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Ternary quadratic forms that represent zero:
the function field case

by

Mireille Car (Marseille)

1. Introduction. Let K be a global function field with field of con-
stants k, a finite field with q elements and odd characteristic. Let S be a
finite set of s > 0 places of K and let RS denote the ring of S-integers of
K, that is, the set of a ∈ K such that v(a) ≥ 0 for each place v 6∈ S. For
s-tuples m = (mv)v∈S and n = (nv)v∈S of rational integers, let QS(m,n)
denote the number of pairs (a, b) of integers of RS such that v(a) = mv and
v(b) = nv for all v ∈ S and the quadratic form

(fa,b) X2 − aY 2 − bZ2

represents 0 over the field K. We give an asymptotic estimate for QS(m,n)
for s-tuples m and n such that the numbers

‖m‖ = −
∑
v∈S

fvmv, ‖n‖ = −
∑
v∈S

fvnv

tend to ∞, fv denoting the degree of the place v.
The present paper can be viewed as a generalization of [1] where the

author dealt with the case of a rational function field. That case was a
polynomial analogue of questions asked by Serre [8] and solved by Hooley
[5] and Guo [4] about the size of the number H(x) of pairs (a, b) ∈ Z2 such
that |a|, |b| ≤ x and the ternary quadratic form

X2 + aY 2 + bZ2

represents 0 over the field Q. Presently no number field analogue of the
theorems proved in what follows is known.

This paper is organized as follows. Notations and statements of the main
theorems are given in Section 2. Auxiliary estimates concerning arithmetic
functions and character sums are given in the third section. Section 4 is the
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main part of the paper. In that section, we require the coefficients a and b
to belong to a ring R{v0} since dealing with the case where S reduces to one
element v0 is easier. In this setting we study a more general problem. This
study allows us to get as a corollary an estimate for QS(m,n), obtained in
the last section.

2. Notations and statement of the results. Let g be the genus of
K and let h be its divisor class number, that is, the number of classes of
divisors of degree 0.

Let V = V (K) denote the set of places of K. When there is no danger of
confusion we denote by the same symbol a place and the normalized discrete
valuation associated with it.

The zeta-function of the field K is defined on the open disk D1/q formed
by the complex numbers z such that |z| < 1/q by

ζK(u) =
∏
v∈V

(1− ufv)−1. (2.1)

(Since we shall use the ζ-function in its rational form we have chosen to
denote it in an unusual way.)

For s-tuples m = (mv)v∈S and n = (nv)v∈S of rational integers, let
QS(m,n), Q′S(m,n) and Q1,S(m,n) denote respectively the number of pairs
(a, b) of integers in RS , of square-free integers in RS , and of square-free
coprime integers in RS , such that v(a) = mv and v(b) = nv for all v ∈ S,
and the quadratic form

(fa,b) X2 − aY 2 − bZ2

represents 0 over the field K.
We prove the following theorem.

Theorem 2.1. Let λ and θ be real numbers such that
3 log 2
2 log q

< λ ≤ 1 and
log 2
log q

< θ ≤ 1.

Let m = (mv)v∈S and n = (nv)v∈S be s-tuples of rational integers, let
τ(m,n) be the number of indices v such that mv or nv is odd , and let

‖m‖ = −
∑
v∈S

fvmv, ‖n‖ = −
∑
v∈S

fvnv.

(i) If 0 < λmax(‖m‖, ‖n‖) ≤ min(‖m‖, ‖n‖), then

QS(m,n) = 2−τ(m,n)C(S)
q‖m‖+‖n‖

‖m‖1/2‖n‖1/2
+O

(
q‖m‖+‖n‖

‖m‖ ‖n‖

)
,
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where

C(S) =
2ζK(q−2)q1−g(q − 1)

hπ

×
∏
v∈S

(
1− 1

q2fv

)(
1− 1

qfv

)
·
∏
v∈V
v/∈S

(
1 +

1
2qfv(qfv + 1)

)

and where the constants involved in the O symbol depend only on K, S
and λ.

(ii) If 0 < θmax(‖m‖, ‖n‖) ≤ min(‖m‖, ‖n‖), then

Q1,S(m,n) = 2−τ(m,n)C1(S)
q‖m‖+‖n‖

‖m‖1/2‖n‖1/2
+O

(
q‖m‖+‖n‖

‖m‖ ‖n‖

)
,

Q′S(m,n) = 2−τ(m,n)C ′(S)
q‖m‖+‖n‖

‖m‖1/2‖n‖1/2
+O

(
q‖m‖+‖n‖

‖m‖ ‖n‖

)
,

where

C1(S) =
2q1−g(q − 1)
πhζK(q−2)

∏
v∈S

(
1 +

1
qfv

)−1

,

C ′(S) =
2q1−g(q − 1)
πhζK(q−2)

∏
v∈S

(1 + q−fv)−1 ·
∏
v∈V
v 6∈S

(
1 +

1
2qfv(qfv + 1)

)

and where the constants involved in the O symbols depend only on K, S
and θ.

Let v ∈ V . Let Kv, K?
v , Ov, and Uv denote respectively the completion

of the field K at the place v, the multiplicative group of the field Kv, the
valuation ring of Kv, and the group of units of the ring Ov. Moreover, let
fv denote the residual degree of v.

For a rational integer j > 0 let U (j)
v denote the subgroup formed by the

u ∈ Uv such that v(u − 1) ≥ j. Once for all we choose, for any v ∈ V , a
uniformizing element πv ∈ K. There is a subfield kv of Kv isomorphic to the
residual field at v such that every non-zero element α ∈ Kv admits a unique
expansion

α =
∞∑
j=n

ajπ
j
v, (2.2)

with n = v(α), aj ∈ kv, an 6= 0 [7]. Hence α is uniquely written as a product

α = sgnv(α)πv(α)
v uv(α), (2.3)

with sgnv(α) ∈ kv and uv(α) ∈ U (1)
v .
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Let v0 be a place of K and let R = R{v0}. We denote by I = I(R) the set
of non-zero integral ideals of R, by P = P(R) the set of prime ideals of R,
by F = F(R) the group of fractional ideals of R in K, by SF = SF(R)
the set of square-free ideals of R, by Pr = Pr(R) the monoid of non-zero
principal ideals of R, and by C` = C`(R) the ideal class group of R.

The set V is the union of the place v0 and the P -adic places vP for P
running through the set P of prime ideals of R. In order to reduce notation,
we set

fvP = fP , KvP = KP , U jvP = U
(j)
P

for each P ∈ P or for P = 0.
Let H ∈ I(R). We say that a fractional ideal J ∈ F(R) is coprime to H

if vP (J) = 0 for any prime ideal P dividing H. For any subset E of F(R),
we denote by EH the set of Y ∈ E coprime to H.

Let Ĉ` = Ĉ`(R) be the group of characters of C`(R). Let χ ∈ Ĉ`. The
character χ? of the group of fractional ideals of R derived from χ is defined
by

χ?(Y ) = χ(c`(Y ))

where c`(Y ) denotes the class of Y in the ideal class group C`(R). In what
follows, we shall abuse language and denote by the same symbol χ the
character χ ∈ Ĉ` and the derived character χ?.

We set

%(R) =
qf0 − 1
q − 1

. (2.4)

The group F(R) is free, generated by the set P(R). Thus, the subgroup
FPr(R) formed by the non-zero principal fractional ideals of R in K is free.
Let B be a basis of this free group. For each B ∈ B, let bB ∈ K be a
generator of B chosen once for all. Then the subgroup H of K? generated
by {bB; B ∈ B} is isomorphic to FPr(R). Let M denote the set H ∩ R of
integral elements ofH. The setM is a multiplicative monoid such that every
principal ideal in R is generated by a unique element of M. The elements
of M will be called monic. (In the rational case, one can take for B the set
of ideals generated by the monic irreducible polynomials and forM the set
of monic polynomials.) For A1, . . . , Ar ∈ I, the greatest common divisor of
A1, . . . , Ar is denoted by (A1, . . . , Ar). For any non-zero H ∈ I(R), let ω(H)
denote the number of distinct prime divisors of H, and |H| the number of
elements of the quotient ring R/H. Then |H| is a power of q. We define the
degree fH of the ideal H by

|H| = qfH . (2.5)

This notation agrees with the notation fP = fvP used for prime ideals. We
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note that
fH =

∑
P∈P
P |H

vP (H)fP (2.6)

and that this notation extends in a natural way to fractional ideals.
The divisor class number h of K and the ideal class number h0 of R,

that is, the order of the ideal class group C`, are connected by the identity

h0 = hf0. (2.7)

See [6] for a proof.
We shall denote by Dr the open disk formed by the complex numbers z

such that |z| < r, and by z1/2 the branch of z 7→ z1/2 for which 11/2 = 1.
The following properties of the zeta-function ζK are well-known (cf. [9]):

ζK(u) =
PK(u)

(1− u)(1− qu)
, (2.8)

where PK is a polynomial of degree 2g.
If g > 0, there exist algebraic numbers %1, . . . , %g such that

PK(u) =
g∏
i=1

(1− %iu)(1− %iu), |%i| =
√
q. (2.9)

Moreover,
PK(1) = h, (2.10)

and PK satisfies the functional equation

PK(u) = qgu2gPK

(
1
qu

)
. (2.11)

(For the rational function field K, we have g = 0, h = 1.)
All constants occurring in this work depend on K and other param-

eters. We agree that a constant denoted a(x1, . . . , xr) depends only on
K,x1, . . . , xr, or possibly only on x1, . . . , xr, and that a constant denoted
b depends only on K, or is absolute. We shall denote by (a) the principal
ideal Ra and by #E the cardinality of any finite set E. If H and Y are
ideals in I(R) and if a is a non-zero element of R, then H |Y and H | a
will mean respectively that the ideal H divides the ideal Y or the principal
ideal (a).

