo
p = p1. Let n be the order of q modulo p. Assumption A is equivalent to
l | r := (p− 1)/n. Let σq be the Frobenius of q in L = Q(ζfp).

Let D0 ⊆ F (ζp) be the decomposition subfield of q, i.e. Gal(F (ζp)/D0) =
〈σq|F (ζp)〉. Assumption A gives FK1 ⊆ D0. From this point onwards it seems
necessary to fix a generator σ̃ of the group Gal(F (ζp)/F ) and we shall do
it in such a way that σq|F (ζp) = σ̃r. Then the restriction σ0 of σ̃ to K1

is a generator of G1, and this choice of generator induces identifications
lgG1

∼= Z/lZ and lgG1⊗ lgG2
∼= lgG2, which we will both denote by ι′. The

lg symbol will sometimes be omitted again (switching back to multiplicative
notation when possible), and G2 will then be identified with (Z/qZ)× modulo
lth powers, often tacitly.

L = Q(ζfp)
n1

qqqqqqqqqq
m

n

MMMMMMMMMM

D2(ζp)
ϕ(f)
2n1

uuuuuuuuu
n

MMMMMMMMMMM
D1

(n1,n)

D0(ζf )

n1
qqqqqqqqqqq

r

GGGGGGGGGGGGGGGGGGGGGG

F (ζp)
n

IIIIIIIII
D0D2

qqqqqqqqqqqq

r

KKKKKKKKKKKKKKKKKKKKKKKKK

D0

r/l

MMMMMMMMMMMM Q(ζf )

n1ww
ww

ww
ww

w

FK1

l

NNNNNNNNNNNN D2

uuuuuuuuuu

F

Let n1 be the order of q modulo f and let D2 ⊆ Q(ζf ) be the decomposi-
tion subfield of q. Let m be the order of q modulo fp, and let D1 ⊆ L be the



40 C. Greither and R. Kučera

decomposition subfield of q. So D0D2 ⊆ D1 and m is the least common mul-
tiple of n and n1. Then [D1 : D0] = u := ϕ(f)n/(2m). The prime q is totally
split in D1 and we fix a prime q1 above q in D1. Since q1 stays inert in L/D1,
we can also view q1 as a prime in L. Let ψ be the additive character on Z/qZ
sending 1̄ to ζq, where the qth primitive root of unity is chosen once and for
all. Let % = ω(qm−1)/(fp) where ω : F×qm → µqm−1 is the Teichmüller character
attached to a prime in L(ζqm−1) = Q(ζqm−1) above q1. All we need to know is
that the values of % belong to L and that %(xmod q1) ≡ x(qm−1)/(fp) (mod q1)
for all x ∈ OL. We shall also need the conjugate characters %v(x) = %(x)v

for v running mod× fp. Let g(%v) = g(%v, ψ ◦ Tr) ∈ L(ζq) be the resulting
Gauss sums (see e.g. [8, p. 56]). According to [12, p. 97, Lemmas 6.4 and
6.5], g(%v) ∈ D1(ζq) and g(%v)fp ∈ D1.

For any integer t relatively prime to f let νt ∈ Gal(L/Q(ζp)) be deter-
mined by νt(ζf ) = ζtf . Then

Gal(L/F (ζp)) = {νt | tmod× f, χ(t) = 1}
and

Gal(L/D1(ζp)) = {νqni | i = 1, . . . ,m/n}.
Let us choose and fix a system of integers v1, . . . , vu all congruent to 1 modulo
p such that

Gal(D1(ζp)/F (ζp)) = {νvi |D1(ζp) | i = 1, . . . , u}.
As D1 ∩F (ζp) = D0, we have Gal(D1/D0) ∼= Gal(D1(ζp)/F (ζp)) via restric-
tion. A key role in the forthcoming Theorem 7.1 is played by

g = ND1(ζq)/D0(ζq)(g(%)) =
u∏
i=1

g(%vi).

The choice of ψ we made entails the choice of a solution π ∈ Qq(ζq) of
the equation πq−1 = −q, as in [8, p. 71]. We may and will identify the local
field Qq(ζq) with (D1)q1(ζq). Let T : Qq(ζq)× → O×Qq(ζq) be the “leading term
homomorphism” given by T (x) = xπ−valπ(x). Let a ≡l b ∈ X mean that a/b
is an lth power in the multiplicative abelian group X. Often X will be clear
from the context and not mentioned.