3. Auxiliary estimates. In this section we collect all technical esti-
mates required for the proof. Let us introduce some new notations and
definitions.

Once for all, we choose an ideal I1 ∈ F(R) such that fI1 = 1. According
to [9, Chap. VII], such an ideal exists.
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Remark 3.1.

(i) Let a ∈ R. Then
f(a) = −f0v0(a). (3.1)

(ii) The map X 7→ fX is a surjective homomorphism from F(R) onto Z.
(iii) If I and J are fractional ideals belonging to the same ideal class Γ ,

then
fI ≡ fJ mod f0. (3.2)

Thus, there is a unique surjective homomorphism ϕ : Γ 7→ ϕΓ of
the group C` = C`(R) onto Z/Zf0 such that

ϕΓ = fH for any H ∈ Γ. (3.3)

Proof. See [2, Remarques III.4].

Let n be a non-negative integer and let Γ ∈ C`. Let i(n) and i(Γ, n)
denote respectively the number of ideals Y ∈ I or Y ∈ Γ such that fY = n.
We write n ∈ ϕΓ , resp. n 6∈ ϕΓ , whenever the congruence classes n + Zf0

and ϕΓ are equal, resp. different.

Proposition 3.2. Let n be a non-negative integer and let Γ ∈ C`. Then

i(Γ, n) = 0 if n /∈ ϕΓ , (3.4)
i(Γ, n) ≤ %(R)qn, i(n) ≤ h%(R)qn, (3.5)

i(Γ, n) = %(R)qn+1−g−f0 if n ∈ ϕΓ and n ≥ 2g − 1 + f0, (3.6)
i(n) = h%(R)qn+1−g−f0 if n ≥ 2g − 1 + f0. (3.7)

Proof. We get (3.4) from (3.2) and (3.3). If γ is the unit class then
i(γ, 0) = i(0) = 1. Suppose n > 0. By (3.2), (3.3), and (3.4),

i(n) =
∑
Γ∈C`

i(Γ, n) =
∑
Γ∈C`
n∈ϕΓ

i(Γ, n).

Since there are exactly h0/f0 = h ideal classes Γ such that n ∈ ϕΓ , it suffices
to prove the first part of (3.5) and (3.6) in the case where n ∈ ϕΓ . Let
H ∈ I(R) belong to the class Γ−1. (Such an ideal exists, since if J ∈ F(R),
then there exists a non-zero element x ∈ R such that xJ ∈ I(R), and the
ideals J and xJ belong to the same class.) Then n+ fH ≡ 0 mod f0. Let m
be defined by

(1) n+ fH = mf0.

Let Y ∈ I(R). Then Y ∈ Γ if and only if there exists y ∈ M, necessarily
unique, such that Y H = (y), and in this case, by the product formula,
fY = n if and only if −f0v0(y) = n + fH . Since the group of units of
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R = Rv0 is the multiplicative group k?,

(2) (q − 1)i(Γ, n) = #{y ∈ R; v0(y) = −m, H | y}.
For r ∈ {m,m− 1}, consider the divisor

(3) A(r,H) = rv0 −
∑
P∈P
P |H

vP (H)vP

and the set Λ(A(r,H)) formed by the y ∈ K such that v(y) ≥ −v(A(r,H))
for any v ∈ V (K). Then Λ(A(r,H)) is a k-vector space of finite dimen-
sion over k. The Riemann–Roch theorem [3] connects the dimension λr of
Λ(A(r,H)) and the degree

FA(r,H) = rf0 −
∑
P∈P
P |H

fP vP (H)

of the divisor A(r,H). One has

(4) λr ≤ max(0, 1 + FA(r,H)) ≤ n,
(5) λm − λm−1 ≤ FA(m,H) − FA(m−1,H) = f0,

and if FA(r,H) ≥ 2g − 1, then

(6) λr = FA(r,H) + 1− g.
By (2),

(7) (q − 1)i(Γ, n) = #Λ(A(m,H))−#Λ(A(m− 1, H)).

If Λ(A(m,H)) = Λ(A(m−1, H)), then by (7), i(Γ, n) = 0 and (3.5) is proved.
If Λ(A(m,H)) 6= Λ(A(m−1, H)), the quotient Λ(A(m,H))/Λ(A(m−1, H))
has qf0 − 1 non-zero elements, hence, by (7) and (2.4),

i(Γ, n) = %(R)#Λ(A(m− 1, H)),

and by (4),
i(Γ, n) ≤ %(R)qn.

Now, suppose n ≥ 2g − 1 + f0. Then, by (6),

i(Γ, n) = %(R)qn+1−g−f0 ,

proving (3.6).

Proposition 3.3. Let χ be a character of C`(R). Then the series

L(χ, u) =
∑
Y ∈I

χ(Y )ufY (3.8)

is absolutely convergent in the disk D1/q, and for u ∈ D1/q,

L(χ, u) =
∏
P∈P

(1− χ(P )ufP )−1. (3.9)
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Moreover ,

(i) if χ is trivial on Kerϕ (see Remark 3.1(iii)), then

L(χ, u) = ζK(χ(I1)u)(1− uf0), (3.10)

(ii) if χ is not trivial on Kerϕ, then L(χ, u) is a polynomial of degree
2g − 2 + f0 and

L(χ, u) =
2g−2+f0∏
i=1

(1− ωiu), (3.11)

with |ωi| = q1/2 for 1 ≤ i ≤ 2g − 2 and |ωi| = 1 for 2g − 1 ≤ i ≤
2g − 2 + f0.

Proof. See [2, Proposition III.5].

Proposition 3.4. Let a > 1 be a real number. Then∏
P∈P

(1− |P |−a) =
(1− q−a)(1− q1−a)
(1− q−f0a)PK(q−a)

, (3.12)

∏
P∈P

(1 + |P |−a) =
PK(q−a)(1− q1−2a)(1 + q−a)
PK(q−2a)(1− q1−a)(1 + qf0a)

. (3.13)

Proof. Let u ∈ D1/q. By (2.1) and (2.8),∏
P∈P

(1− ufP )−1 =
(1− uf0)PK(u)
(1− u)(1− qu)

.

We get (3.12) and (3.13) by taking u = q−a and u = q−2a.

Let l ≥ 2 be an integer and let µl denote the group of lth roots of unity.

Proposition 3.5. Let χ ∈ Ĉ`(R). Let Ψ be a morphism from the group
F(R) of fractional ideals to µl and let H ∈ I(R). Then the series

L(χΨ, u) =
∑
Y ∈IH

χ(Y )Ψ(Y )ufY (3.14)

is absolutely convergent in the disk D1/q, and for u ∈ D1/q,

L(χΨ, u) =
∏

P∈PH

(1− χ(P )Ψ(P )ufP )−1. (3.15)

Moreover , if Ψ is not trivial on the group FPr(R) of principal fractional
ideals and for any x ∈ K,

x ∈ U (1)
0 and x ≡ 1 mod H ⇒ Ψ((x)) = 1, (3.16)
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then L(χΨ, u) is a polynomial of degree d(χΨ) ≤ 2g − 2 + f0 + fH and

L(χΨ, u) =
d(χΨ)∏
i=1

(1 + %iu) (3.17)

with |%i| ∈
{
q1/2, 1

}
.

Proof. See [2, Proposition III.6].

Proposition 3.6. Let χ ∈ Ĉ`(R). Let Ψ be a morphism from the group
F(R) to µl and let H ∈ I(R) satisfy (3.16). Let A ∈ I(R) be coprime to H
and for any non-negative integer n, let

a(χ, Ψ,H,A, n) =
∑

Y ∈SFHA
fY =n

χ(Y )Ψ(Y )2−ω(Y ). (3.18)

Then the series

f(z) =
∞∑
n=0

a(χ, Ψ,H,A, n)
(
z

q

)n
=

∑
Y ∈SFHA

χ(Y )Ψ(Y )2−ω(Y )

(
z

q

)fY
(3.19)

is absolutely convergent in the open disk D1, the product

G(z) =
∏
P∈P

(
1−3

4

(
χ(P )Ψ(P )

(
z

q

)fP)2

−1
4

(
χ(P )Ψ(P )

(
z

q

)fP)3)
(3.20)

is absolutely convergent in the open disk D√q, and for z ∈ D1 we have(
f(z)
U(z)

)2

= L

(
χΨ,

z

q

)
G(z), (3.21)

where

U(z) =
∏
P∈P
P |AH

(
1 +

1
2
χ(P )Ψ(P )

(
z

q

)fP)−1

. (3.22)

Moreover , if one of the following two hypotheses is satisfied :

(i) there exists x ∈M with Ψ((x)) 6= 1,
(ii) H = (1), Ψ is trivial on F(R) and χ is not trivial on Kerϕ,

then for any n ≥ 1,

|a(χ, Ψ,H,A, n)| ≤ α1(R)2fH/22ω(AH)n1/2qn/2 (3.23)

with α1(R) a constant.

Proof. With the necessary adaptations the proof follows the proof of
Proposition 2.2 in [1].
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Corollary 3.7. Let H ∈ I(R) and let Ψ be a morphism from the group
F(R)H to the group µl non-trivial on the subgroup of principal ideals and
satisfying (3.16). Let A ∈ I(R) and let B ∈ I(R) be coprime to H. For any
non-negative integer n, let

b(Ψ,H,A,B, n) =
∑

Y ∈SFBH
fY =n
AY ∈Pr

Ψ(Y )2−ω(Y ). (3.24)

Then
|b(χ, Ψ,H,A, n)| ≤ α1(R)2fH/22ω(BH)n1/2qn/2. (3.25)

Proof. By orthogonality,

(#C`)b(Ψ,H,A,B, n) =
∑
χ∈ bC`

χ(A)u(χ, n),

where for any integer j ≥ 0,

u(χ, j) =
∑

Y ∈SFH
fY =j

χ(Y )Ψ(Y )2−ω(Y ).

The sum u(χ, j) is the sum a(χ, Ψ,H,B, j) defined by (3.18). Then, by
(3.23),

|u(χ, n)| ≤ α1(R)2fH/22ω(BH)n1/2qn/2,

proving (3.25).

Proposition 3.8. Let η ∈ ]0, 1/2[. Then, for J,A ∈ I(R) and any
positive integer n ≡ −fA mod f0,∣∣∣ ∑

Y ∈SFJ
fY =n
AY ∈Pr

2−ω(Y ) −B1(R)Ω(J)qnn−1/2
∣∣∣

≤ α2(R)2ω(J)qn/2n1/2 + α3(R, η)λη(J)qnn−3/2 (3.26)

with

B1(R) =
(

h%(R)
πhqg+f0−1

)1/2 ∏
P∈P

(
1 +

1
2|P |

)(
1− 1
|P |

)1/2

, (3.27)

Ω(J) =
∏
P∈P
P |J

(
1 +

1
2|P |

)−1

, (3.28)

λη(J) =
∏
P∈P
P |J

(
1− |P |

η−1

2

)−1

, (3.29)

α2(R) and α3(R, η) being constants.
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Proof. Let n > 0 be a rational integer and let

(1) xn =
∑

Y ∈SFJ
AY ∈Pr
fY =n

2−ω(Y ).

By orthogonality,

(2) h0xn =
∑
χ∈ bC`

χ(A)u(χ, n),

where

(3) u(χ, k) =
∑

Y ∈SFJ
fY =k

χ(Y )2−ω(Y )

for any integer k ≥ 0. The sum u(χ, k) is the sum a(χ, Ψ, (1), J, k) defined
by (3.18) where Ψ is taken equal to the unit character. Let C`1 = C`(R)1
denote the subgroup of C`(R) formed by the χ ∈ C`(R) which are trivial on
the subgroup Kerϕ. Then #C`(R)1 = #(C`(R)/Kerϕ) = #(Z/Zf0) = f0.
By (3.23),

(4)
∣∣∣ ∑
χ∈C`
χ/∈C`1

u(χ, n)
∣∣∣ ≤ (h0 − f0)α1(R)2ω(J)n1/2qn/2.

Let χ ∈ C`1 and let

(5) F (z) =
∞∑
n=0

u(χ, n)
(
z

q

)n
.

By (3.21), (
F (z)
U(z)

)2

= L

(
χ,
z

q

)
G(z)

with U(z) and G(z) given by (3.22) and (3.20). By (3.10), and then (2.8),

L(χ, z/q) =
(1− (z/q)f0)PK(χ(I1)z/q)
(1− χ(I1)z/q)(1− χ(I1)z)

,

hence,

F (z) = U(z)G(z)1/2
(1− (z/q)f0)1/2(PK(χ(I1)z/q))1/2

(1− χ(I1)z/q)1/2(1− χ(I1)z)1/2
.

Let η ∈ ]0, 1/2[. According to [1, Lemma 2.1],∣∣∣∣u(χ, n)
qn

− χ(I1)nU
(

1
χ(I1)

)
G

(
1

χ(I1)

)1/2
(
1−

(
1

χ(I1)q

)f0PK(1
q

))1/2
π1/2(1− 1/q)1/2n1/2

∣∣∣∣
≤ β(q, η) max{|U(z)| |PK(z/q)G(z)|1/2; |z| = qη}n−3/2

with β(q, η) a constant.
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Since n + fA ≡ 0 mod f0 and fI1 = 1, we have fA + nfI1 ≡ 0 mod f0.
Since χ is trivial on Kerϕ, it follows that χ(I1)nχ(A) = 1 and χ(I1)f0 = 1.
By a proof which mimics that given in [1, Prop. 2.2], we get

(6)
∣∣∣∣χ(A)u(χ, n)q−n

− U
(

1
χ(I1)

)
G

(
1

χ(I1)

)1/2

PK

(
1
q

)1/2 (1− (1/q)f0)1/2

π1/2(1− 1/q)1/2
n−1/2

∣∣∣∣
≤ hα3(R, η)λη(J)n−3/2

with λη defined by (3.29) and α3(R, η) a constant.
Since χ is trivial on Kerϕ and fI1 = 1, we have χ(I1)fZ = χ(Z) for any

ideal Z and by (3.22), (3.20) and (2.5),

U

(
1

χ(I1)

)
=
∏
P∈P
P |AH

(
1 +

1
2|P |

)−1

,(7)

G

(
1

χ(I1)

)
=
∏
P∈P

(
1− 3

4|P |2
− 1

4|P |3

)
.(8)

We conclude the proof by combining (1), (2), (4), (6), (7), (8), (2.4),
(2.10) and (2.11), with α2(R) = (h0 − f0)α1(R).

Proposition 3.9. Let H,A ∈ I(R). Then, for any positive integer n
such that n+ fA ≡ 0 mod f0,∣∣∣ ∑

Y ∈SFH
fY =n
AY ∈Pr

Ω(Y )2−ω(Y ) −B2(R)Γ (H)qnn−1/2
∣∣∣

≤ α4(R)nqn/2 + α5(R)qnn−3/2, (3.30)

where

B2(R) =
(

h%(R)
πqg+f0−1

)1/2 ∏
P∈P

(
1 +

1
1 + 2|P |

)(
1− 1
|P |

)1/2

, (3.31)

Γ (H) =
∏
P∈P
P |H

(
1 +

1
1 + 2|P |

)−1

, (3.32)

with α4(R) and α5(R) constants.

Proof. As for Proposition 3.8. We choose a particular value for η, for
instance η = 1/4.
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Proposition 3.10. Let η ∈ ]0, 1/2[. Then, for H,A ∈ I(R) and any
integer n > 0, ∑

Y ∈SFH
fY =n
AY ∈Pr

λη(Y )2−ω(Y ) ≤ α6(R, η)qnn−1/2 (3.33)

with α6(R, η) a constant.

Proof. Let

(1) xn =
∑

Y ∈SFH
fY =n
AY ∈Pr

λη(Y )2−ω(Y ).

By orthogonality,

(2) h0xn =
∑
χ∈ bC`

χ(A)u(χ,H, η, n),

where

(3) u(χ,H, η, n) =
∑

Y ∈SFH
fY =n

χ(Y )λη(Y )2−ω(Y ).

By (3.29), λη(Y ) > 0. Hence,

(4) |u(χ,H, η, n)| ≤
∑

Y ∈SFH
fY =n

λη(Y )2−ω(Y ).

We consider the series

f(z) =
∞∑
n=0

u(χ0, H, η, n)
(
z

q

)n
=

∑
Y ∈SFH

λη(Y )2−ω(Y )

(
z

q

)fY
.

Proceeding as for Proposition 3.6 and Corollary 3.7, we get

|u(χ,H, η, n)| ≤ α6(R, η)qnn−1/2

with α6(R, η) a constant.