We finally define, considering σ̃ as an element of Gal(D0(ζq)/F (ζq)) in
the obvious way (i.e. ζeσ

q = ζq),

∆ =
r−1∑
i=0

iσ̃i ∈ Z[Gal(D0(ζq)/F (ζq))].

(Note: This type of element is frequently used in the theory of Euler systems
and points to an impending application of Hilbert’s Theorem 90.) Our next
goal is the following result.



A conjecture concerning minus parts 41

Theorem 7.1. Under Assumption A, if the residue map OQq(ζq) → Z/qZ
is written by an overbar , then

ι′(R1,2) ≡l T (g−∆) ∈ (Z/qZ)×.

Proof. In order to prove this we need the Gross–Koblitz formula (see
p. 82 in [8]). Let us point out right away that our q (which is a prime!) and
qm correspond to p and q in loc.cit.

The Gross–Koblitz formula states the following equality in Qq(ζq), where
S means the sum of q-adic digits:

g(%v) = π(q−1)m−S(〈v/(fp)〉(qm−1))
m−1∏
i=0

Γq

(
1−

〈
qiv

fp

〉)
and so by means of the functional equation

(9) T (g(%v)) = ±
m−1∏
i=0

Γq

(〈
qiv

fp

〉)−1

.

Let h ≡ 1 (mod f) be such that σ̃(ζp) = ζhp (so h is a primitive root
modulo p and hr ≡ q (mod p)). Let v(a) be the smallest positive residue of
a modulo fp. We now look at ι′(R1,2) in lgG2. From Theorem 6.1 we have,
replacing a by v(hit) and noting that ι′(σhit) = i,

ι′(R1,2) =
∑

tmod× fp
χ(t)=1, t≡1 (mod p)

p−2∑
i=0

i lg τγ(v(hit)),

where γ(v) = Γq(v/(fp)) from §6. If we identify G2 with (Z/qZ)×/l and
revert to multiplicative notation, this gives

ι′(R1,2) ≡l
∏

tmod× fp
χ(t)=1, t≡1 (mod p)

p−2∏
i=0

Γq

(〈
hit

fp

〉)i
∈ (Z/qZ)×.

We now calculate the right hand side of the congruence in Theorem 7.1
using (9):

T (g−∆) =
u∏
i=1

r−1∏
j=0

T (g(%vihj ))
−j

= ±
u∏
i=1

r−1∏
j=0

n−1∏
a=0

m/n−1∏
b=0

Γq

(〈
qbn+avih

j

fp

〉)j
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= ±
∏

tmod× fp
χ(t)=1, t≡1 (mod p)

r−1∏
j=0

n−1∏
a=0

Γq

(〈
qahjt

fp

〉)j

= ±
∏

tmod× fp
χ(t)=1, t≡1 (mod p)

r−1∏
j=0

n−1∏
a=0

Γq

(〈
hra+jt

fp

〉)j
.

We have l | r and −1 ≡l 1, so if we put k = ra+ j and note that then k ≡ j
modulo l, we obtain

T (g−∆) ≡l
∏

tmod× fp
χ(t)=1, t≡1 (mod p)

p−2∏
k=0

Γq

(〈
hkt

fp

〉)k
∈ (Z/qZ)×,

and the theorem follows.

8. The final calculation. In this section we assemble our earlier results
and prove the formula given in Corollary 5.5 by an application of Hilbert’s
Theorem 90. We assume Assumption A and we keep all the notations like
L, D0, D1, g, ∆ from the preceding section. As in §3 we impose that l - f ,
which is slightly stronger than the blanket assumption l -wF .

The main technical task is to describe the element y := g−2fpwF∆ ∈ D0

as explicitly as possible. Actually we will work with the slightly modified
element y1 = g−fpwF (1−τ)∆ ∈ D0.

Lemma 8.1. T (y1) = T (y).

Proof. From the well-known fact g(%)1+τ = qm we deduce that g1+τ =
qmu and that

y1/y = (g−1+τ/g−2)fpwF∆ = (qmu)fpwF∆ = (−q)mufpwF∆.
The lemma follows from −q = πq−1.

We will show that y1 can be written as an lth power times an element
y2 of F , and we will determine the prime factorization of the ideal (y2),
which will turn out to be (modulo the lth power of an ideal of F ) an ideal
supported only on prime ideals dividing p and q. Now for the details.