4. Quadratic forms with coefficients in the ring R = R{v0}. Let S
be a non-empty finite set of places of K containing v0 and let r = #S. For
v ∈ V (K) such that v 6= v0, let Pv denote the prime ideal of R associated
with the place v. For r-tuples m = (mv)v∈S and n = (nv)v∈S of rational
integers, let H(S,m,n) denote the number of pairs (a, b) ∈ R×R such that

(1) v(a) = mv and v(b) = nv for all v ∈ S,
(2) the quadratic form

(fa,b) X2 − aY 2 − bZ2

represents 0 over the field K.
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The goal of this section is to establish an estimate for H(S,m,n) with
−
∑

v∈S fvmv and −
∑

v∈S fvnv positive. The proof will provide an estimate
for the number H1(S,m,n) of (a, b) ∈ R × R such that conditions (1) and
(2) above are satisfied and

(3) the ideals a(
∏
v∈S−{v0} P

−v(a)
v ) and b(

∏
v∈S−{v0} P

−v(b)
v ) are square-

free and coprime,

and for the number H ′(S,m,n) of (a, b) ∈ R2 such that (1) and (2) are
satisfied and

(3′) the ideals a(
∏
v∈S−{v0} P

−v(a)
v ) and b(

∏
v∈S−{v0} P

−v(b)
v ) are square-

free.

Let
G =

∏
v∈S
v 6=v0

Pv. (4.1)

We note that G = 1 when S = {v0}.
For a ∈ K, let v(a) denote the r-tuple (v(a))v∈S . For an r-tuple m =

(mv)v∈S of rational integers, let

‖m‖ = −
∑
v∈S

fvmv. (4.2)

If x ∈ R, the principal ideal Rx may be written in a unique way as

Rx =
( ∏
v∈S
v 6=v0

P v(x)v

)
U(x)2Q(x) (4.3)

with U(x) ∈ I(R) and Q(x) ∈ SF(R) coprime to G.
Let X (S,m,n) denote the set of (a, b) ∈ R×R such that v(a) = mv and

v(b) = nv for all v ∈ S. If (a, b) ∈ X (S,m,n), letD(a, b) = g.c.d.(Q(a), Q(b))
and let Ja,b(a) and Ja,b(b) be the square-free ideals defined by Q(a) =
D(a, b)Ja,b(a) and Q(b) = D(a, b)Ja,b(b). Then Ja,b(a) and Ja,b(b) are co-
prime and

fJa,b(a) + 2fU(a) + fD(a,b) = ‖m‖,
fJa,b(b) + 2fU(b) + fD(a,b) = ‖n‖.

(4.4)

For a square-free ideal D of R coprime to G, and for ideals U and V of
R coprime to G such that 2fU + fD ≤ ‖m‖ and 2fV + fD ≤ ‖n‖, let
Y(S,m,n, D, U, V ) denote the set of (a, b) ∈ X (S,m,n) such that U(a) = U ,
U(b) = V , and D(a, b) = D, and let Z(S,m,n, D, U, V ) denote the set of
(a, b) ∈ Y(S,m,n, D, U, V ) such that the quadratic form (fa,b) represents 0
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over K. Let Z(S,m,n, D, U, V ) = #Z(S,m,n, D, U, V ). Then

H(S,m,n) =
∑

D∈SFG
fD≤min(‖m‖,‖n‖)

∑
U∈IG

2fU+fD≤‖m‖

∑
V ∈IG

2fV +fD≤‖n‖

Z(S,m,n, D, U, V ).

(4.5)

We fix m and n with ‖m‖ and ‖n‖ positive. By symmetry, we can and will
suppose that

‖m‖ ≤ ‖n‖. (4.6)

We fix a square-free ideal D in R, and ideals U and V in R such that
fD + 2fU ≤ ‖m‖ and fD + 2fV ≤ ‖n‖, all coprime to G. For brevity, set

A = DU2
( ∏
v∈S−{v0}

Pmvv

)
, B = DV 2

( ∏
v∈S−{v0}

Pnvv

)
, (4.7)

Y = Y(S,m,n, D, U, V ), Z = Z(S,m,n, D, U, V ), (4.8)
M = ‖m‖ − 2fU − fD, N = ‖n‖ − 2fV − fD, (4.9)

and for (a, b) ∈ Y(S,m,n, D, U, V ), write J(a) = J(a,b)(a) and J(b) =
J(a,b)(b). In view of (4.4),

(a, b) ∈ Y(S,m,n, D, U, V ) ⇒ fJ(a) = M, fJ(b) = N. (4.10)

Now, we suppose that

M + fD ≤
log q
log 2

N. (4.11)

Let A, resp. B, denote the first, resp. second projection of the set Y =
Y(m,n, D, U, V ). For a ∈ A, let aY denote the set of b ∈ R such that
(a, b) ∈ Y. Similarly, for b ∈ B, let Yb denote the set of a ∈ R such that
(a, b) ∈ Y.

Our proof makes use of characters of order 2 of the multiplicative
group K?, defined as follows. For any v ∈ V (K) we have chosen a uniformiz-
ing element πv ∈ K. With this choice, every non-zero α ∈ K is uniquely
written as a product

α = sgnv(α)πv(α)
v uv(α) (2.3)

with sgnv(α) ∈ kv and uv(α) ∈ U (1)
v . Let

θv(α) =
{

1 if sgnv(α) is a square in kv,

−1 otherwise.
(4.12)

The character Θ∅ is the unit character. If Σ is a non-empty finite set of
places of K, the character ΘΣ is defined by

ΘΣ(a) =
∏
v∈Σ

θv(a). (4.13)
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Let (a, b) be a pair of non-zero elements of K. For v ∈ V = V (K), the
Hilbert symbol (a, b)v is defined by

(a, b)v =
{

1 if (f(a,b)) represents 0 over Kv,

−1 if not.
(4.14)

It is well known that

(a, b)v = θv(−1)v(a)v(b)θv(sgnv(a))v(b)θv(sgnv(b))
v(a) (4.15)

(cf. [7, Chap. XIV, 4]), and that the Hilbert symbol satisfies the product
formula ∏

v∈V (K)

(a, b)v = 1 (4.16)

(cf. [7, Chap. XIV, annexe]). If Σ is a finite set of places of K, let

(a, b)Σ =
∏
v∈Σ

(a, b)v, (4.17)

the empty product being equal to 1.
If H ∈ I(R), let Σ(H) = {vP ; P ∈ P(R), P |H}. Let T denote the set

of v ∈ S such that mv or nv is odd, and let τ = τ(m,n) = #T.

Remark 4.1. For (a, b) ∈ Y(m,n, D, U, V ), let

W (a, b) = T ∪ {vP ; P |DJ(a)J(b)}.

Then

(a, b)v = 1 for v /∈W (a, b), (4.18)
(a, b)W (a,b) = 1. (4.19)

Proof. Let (a, b) ∈ Y(m,n, D, U, V ). If P ∈ P(R) does not divide
DJ(a,b)(a)J(a,b)(b), then vP (a) ≡ 0 mod 2, vP (b) ≡ 0 mod 2, and by (4.15),
(a, b)vP = 1. Similarly, if v ∈ S is such that mv and nv are even, then
(a, b)v = 1. Hence, (a, b)v = 1 for any v /∈W (a, b).

By the product formula (4.16),

1 =
∏

v∈V (K)

(a, b)v =
∏

v∈V (K)
v/∈W (a,b)

(a, b)v ·
∏

v∈W (a,b)

(a, b)v = (a, b)W (a,b)

with notation (4.17).

Proposition 4.2. We have

2τ+ω(D)Z =
∑

(a,b)∈Y

2−ω(J(a)J(b))
∑

X⊂W (a,b)

(a, b)X , (4.20)

2ω(D)Z = Z1 + Z2 + Z3, (4.21)
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with

Z1 = 2
∑
t⊂T

∑
(a,b)∈Y

2−ω(J(a)J(b))(a, b)t, (4.22)

Z2 = 2
∑
t⊂T

∑
(a,b)∈Y

2−ω(J(a)J(b))(a, b)t
∑
B∈I
B|J(b)
B 6=(1)

(a, b)Σ(B), (4.23)

Z3 =
∑
t⊂T

∑
(a,b)∈Y

2−ω(J(a)J(b))(a, b)t
∑
H∈I

H|DJ(a)
(1)6=H 6=DJ(a)

∑
B∈I
B|J(b)

(a, b)Σ(HB). (4.24)

Proof. Let (a, b) ∈ Y(m,n, D, U, V ). By the Hasse principle, (fa,b) rep-
resents 0 over K if and only if it represents 0 over any Kv with v running
through V (K). In view of (4.14) and (4.18), (a, b) ∈ Z = Z(m,n, D, U, V )
if and only if ∏

v∈W (a,b)

(1 + (a, b)v) = 2#W (a,b).

Otherwise this product is 0. In view of the definition of the set W (a, b),

2#W (a,b) = 2τ+ω(D)+ω(J(a)J(b)),

thus,
2τ+ω(D)Z =

∑
(a,b)∈Y

2−ω(J(a)J(b))
∏

v∈W (a,b)

(1 + (a, b)v).

Expanding this product and using notation (4.17), we get

(1) 2τ+ω(D)Z =
∑

(a,b)∈Y

2−ω(J(a)J(b))
∑

X⊂W (a,b)

(a, b)X .

As in the proof of Proposition 3.3 in [1], following Hooley’s idea, we split
the right hand side of (1) into three subsums Zi, 1 ≤ i ≤ 3, corresponding
to different subsets X ⊂W (a, b).

1) The sum Z1 which will give the main term contains for each (a, b) ∈ Y
all subsets t and t ∪Σ(DJ(a)J(b)) with t ⊂ T, that is,

Z1 =
∑
t⊂T

∑
(a,b)∈Y

2−ω(J(a)J(b))((a, b)t + (a, b)t∪Σ(DJ(a)J(b))).

For any t ⊂ T, let t′ denote the difference set T − t. The map t 7→ t′ being
a permutation of the subsets of T,

(2) Z1 =
∑
t⊂T

∑
(a,b)∈Y

2−ω(J(a)J(b))((a, b)t + (a, b)t′∪Σ(DJ(a)J(b))).

For (a, b) ∈ Y and t ⊂ T,
(a, b)t′∪Σ(DJ(a)J(b)) = ((a, b)t)2(a, b)t′∪Σ(DJ(a)J(b)).
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By (4.17),

(a, b)t′∪Σ(DJ(a)J(b)) = (a, b)t(a, b)T∪Σ(DJ(a)J(b)) = (a, b)t(a, b)W (a,b),

and by (4.19),

Z1 = 2
∑
t⊂T

∑
(a,b)∈Y

2−ω(J(a)J(b))(a, b)t.

2) The sum Z2 contains for each (a, b) ∈ Y all subsets t ∪ Σ(B) and
t ∪Σ(DJ(a)B′) with t ⊂ T, B 6= (1) running over the ideals dividing J(b),
and B′ 6= J(b) running over the ideals dividing J(b), that is,

Z2 =
∑
t⊂T

∑
(a,b)∈Y

2−ω(J(a)J(b))
∑
B∈I
B|J(b)
B 6=(1)

(a, b)t∪Σ(B)

+
∑
t′⊂T

∑
B′∈I
B′|J(b)
B′ 6=J(b)

(a, b)t′∪Σ(DJ(a)B′),

where t′ has the same meaning as above. If B′ ∈ I divides J(b), then J(b) =
BB′. Moreover, B′ 6= J(b) if and only if B 6= (1). With notation (4.17) we
find that for any subset t ⊂ T,

(a, b)t′∪Σ(B′) = (a, b)t′∪Σ(B′)((a, b)t∪Σ(B))
2 = (a, b)T∪Σ(J(b))(a, b)t∪Σ(B),

whence

Z2 =
∑
t⊂T

∑
(a,b)∈Y

2−ω(J(a)J(b))(a, b)t
∑
B∈I
B|J(b)
B 6=(1)

(a, b)Σ(B)(1 + (a, b)W (a,b)).

We now get (4.23) from (4.19).
3) The sum Z3 contains the remaining terms, which yields (4.24).

We compute Z1 and we bound Z2 and Z3. Once more, we need new
notations. Let T1,0, T0,1, and T1,1 denote respectively the sets of v ∈ S such
that mv is odd and nv is even; mv is even and nv is odd; mv and nv are
odd. We denote by J(A) and J(B) respectively the sets of ideals J(a) with
a running over A, and the set of ideals J(b) with b running over B.

Proposition 4.3. We have

|Z1 − 2L| ≤ β1(R)2τ+r+fG/22ω(D)+N/2(N1/2qM+N/2 +M1/2qN+M/2), (4.25)

|Z2| ≤ β1(R)2τ+r+fG/22ω(D)+N/2M1/2qN+M/2, (4.26)
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where
L = L(S,m,n, D, U, V ) =

∑
(a,b)∈Y

2−ω(J(a)J(b)), (4.27)

with β1(R) and β2(R) constants.

Proof. For i = 1, 2, let

(1) Si =
∑
t⊂T

∑
(a,b)∈Y

2−ω(J(a)J(b))(a, b)tσi(a, b)

with

σ1(a, b) = 1,(2)

σ2(a, b) =
∑
B∈I
B|J(b)
B 6=(1)

(a, b)Σ(B).(3)

Let (a, b) ∈ Y(S,m,n, D, U, V ). By (4.15), for v ∈ S,

(a, b)v = θv(−1)mvnvθv(sgnv(b))
mvθv(sgnv(a))nv

with θv defined by (4.12). With notation (4.13),

(4) Si =
∑

t1,0⊂T1,0

t0,1⊂T0,1

t1,1⊂T1,1

∑
(a,b)∈Y

2−ω(J(a)J(b))Θt1,0(b)Θt0,1(a)Θt1,1(−ab)σi(a, b).

We look at S2. Let (a, b) ∈ Y. In view of (4.3), if P ∈ P(R) divides
J(b), then vP (b) ≡ 1 mod 2, vP (a) ≡ 0 mod 2, and by (4.15), (a, b)vP =
θvP (sgnP (a)). Hence, with notations (4.13) and (4.17), if B ∈ I(R) divides
J(b), then (a, b)Σ(B) = ΘΣ(B)(a). Let b ∈ B. Every x ∈ Yb may be written
as a product αa with α ∈ k? and a ∈ M, where M is the set of monic
elements. Moreover, a ∈M∩ Yb. Hence, by (4) and (3),

S2 =
{∑
b∈B

2−ω(J(b))
∑

a∈M∩Yb

2−ω(J(a))
}

×
{ ∑

t1,0⊂T1,0

t0,1⊂T0,1

t1,1⊂T1,1

Θt1,0(b)Θt0,1(a)Θt1,1(−ab)
∑
B∈I
B|J(b)
B 6=(1)

ΘΣ(B)(a)

×
∑
α∈k?

Θt0,1(α)Θt1,1(α)ΘΣ(B)(α)
}
.

We consider the inner sum

Ωt0,1,t1,1,B =
∑
α∈k?

Θt0,1∪t1,1∪Σ(B)(α).
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Let v ∈ t0,1 ∪ t1,1 ∪ {vP ; P |B}. If fv is even, then every α ∈ k? is a square in
the field kv and by (4.12), θv(α) = 1. If fv is odd, then by (4.12), θv(α) = 1
or −1 according as α is or is not a square in k. Hence, Ωt0,1,t1,1,B = q− 1 or
Ωt0,1,t1,1,B = 0 according as the sum∑

v∈t0,1

fv +
∑
v∈t1,1

fv +
∑
P∈P
P |B

fvP

is even or odd. With the same arguments, looking at the inner sum∑
β∈k?

Θt1,0(β)Θt1,1(β),

we conclude that in the sum S2, there only occur the 4-tuples (t0,1, t1,0, t1,1, B)
such that the sums∑

v∈t0,1

fv +
∑
v∈t1,1

fv +
∑
P∈P
P |B

fvP ,
∑
v∈t1,0

fv +
∑
v∈t1,1

fv

are even. In the following, we denote this condition and analogous parity
conditions by the symbol (t0,1, t1,0, t1,1, B) ≡ 0. Hence,

S2 =
∑
b∈B

2−ω(J(b))
∑

t1,0⊂T1,0

t0,1⊂T0,1

t1,1⊂T1,1

∑
B∈I
B|J(b)
B 6=(1)

(t0,1,t1,0,t1,1,B)≡0

Θt1,0(b)Θt1,1(−b)(5)

×
∑
a∈Yb

2−ω(J(a))Θt0,1∪t1,1∪Σ(B)(a).

We consider the last inner sum. By the parity condition, the map
y 7→ Θt0,1∪t1,1∪Σ(B)(y)

is trivial on the group k?. Hence, we may define a morphism Ψ ′ from Pr(R),
the monoid of non-zero principal ideals of R, to the group {1,−1} by
Ψ ′(Y ) = Θt0,1∪t1,1∪Σ(B)(η) if η ∈ R generates the principal ideal Y. This
morphism extends in an obvious unique way to a morphism from the group
FPr(R) of principal fractional ideals to {1,−1}. Since FPr(R) has finite in-
dex in the group F(R), the morphism Ψ ′ extends to a morphism Ψ from
F(R) to the group µl of lth roots of 1 for some l. In view of the definition
of the set Yb,∑

a∈Yb

2−ω(J(a))Θt0,1∪t1,1∪Σ(B)(a) = (q − 1)
∑

A∈SFGDJ(b)

AA∈Pr
fA=M

2−ω(A)Ψ(AA)

with A defined by (4.7). Since B 6= (1), the map

y 7→ Θt0,1∪t1,1∪Σ(B)(y)
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is not trivial on R, and the morphism Ψ is not trivial on the group of
principal ideals. Moreover, Ψ satisfies condition (3.16) with H = BG. Hence,
by (3.25),

(6)
∣∣∣ ∑
a∈Yb

2−ω(J(a))Θt0,1∪t1,1∪Σ(B)(a)
∣∣∣

≤ (q − 1)α1(R)2r+fG/2+fB/22ω(DJ(b))M1/2qM/2.

By (5) and (6),

|S2| ≤ (q − 1)α1(R)2r+fG/22ω(D)M1/2qM/2
∑
b∈B

∑
t1,0⊂T1,0

t0,1⊂T0,1

t1,1⊂T1,1

∑
B∈I
B|J(b)
B 6=(1)

2fB/2.