We have mentioned that g(%)fp lies in D1 and by Stickelberger’s theorem
the principal ideal (g(%)fp) has the following prime factorization in L (or
in D1):

(g(%)fp) = q
fp(ν−Θ(L/Q))
1 ,

where ν is the norm element of Gal(L/Q) and fpΘ(L/Q) =
∑

amod× fp aσ
−1
a ,

σa being the automorphism of L sending each root of unity to its ath power.
(The reason for the minus sign in the exponent and the presence of ν is that
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in [12], where the exponent is simply fpΘ(L/Q), one takes negative powers
of the Teichmüller character, and we take positive powers. Alternatively,
consult the Gross–Koblitz formula in [8].)

Therefore
(g(%)fp(1−τ)) = q

−2fp(1−τ) eΘD1
1 ,

with

Θ̃D1 =
∑

amod× fp
χ(a)=1

(
a

fp
− 1

2

)
(σa|D1)−1 ∈ Q[Gal(D1/F )].

Let q0 be the prime in D0 below q1. As gfp = ND1/D0
(g(%)fp), the previous

decomposition gives

(10) (gfp(1−τ)) = q
−2fp(1−τ) eΘD0
0

with

Θ̃D0 = resD1/D0
Θ̃D1 =

∑
amod× fp
χ(a)=1

(
a

fp
− 1

2

)
(σa|D0)−1 ∈ Q[Gal(D0/F )].

Then Θ̃D0 is a preimage in Q[Gal(D0/F )] of Θ̃FK1 ∈ Q[Gal(FK1/F )],
which was introduced in §1. We can easily check that Θ̃D0 is divisible by
σ̃ − 1, and write

2fpΘ̃D0 ≡ i1(σ̃ − 1) (mod (σ̃ − 1)2)

in Z[Gal(D0/F )]. This implies that

2fpΘ̃FK1 ≡ i1(σ0 − 1) ≡ σi10 − 1 (mod (σ0 − 1)2).

Thus ι(2fpΘ̃FK1) = σi10 (recall ι is the canonical isomorphism IG1/I
2
G1

→ G1), and hence

(11) ι′ι(2fpΘ̃FK1) = i1 ∈ Z/lZ.

Thus, up to identifications and multiplying by 2fp, i1 is the “leading term”
of the minus Stickelberger element attached to FK1.

The following simple fact is well-known and easily checked.

Lemma 8.2. (σ̃− 1)∆ = r − Neσ ∈ Z[Gal(D0/F )], where Neσ =
∑r−1

i=0 σ̃
i.

From formula (10) and the fact that the exponent to which q0 is raised
is divisible by σ̃− 1, we see that Neσ(gfp(1−τ)) is a unit of F , that is, a wF th
root of unity. From this and Hilbert’s Theorem 90 applied to gfpwF (1−τ) we
obtain:

Proposition 8.3. There exists z0 in D×0 such that zeσ−1
0 = gfpwF (1−τ).
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Our aim is to compute ι′(R1,2). Theorem 7.1 and Lemma 8.1 give

ι′(R1,2)2fpwF ≡l T (y1) ∈ (Z/qZ)×.

From Proposition 8.3 and Lemma 8.2 we get

y1 = g−fpwF (1−τ)∆ = (zeσ−1
0 )−∆ = zNeσ−r

0

and l | r gives T (y1) ≡l T (zNeσ
0 ) ∈ (Z/qZ)×. We have proved

Corollary 8.4. Let y2 = zNeσ
0 = ND0/F (z0) ∈ F×. Then

ι′(R1,2)2fpwF ≡l T (y2) ∈ (Z/qZ)×.

To obtain T (y2) we now have a look at the prime factorization of (y2). It
is easily seen from (10) that the principal ideal (z0) is the product of the lift
of an ideal in F and of an ideal in D0 supported only on prime ideals above
p and q. Therefore the principal ideal (y2) = (ND0/F (z0)) is equal (up to lth
powers of ideals in F ) to an ideal in F supported only on prime ideals above
p and q.