In view of (4.7) and the definition of B, if B ∈ I(R) divides J(b) with b ∈ B,
then B is square-free and coprime to GD, Rb = BBB′ with B′ square-free
and coprime to GDB. Hence,

(7) |S2| ≤ (q − 1)2α1(R)2τ+r+fG/22ω(D)M1/2qM/2S
with

(8) S =
∑

B∈SFGD
1≤fB≤N

2fB/2
∑

B′∈SFGDB
BBB′∈Pr
fBB′=N

1.

The ideals B′ occurring in the inner sum above belong to the same ideal
class. Hence, by (3.5),

S ≤ %(R)
∑

B∈IGD
1≤fB≤N

2fB/2qN−fB ≤ %(R)qN
∑
B∈I

1≤fB≤N

2fB/2q−fB .

Then, by (3.5),

(9) S ≤ h
√

2√
2− 1

%(R)22N/2qN .

This together with (7) gives (4.26).
Now, we deal with S1. We break the sum (4) into three parts. The first

part which will give the main term is given by the triple (t0,1, t1,0, t1,1) =
(∅, ∅, ∅); the second part is given by the triples (t0,1, t1,0, t1,1) = (∅, t1,0, ∅)
with t1,0 6= ∅; and the third part contains the remaining terms. In other
words,

(10) S1 = S1,1 + S1,2 + S1,3

with

S1,1 =
∑

(a,b)∈Y

2−ω(J(a)J(b)),(11)
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S1,2 =
∑

(a,b)∈Y

2−ω(J(a)J(b))
∑

t1,0⊂T1,0

t1,0 6=∅

Θt1,0(b),(12)

S1,3 =
∑

(a,b)∈Y

2−ω(J(a)J(b))
∑

t1,0⊂T1,0

t0,1⊂T0,1

t1,1⊂T1,1

(t0,1,t1,1)6=(∅,∅)

Θt1,0(b)Θt0,1(a)Θt1,1(−ab).(13)

We deal with S1,2 and S1,3 just as we have dealt with S2. We get

S1,2 ≤ (q − 1)α1(R)2r+fG/2λ1,22ω(D)N1/2qN/2#A,
S1,3 ≤ (q − 1)α1(R)2r+fG/2λ1,32ω(D)M1/2qM/2#B,

where λ1,2 is the number of t1,0 6= ∅ such that (∅, t1,0, ∅) ≡ 0, and λ1,3 is the
number of (t0,1, t1,1) with (t0,1, t1,1) 6= (∅, ∅) such that (t0,1, ∅, t1,1) ≡ 0. By
(3.5),

#A ≤ (q − 1)%(R)qM , #B ≤ (q − 1)%(R)qN .

Hence,

|S1,2 + S1,3| ≤ (q − 1)2%(R)α1(R)2τ+r+fG/2(N1/2qM+N/2 +M1/2qN+M/2),

since λ1,2 + λ1,3 ≤ τ. This together with (10) and (11) gives (4.25).

Proposition 4.4. Let θ ∈ ]log 2/log q, 1]. Suppose that θN ≤ M ≤ N.
Then∣∣∣∣L− (q − 1)2B3(R)Λ(GD)

qM+N

√
MN

∣∣∣∣ ≤ β3(R, θ)2r+ω(D) q
M+N

MN
(4.28)

with

B3(R) =
h%(R)
πqg+f0−1

∏
P∈P

(
1− 1
|P |2

)
, (4.29)

Λ(H) =
∏
P∈P
P |H

(
1 +

1
|P |

)−1

(4.30)

for any ideal H, and β3(R, θ) a constant.

Proof. In view of (4.27) and the definition of the sets Y,A and aY,

(1) L =
∑
a∈A

2−ω(J(a))η(a)

with

(2) η(a) =
∑
b∈aY

2−ω(J(b)).
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In view of (4.7) and the definition of the sets aY,

η(a) = (q − 1)
∑

B∈SFGDJ(a)

fB=N
BB∈Pr

2−ω(B).

Proposition 3.8 gives

(3) |η(a)− (q − 1)B1(R)Ω(GDJ(a))qNN−1/2|
≤ (q − 1)(α2(R)2ω(GDJ(a))N1/2qN/2 + α3(R, 1/4)λ1/4(GDJ(a))qNN−3/2)

with B1(R) defined by (3.27) and Ω(H) defined by (3.28). In view of (4.7)
and the definition of the set A,∑

a∈A
2−ω(J(a))Ω(J(a)) = (q − 1)

∑
A∈SFGD
AA∈Pr
fA=M

2−ω(A)Ω(A),

and by (1) and (3),

(4) |L− (q − 1)2B1(R)Ω(GD)qNN−1/2S|
≤ (q − 1)α2(R)2r+ω(D)N1/2qN/2#A

+ (q − 1)2α3(R, 1/4)λ1/4(GD)qNN−3/2S′

with

S =
∑

A∈SFGD
fA=M
AA∈Pr

2−ω(A)Ω(A),(5)

S′ =
∑

A∈SFGD
fA=M
AA∈Pr

2−ω(A)λ1/4(A).(6)

By (3.30) and (3.33),

(7) |S −B2(R)Γ (GD)qMM−1/2| ≤ α4(R)MqM/2 + α5(R)qMM−3/2,

(8) S′ ≤ α6(R, 1/4)qMM−1/2,

with B2(R) and Γ (H) defined by (3.31) and (3.32). We have seen above
that #A ≤ (q − 1)%(R)qM . Hence, by (4), (7), and (8),

(9)
∣∣∣∣L− (q − 1)2B1(R)B2(R)Ω(GD)Γ (GD)

qM+N

√
MN

∣∣∣∣
≤ B1(R)Θ(GD)(q − 1)2(α4(R)MqM/2 + α5(R)qMM−3/2)

+ (q − 1)2α2(R)%(R)2r+ω(D)N1/2qM+N/2

+ (q − 1)2α3(R, 1/4)α6(R, 1/4)λ1/4(GD)qM+NM−1/2N−3/2.



72 M. Car

By (3.27) and (3.31),

B1(R)B2(R) =
h%(R)
πqg+f0−1

∏
P∈P

(
1− 1
|P |

)(
1 +

1
|P |

)
.

By (3.28) and (3.32),

Γ (GD)Ω(GD) =
∏
P∈P
P |GD

(
1 +

1
1 + 2|P |

)−1(
1 +

1
1 + 2|P |

)−1

.

By (3.28) and (3.29), Ω(GD) ≤ 1 ≤ λ1/4(GD) ≤ 2ω(GD) = 2r+ω(D), which
yields (4.28).

Proposition 4.5. We have

|Z3| ≤ β4(R)2τ+r+fG/2+2ω(D)+fD/4+M/4N1/2qM+3N/4(M + 1) (4.31)

with β4(R) a constant.

Proof. Interchanging the order of summation in Z3 given by (4.24) we
get

(1) Z3 =
∑
t⊂T

∑
a∈A

2−ω(J(a))
∑
E∈I
E|D

∑
A∈I
A|J(a)

(1)6=EA 6=DJ(a)

φE,A(a)

with

(2) φE,A(a) =
∑
t⊂T

∑
B∈SFGDJ(a)

fB≤N

∑
b∈aY

(a,b)∈Y
B|J(b)

2−ω(J(b))(a, b)t∪Σ(EAB).

Let j be an integer such that

(3) j < N.

We divide the sum φE,A(a) into two parts according as the ideals B occurring
in it satisfy fB ≤ j or fB > j. We get

(4) φE,A(a) = σE,A(a, j) + τE,A(a, j)

with

σE,A(a, j) =
∑
t⊂T

∑
B∈SFGDJ(a)

fB≤j

∑
b∈aY

(a,b)∈W
B|J(b)

2−ω(J(b))(a, b)t∪Σ(EAB),(5)

τE,A(a, j) =
∑
t⊂T

∑
B∈SFGDJ(a)

fB>j

∑
b∈aY

(a,b)∈W
B|J(b)

2−ω(J(b))(a, b)t∪Σ(EAB).(6)



Ternary quadratic forms that represent zero 73

In (6) we set D = EE′, J(a) = AA′, J(b) = BB′ and for t ⊂ T, let t′ = T−t.
Then, by (4.17),

(a, b)t∪Σ(EAB) = (a, b)t∪Σ(EAB)((a, b)t′∪Σ(E′A′B′))
2

= (a, b)t′∪Σ(E′A′B′) · (a, b)T∪Σ(DJ(a)J(b))

= (a, b)t′∪Σ(E′A′B′) · (a, b)W (a,b).

In view of (4.19),

(a, b)t∪Σ(EAB) = (a, b)t′∪Σ(E′A′B′).

Hence,

τE,A(a, j) =
∑
t′⊂T

∑
B′∈SFGDJ(a)

fB′<N−j

∑
b∈aY

(a,b)∈Y
B′|J(b)

2−ω(J(b))(a, b)t′∪Σ(E′A′B′).

By (5),

(7) τE,A(a, j) = σE′,A′(a,N − j − 1).

We now deal with the sum σE,A(a, j). If P ∈ P(R) divides D, then vP (a)
and vP (b) are odd and by (4.15), (a, b)vP = θvP (− sgnvP (a) sgnvP (b)). If P ∈
P(R) divides J(a), then vP (a) is odd, vP (b) is even and by (4.15), (a, b)vP
= θvP (sgnvP (b)). Hence, with notations (4.13) and (4.17), (a, b)Σ(EA) =
ΘΣ(E)(−ab)ΘΣ(A)(b) and by symmetry, (a, b)Σ(B) = ΘΣ(B)(a). As in the
proof of Proposition 4.3 we get

σE,A(a, j) = ΘE(−a)
∑

t0,1⊂T0,1

Θt0,1(a)
∑

B∈SFGDJ(a)

fB≤j

ΘΣ(B)(a)

×
∑

t1,0⊂T1,0

t1,1⊂T1,1

(∅,t1,0,t1,1,AE)≡0

Θt1,1(a)
∑
b∈aY
B|J(b)

2−ω(J(b))Θt1,0∪t1,1∪Σ(AE)(b).

Hence,

|σE,A(a, j)| ≤
∑

t0,1⊂T0,1

t1,0⊂T1,0

t1,1⊂T1,1

(∅,t1,0,t1,1,AE)≡0

∑
B∈SFGDJ(a)

fB≤j

∣∣∣ ∑
b∈aY
B|J(b)

2−ω(J(b))Θt1,0∪t1,1∪Σ(AE)(b)
∣∣∣.

By the parity condition, the map

(8) y 7→ Θt1,0∪t1,1∪Σ(AE)(y)
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is trivial on the group k?. As in the proof of Proposition 4.3, we get∣∣∣ ∑
b∈aY
B|J(b)

2−ω(J(b))Θt1,0∪t1,1∪Σ(AE)(b)
∣∣∣

≤ (q − 1)α1(R)2r+(fG+fAE)/22ω(DJ(a))N1/2q(N−fB)/2.

Hence,

|σE,A(a, j)| ≤ (q − 1)α1(R)2r+(fG+fAE)/22ω(DJ(a))N1/2qN/2

×
∑

t0,1⊂T0,1

t1,0⊂T1,0

t1,1⊂T1,1

(∅,t1,0,t1,1,AE)≡0

∑
B∈SFGDJ(a)

fB≤j

q−fB/2

and
|σE,A(a, j)| ≤ (q − 1)α1(R)2τ+r+(fG+fAE)/2

× 2ω(DJ(a))N1/2qN/2
∑

B∈SFGDJ(a)

fB≤j

q−fB/2.

By (3.5),

|σE,A(a, j)| ≤ (q − 1)h%(R)α1(R)(9)

×
√
q

√
q − 1

2τ+r+(fG+fAE)/22ω(DJ(a))N1/2q(N+j)/2.

Similarly,

(10) |σE′,A′(a,N − j − 1)|

≤ (q − 1)h%(R)α1(R)
√
q

√
q − 1

2τ+r+(fG+fA′E′ )/22ω(DJ(a))N1/2qN−(j+1)/2.

Let

(11) j =
[

1
2

(N + (fE′A′ − fEA) logq(2))
]
,

where [x] denotes the integral part of the real number x. Then, by (9) and
(10),

|σE,A(a, j)| ≤ (q − 1)h%(R)α1(R)

×
√
q

√
q − 1

2τ+r+fG/22fDJ(a)/42ω(DJ(a))N1/2q3N/4,

|σE′,A′(a,N − j − 1)| ≤ (q − 1)h%(R)α1(R)

×
√
q

√
q − 1

2τ+r+fG/22fDJ(a)/42ω(DJ(a))N1/2q3N/4,
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and with (1), (4) and (7),

|Z3| ≤ 2(q − 1)h%(R)α1(R)(12)

×
√
q

√
q − 1

2τ+r+fG/2+ω(D)+fD/42M/4N1/2q3N/4Z?3 ,

where

(13) Z?3 =
∑
E∈SF
E|D

∑
a∈A

∑
A∈SF
A|J(a)

(1)6=EA 6=DJ(a)

1.

Interchanging the order of summation, we get

Z?3 = (q − 1)
∑
E∈SF
E|D

∑
A∈SFGD
fA≤M

(1)6=EA6=DJ(a)

∑
A′∈SFAGD
AU2AA′∈Pr
fAA′=M

1.

Hence, by (3.5),

Z?3 ≤ (q − 1)%(R)qM
∑
E∈SF
E|D

∑
A∈SFGD
fA≤M

(1)6=EA6=DJ(a)

q−fA ,

and by (3.5) and (12),

|Z3| ≤ 2(q − 1)2h2%(R)3α1(R)

×
√
q

√
q − 1

2τ+r+fG/2+2ω(D)+fD/4+M/4N1/2qM+3N/4(M + 1).

This gives (4.31).

We summarize what has been proved above in the following theorem.

Theorem 4.6. Let θ ∈ ]log 2/log q, 1[. Let m = (mv)v∈S and n =
(nv)v∈S be r-tuples of rational integers such that

‖m‖ − 2fU ≤ (‖n‖ − 2fV − fD)
log q
log 2

(4.11)

and
‖m‖ − 2fU − fD ≥ θ(‖n‖ − 2fV − fD) > 0. (4.32)

Then∣∣∣∣Z(S,m,n, D, U, V )− C1(S)2−τ(m,n)−ω(D)Λ(D)
qM+N

√
MN

∣∣∣∣
≤ β5(R, θ)2r+fG/22ω(D)+fD/4

qM+N

MN
(4.33)
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with

C1(S) =
2h(q − 1)

πqg−1ζK(q−2)

∏
v∈S

(
1 +

1
qfv

)−1

, (4.34)

M = ‖m‖ − 2fU − fD, N = ‖n‖ − 2fV − fD, and β5(R, θ) a constant.

Proof. By (4.21), (4.25), (4.26), (4.28) and (4.31),∣∣∣∣2ω(D)Z − 21−τ (q − 1)2B3(R)Λ(GD)
qM+N

√
MN

∣∣∣∣
≤ β5(R, θ)2r+fG/2+ω(D)+fD/4

qM+N

MN

with β5(R, θ) a constant. This gives (4.33) with

C1(S) = 2(q − 1)2B3(R)Λ(G).

Easy computations yield (4.34).

Corollary 4.7. Let θ ∈ ]log 2/log q, 1]. Let m = (mv)v∈S and n =
(nv)v∈S be r-tuples of rational integers such that 0 < θmax(m,n) ≤
min(m,n). Then∣∣∣∣H1(S,m,n)− C1(S)2−τ(m,n) q‖m‖+‖n‖√

‖m‖ ‖n‖

∣∣∣∣ ≤ β5(R, θ)2r+fG/2
q‖m‖+‖n‖

‖m‖ ‖n‖
.

(4.35)

Proof. Interchanging m and n if necessary, we apply Theorem 4.6 with
D = U = V = 1.

For ideals U and V of R coprime to G and such that 2fU ≤ ‖m‖ and
2fV ≤ ‖n‖, let Y ′ = Y ′(S,m,n, U, V ) denote the set of (a, b) ∈ X (S,m,n)
such that U(a) = U and U(b) = V, let Z ′(S,m,n, U, V ) denote the set of
(a, b) ∈ Y ′(S,m,n, U, V ) such that the quadratic form (fa,b) represents 0
over K, and let Z ′ = Z ′(S,m,n, U, V ) = #Z ′(S,m,n, D, U, V ).

Fix ideals U and V of R coprime to G. The following theorem gives an
estimate for the numbers Z ′(S,m,n, U, V ).

Theorem 4.8. Let α ∈ ]log 2/log q, 1]. Let m = (mv)v∈S and n =
(nv)v∈S be r-tuples of rational integers such that 2fU ≤ ‖m‖, 2fV ≤ ‖n‖
and

min(‖m‖ − 2fU , ‖n‖ − 2fV ) ≥ αmax(‖m‖ − 2fU , ‖n‖ − 2fV ) > 0. (4.36)

Then∣∣∣∣Z ′(S,m,n, U, V )− 2−τ(m,n)C ′(S)
q‖m‖+‖n‖−2fU−2fV√

(‖m‖ − 2fU )(‖n‖ − 2fV )

∣∣∣∣
≤ β6(R,α)2r+fG/2

q‖m‖+‖n‖−2fU−2fV

(‖m‖ − 2fU )(‖n‖ − 2fV )
(4.37)
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with

C ′(S) =
2h(q − 1)

πqg−1ζK(q−2)
·
∏
v∈V
v/∈S

(
1 +

1
2qfv(1 + qfv)

)
·
∏
v∈S

(
1 +

1
qfv

)−1

(4.38)

and β6(R,α) a constant.