It is possible to write 2fp(1 − τ)Θ̃D0 = (1 − τ)(σ̃ − 1)(i1 + β) with
β ∈ (σ̃ − 1)Z[Gal(D0/F )]. If the above-q-part of the principal ideal (z0)
is written qδ0 with some δ ∈ Z[Gal(D0/Q)] then we must have (σ̃ − 1)δ =
−2fpwF (1− τ)Θ̃D0 , and this implies

δ ≡ −wF (1− τ)(i1 + β) (mod NeσZ[〈τ〉])
and so

δNeσ ≡ −wF (1− τ)i1Neσ (mod lNeσZ[〈τ〉]).
Let p2 be the ideal of F below q0. (The notation p2 is consistent with the
notation in the statement of the Minus Conjecture in §1; recall q is just
another name for p2.) Then the above-q-part of (y2) is (letting ≡l likewise
denote equality of ideals up to lth powers of ideals in F )

(12) (y2)q ≡l p
−wF (1−τ)i1
2 .

We shall now concentrate on the above-p-part of the ideal (y2) modulo
lth powers. The following result is well-known to experts.

Lemma 8.5. Let κ : Qp(ζp)× → (Z/pZ)× be given by κ(x) = xeσ−1. Then
the kernel of κ is O×Qp(ζp) · p

Z, and the following diagram commutes with
ι̃(σ̃) = 1̄, and the left hand vertical map induced by the valuation:

Qp(ζp)×
κ−→ (Z/pZ)×yval

y∼=
Z/(p− 1)Z eι←− Gal(Qp(ζp)/Qp)
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Proof. Recall that σ̃ corresponds to the primitive root h modulo p. We
have

κ(ζp − 1) = (ζp − 1)eσ−1 = (ζhp − 1)/(ζp − 1) = ζh−1
p + · · ·+ ζp + 1 = h̄,

and val(ζp − 1) = 1, so the diagram commutes. The other claims of the
lemma follow easily.

To get at the above-p-part of the principal ideal (z0) we need another
auxiliary result. Recall that % = ω(qm−1)/(fp), where ω : F×qm → µqm−1 is the
Teichmüller character attached to a prime Q in Q(ζqm−1) above q1, and that
n1 is the order of q modulo f . Then ω = ω|F×

qn1
is the Teichmüller character

attached to the prime below Q in Q(ζqn1−1). Let % = ω(qn1−1)/f and let g(%)
be the Gauss sum (using the same additive character ψ as in the definition
of g(%)). The relation between these two Gauss sums is described in the
following lemma, where σ′ is the automorphism of Q(ζfpq) determined by
ζσ
′

f = ζpf and ζσ′pq = ζpq. Recall also the notation of §3: we have fixed u2 ∈ F

such that the prime p2 below Q in F satisfies p
hF /hF,{p2}
2 = (u2).

Lemma 8.6.
(a) g(%)σ

′ ≡ g(%)m/n1 modulo all primes dividing p in D1(ζq).

(b) zeσ−1
0 ≡ u(1−τ)2nfphF,{p2}

2 modulo all primes dividing p in D0.

Proof. (a) As %(x)p = %(NFqm/Fqn1
(x)) for any x ∈ F×qm , the Davenport–

Hasse relation gives g(%p) = g(%)m/n1 (e.g., see [12, Ex. 6.4, p. 111]). Let
us decompose % = κpκf where the characters κp, κf satisfy κpp = κff = 1.
Then %(x)p = κf (x)p = κf (x)σ

′ ≡ %(x)σ
′

(mod ζp−1) and so g(%p) ≡ g(%)σ
′

(mod ζp − 1).
(b) We know that g(%)fp ∈ D1 and g(%)f ∈ D2. It is easy to see that

[D1 : D0D2] ·m = nn1. Thus (a) gives ND1/D0D2
(g(%)fp)σ

′ ≡ g(%)nfp mod-
ulo all primes dividing p in D0D2. Therefore gfp = gfpσ

′ ≡ ND2/F (g(%)f )np

modulo all primes dividing p in D0. Stickelberger’s theorem gives the factor-
ization

(ND2/F (g(%)f )) = p
f((1+τ)ϕ(f)/2−ΘF )
2 ,

where fΘF = (
∑

tmod× f, χ(t)=1 t)+(
∑

tmod× f, χ(t)=−1 t)τ and so (1− τ)fΘF
= (1− τ)

∑
tmod× f tχ(t) = −(1− τ)2fhF /wF . Hence

(ND2/F (g(%)f )1−τ ) = p
(1−τ)2fhF /wF
2 = (u2)(1−τ)2fhF,{p2}/wF ,

so the two generators of these principal ideals are equal up to a unit in F ,
i.e. up to a wF th root of unity. We have obtained

ND2/F (g(%)f )wF (1−τ) = u
(1−τ)2fhF,{p2}
2 .
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Therefore, by Proposition 8.3,

zeσ−1
0 = gfpwF (1−τ) ≡ ND2/F (g(%)f )npwF (1−τ) = u

(1−τ)2nfphF,{p2}
2

modulo all primes dividing p in D0.

Let P1 and P′1 denote the primes of D0 and F (ζp) above p1, respectively.
The extension F (ζp)/F is totally ramified at the primes above p and so

valp1(y2) = valp1(ND0/F (z0)) = valP1(z0) =
1
n

valP′1(z0).

Lemma 8.5 gives

valp1(y2) ≡ 1
n
ι̃(zeσ−1

0 )
(

mod
p− 1
n

)
,

and using Lemma 8.6(b) we obtain

valp1(y2) ≡ 1
n
ι̃((u1−τ

2 )2nfphF,{p2}) ≡ 2fphF,{p2}ι̃(u
1−τ
2 )

(
mod

p− 1
n

)
.

The definition of z0 in Proposition 8.3 implies that z(1+τ)(eσ−1)
0 = 1 and so

z1+τ
0 ∈ F , which means z1+τ

0 ∈ Q; hence y1+τ
2 = (z1+τ

0 )(p−1)/n is an lth
power of a rational number. Therefore the above-p-part of (y2) is

(13) (y2)p ≡l p
2fphF,{p2}(1−τ)eι(u1−τ

2 )

1 .

When writing ι̃(u) we tacitly identify (Z/pZ)× and Gal(F (ζp)/F ). Since
we now work modulo lth powers we actually can write ι′(u) as well (now
identifying (Z/pZ)×/l and Gal(FK1/F )). Finally, (12) and (13) give together
the following factorization of the principal ideal (y2) modulo lth powers of
ideals in F :

(y2) ≡l p
2fphF,{p2}(1−τ)ι

′(u1−τ
2 )

1 · p−wF (1−τ)i1
2 .

We shall use the notation t1, t2, t3, t′1, t′2, and βij = (u1−τ
i , (FKj)pj/Fpj ) ∈

Gj introduced in §5. For example, (u2) = pt22 , hence u1−τ
2 is a unit in Fp1

and the extension (FK1)p1/Fp1 is totally ramified, thus β−1
21 = u1−τ

2 . Now
(11) and (MC) for s = 1 give

−wF i1 = ι′ι(−2fpwF Θ̃FK1) = ι′ι(2fphF,{p1}Reg−FK1,S
)

and using (4) we obtain

−wF i1 = ι′ι(2fphF,S(t2(β11 − 1)− t(β21 − 1)))
= 2fphF,S(t2ι′(β11)− tι′(β21)).

Putting things together, we finally arrive at

(y2) ≡l p
−2fphF,S(1−τ)t′2ι′(β21)
1 · p2fphF,S(1−τ)(t2ι′(β11)−tι′(β21))

2
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≡l (pt
′
2

1 pt2)−2fphF,S(1−τ)ι′(β21) · (pt22 )2fphF,S(1−τ)ι′(β11)

= (u1−τ
1 )−2fphF,Sι

′(β21) · (u1−τ
2 )2fphF,Sι

′(β11).

Proposition 8.7. If l -hF then (taking lifts of ι′(β11) and ι′(β21))

y2 ≡l (u−(1−τ)ι′(β21)
1 · u(1−τ)ι′(β11)

2 )2fphF,S ∈ F×.

Proof. We know that there is an ideal I in F such that

(y2) = I l · (u1−τ
1 )−2fphF,Sι

′(β21) · (u1−τ
2 )2fphF,Sι

′(β11).

Since l -hF and I l is principal, so is I = (α) (1). Then

y2 · α−l · (u1−τ
1 )2fphF,Sι

′(β21) · (u1−τ
2 )−2fphF,Sι

′(β11)

is a unit in F , so a wF th root of unity, which is an lth power in F because
l -wF . The proposition is proved.

Let us return to the formula (5) (see Corollary 5.5), which we want to
prove. When we apply ι′ to it and switch to multiplicative notation, it takes
the shape

(14) ι′(R1,2) = (βι
′(β11)

22 · β−ι
′(β21)

12 )−hF,S/wF ∈ (Z/qZ)×/l = G2.

Now q is a norm in (FK2)p2/Fp2 and so

β22 = (u1−τ
2 , (FK2)p2/Fp2) = (u1−τ

2 q−t2 , (FK2)p2/Fp2) ∈ G2.

Moreover (u2) = pt22 , hence u1−τ
2 q−t2 is a unit in Fp2 and the extension

(FK2)p2/Fp2 is totally ramified. Thus β22 = (u1−τ
2 q−t2)−1. Recall that the

“leading term homomorphism” T was defined as follows: take out the appro-
priate π-power from an element of Qq(ζq) to obtain a unit. As πq−1 = −q, in
Qq
∼= Fp2 we are taking out a power of−q to get a unit, so β22 = ±T (u1−τ

2 )−1.
Similarly we have

β12 = (u1−τ
1 , (FK2)p2/Fp2) = (u1−τ

1 q−t, (FK2)p2/Fp2) = (u1−τ
1 q−t)−1

= ±T (u1−τ
1 )−1.

Therefore (14) is equivalent to

ι′(R1,2) = (T (u(1−τ)ι′(β11)
2 · u−(1−τ)ι′(β21)

1 ))hF,S/wF ∈ (Z/qZ)×/l = G2.

Since l - 2fpwF , this equality follows from Proposition 8.7 and Corollary 8.4.
We have proved

Theorem 8.8. Suppose s = 2, K+ is a genus field (that is, K+ =
K1K2), p2 is an lth power modulo p1 and l - fhF . Then the Minus Conjecture
(MC) is true for K.

(1) This is the only point in §8 where we are using l - hF .



48 C. Greither and R. Kučera

Remark. It follows immediately that Theorem 8.8 remains true if K+

is any subfield of K1K2 with conductor p1p2, since the constructions of both
the Stickelberger element and the minus reciprocity matrix are compatible,
in an obvious sense, with lowering of the top field, as long as the set of
ramified primes does not get any smaller. (This compatibility with lowering
of the base field is likewise true for Conjecture (B), but certainly less obvious,
since one has to deal with the parameter ϕ.)

In conclusion, from Theorem 8.8, the previous remark, and Corollary 2.6
we obtain:

Theorem 8.9. Suppose s = 2, K+ is cyclic (that is, a subfield of degree
l of K1K2 different from K1 and K2), and l - fhF . Then (MC) holds for K.

References

[1] D. Burns, Congruences between derivatives of abelian L-functions at s = 0, Invent.
Math. 169 (2007), 451–499.

[2] S. Chaiken and D. J. Kleitman, Matrix tree theorems, J. Combin. Theory Ser. A 24
(1978), 377–381.

[3] H. Darmon, Thaine’s method for circular units and a conjecture of Gross, Canad. J.
Math. 47 (1995), 302–317.

[4] C. Greither and R. Kučera, The Minus Conjecture revisited, preprint.
[5] B. Gross, On the values of abelian L-functions at s = 0, J. Fac. Sci. Univ. Tokyo

Sect. 1A Math. 35 (1988), 177–197.
[6] A. Hayward, A class number formula for higher derivatives of abelian L-functions,

Compos. Math. 140 (2004), 99–129.
[7] —, Congruences satisfied by Stark units, Ph.D. thesis, King’s College London, 2004.
[8] N. Koblitz, p-adic Analysis: a Short Course on Recent Work, London Math. Soc.

Lecture Note Ser. 46, Cambridge Univ. Press, 1980.
[9] R. Kučera, On the Stickelberger ideal and circular units of a compositum of quadratic

fields, J. Number Theory 56 (1996), 139–166.
[10] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field,

Invent. Math. 62 (1980), 181–234.
[11] J. Tate, Les conjectures de Stark sur les fonctions L d’Artin en s = 0, Notes d’un

cours à Orsay rédigées par D. Bernardi et N. Schappacher, Birkhäuser, 1984.
[12] L. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Sprin-

ger, New York, 1982.

Institut für theoretische Informatik und Mathematik
Fakultät für Informatik
Universität der Bundeswehr München
85577 Neubiberg, Germany
E-mail: cornelius.greither@unibw.de

Přírodovědecká fakulta
Masarykova univerzita

Janáčkovo nám. 2a
602 00 Brno, Czech Republic
E-mail: kucera@math.muni.cz

Received on 29.12.2006
and in revised form on 24.5.2007 (5355)