Proof. The set Z ′(S,m,n, U, V ) is the union of the sets Z(S,m,n,
D, U, V ) for D running over the set of square-free ideals of R coprime to G.
Hence

(1) Z ′(S,m,n, U, V ) =
∑

D∈SFG
fD≤m

Z(S,m,n, D, U, V )

with

(2) m = min(‖m‖ − 2fU , ‖n‖ − 2fV ).

Let

(3) M ′ = ‖m‖ − 2fU , N ′ = ‖n‖ − 2fV .

By symmetry, we may suppose

(4) M ′ ≤ N ′.
Condition (4.36) gives

(5) M ′ ≥ αN ′.
Obviously,

Z(S,m,n, D, U, V ) ≤ (q − 1)2
∑
A∈SF
AA∈Pr
fAD=M ′

∑
B∈SF
BB∈Pr
fBD=N ′

1,

and by (3.5),

Z(S,m,n, D, U, V ) ≤ (q − 1)2%(R)2qM
′+N ′−2fD .

Let

κ(α) = κ =
α− log 2/log q

α(2− α− log 2/log q)
and θ = α

1− κ
1− κα

.

Then

θ =
1
2

(
α+

log 2
log q

)
>

log 2
log q

and α =
θ

1− κ(1− θ)
.

Hence,

(6) M ′ − θN ′ ≥ κM ′(1− θ).
Let

µ = [κM ′],(7)
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Z? =
∑

D∈SFG
fD≤µ

Z(S,m,n, D, U, V ).(8)

Then, by (1),

0 ≤ Z ′ − Z? ≤ (q − 1)2%(R)2qM
′+N ′

∑
D∈SFG
fD>µ

q−2fD ,

and by (3.5),

(9) 0 ≤ Z ′ − Z? ≤ h(q − 1)%(R)3qM
′+N ′−µ.

By (6) and (7), each D occurring in the sum Z? satisfies conditions (4.11)
and (4.32). In view of Theorem 4.6,∣∣∣∣Z(S,m,n, D, U, V )− 2−τ(m,n)−ω(D)C1(S)Λ(D)

qM
′+N ′−2fD√

(M ′ − fD)(N ′ − fD)

∣∣∣∣
≤ β5(R, θ)2r+fG/22ω(D)+fD/4

qM
′+N ′−2fD

(M ′ − fD)(N ′ − fD)
.

By (7),
qM

′+N ′−2fD

(M ′ − fD)(N ′ − fD)
≤
(

1
1− κ

)2 qM
′+N ′−2fD

M ′N ′
.

Hence,

(10)
∣∣∣∣Z(S,m,n, D, U, V )

− C1(S)2−τ(m,n)−ω(D)Λ(D)
qM

′+N ′−2fD√
(M ′ − fD)(N ′ − fD)

∣∣∣∣
≤
(

1
1− κ

)2

β5(R, λ)2r+fG/22ω(D)+fD/4
qM

′+N ′

M ′N ′
.

For any ideal D,

2ω(D)+fD/4 ≤ qfD logq(2)/4
∏
P∈P
P |D

qfP logq(2) ≤ |D|5 logq(2)/4.

Hence, in view of (3.5), the series

(11) Y1 =
∑
D∈SF

2ω(D)+fD/4q−2fD

is convergent. By (7), (8), (10) and (11),

(12) |Z? − C1(S)2−τ(m,n)qM
′+N ′Z??|

≤ 2r+fG/2
(

1
1− κ

)2

Y1β5(R, θ)
qM

′+N ′

M ′N ′
,
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where

(13) Z?? =
∑

D∈SFG
fD≤µ

2−ω(D)q−2fDΛ(D)√
(M ′ − fD)(N ′ − fD)

.

By (6), if the ideal D is such that fD ≤ µ then

(14) 0 ≤ 1√
(M ′ − fD)(N ′ − fD)

− 1√
M ′N ′

≤ γ(α)
fD

M ′N ′

with

(15) γ(α) =
1√

1− κ(α) + 1− κ(α)

(
1√

1− κ(α)
+

1√
α

)
and by (13),

0 ≤ Z?? − 1√
M ′N ′

∑
D∈SFG
fD≤µ

2−ω(D)q−2fDΛ(D)

≤ γ(α)
M ′N ′

∑
D∈SFG
fD≤µ

fD2−ω(D)q−2fDΛ(D).

By (4.30), 0 < Λ(D) ≤ 1 for all D ∈ I. Hence, by (3.5), the series

(16) Y2 =
∑

D∈SFG

fD2−ω(D)q−2fDΛ(D)

is convergent and

(17) 0 ≤ Z?? − 1√
M ′N ′

∑
D∈SFG
fD≤µ

2−ω(D)q−2fDΛ(D) ≤ γ(α)Y2

M ′N ′
.

The series

(18) Y3 =
∑

D∈SFG

2−ω(D)q−2fDΛ(D)

is convergent and in view of (4.30),

(19) Y3 =
∏
v∈V
v/∈S

(
1 +

1
2qfv(qfv + 1)

)
.

By (4.30) and (3.5),∑
D∈SFG
fD>µ

2−ω(D)q−2fDΛ(D) ≤
∑
D∈I
fD>µ

q−2fD ≤ h%(R)
q − 1

q−µ.
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Hence by (17),∣∣∣∣Z?? − Y3√
M ′N ′

∣∣∣∣ ≤ h%(R)
q − 1

· q−µ√
M ′N ′

+
γ(α)Y2

M ′N ′

and by (9) and (12),∣∣∣∣Z ′ − C1(S)Y32−τ(m,n) q
M ′+N ′

√
M ′N ′

∣∣∣∣
≤ h(q − 1)%(R)3qM

′+N ′−µ + 2r+fG/2
(

1
1− κ

)2

Y1β5(R, θ)
qM

′+N ′

M ′N ′

+
hC1(S)%(R)qM

′+N ′−µ

(q − 1)
√
M ′N ′

+
C1(S)γ(α)Y2

M ′N ′
.

Hence,

(20)
∣∣∣∣Z ′ − C1(S)Y32−τ(m,n) q

M ′+N ′

√
M ′N ′

∣∣∣∣ ≤ β6(S, α)
qM

′+N ′

M ′N ′

with β6(S, α) a constant. In view of (3), (20) gives (4.37) with C ′(S) =
Y3C1(S). We get (4.38) from (19) and (4.34).

Corollary 4.9. Let α ∈ ]log 2/log q, 1]. Let m = (mv)v∈S and n =
(nv)v∈S be r-tuples of rational integers such that min(‖m‖, ‖n‖) ≥
αmax(‖m‖, ‖n‖) > 0. Then∣∣∣∣H ′(m,n)− 2−τ(m,n)C ′(S)

q‖m‖+‖n‖√
‖m‖ ‖n‖

∣∣∣∣ ≤ β6(R,α)
q‖m‖+‖n‖

‖m‖ ‖n‖
. (4.39)

Proof. Take U = V = (1) in Theorem 4.8.

Now, we are able to end the proof.

Theorem 4.10. Let λ ∈ ]3 log 2/(2 log q), 1]. Let m = (mv)v∈S and
n = (nv)v∈S be r-tuples of rational integers such that min(‖m‖, ‖n‖) ≥
λmax(‖m‖, ‖n‖) > 0. Then∣∣∣∣H(m,n)− 2−τ(m,n)C(S)

q‖m‖+‖n‖√
‖m‖ ‖n‖

∣∣∣∣ ≤ β7(S, λ)
q‖m‖+‖n‖

‖m‖ ‖n‖
(4.40)

with

C(S) =
2hζK(q−2)(q − 1)

πqg−1

×
∏
v∈S

(
1− 1

q2fv

)(
1− 1

qfv

)
·
∏
v∈V
v/∈S

(
1 +

1
2qfv(qfv + 1)

)
(4.41)

and β7(S, λ) a constant.
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Proof. We suppose that ‖m‖ ≤ ‖n‖. Then

(1) ‖m‖ ≥ λ‖n‖.

In view of (4.5) and the definition of Z ′(S,m,n, U, V ),

(2) H(S,m,n) =
∑
U∈IG

2fU≤‖m‖

∑
V ∈IG

2fV ≤‖n‖

Z ′(S,m,n, U, V ).

Let

(3) α =
2
3
λ.

We note that log 2/log q < α ≤ 2/3. Let E′ denote the set of pairs (U, V )
with U and V coprime to G and such that 2fU ≤ 1

3‖m‖, 2fV ≤ 1
3λ‖n‖, and

let E denote the set of (U, V ) ∈ E′ such that

(4) min(‖m‖ − 2fU , ‖n‖ − 2fV ) ≥ αmax(‖m‖ − 2fU , ‖n‖ − 2fV ).

Let (U, V ) be a pair of ideals as in (2). Obviously, Z ′(S,m,n, U, V ) is less
than the number of pairs (A,B) of ideals such that AA and BB are principal
and satisfy

fA = ‖m‖ − 2fU , fB = ‖n‖ − 2fV ,

with A and B defined by (4.7). By (3.5),

Z ′(S,m,n, U, V ) ≤ %(R)2q‖m‖+‖n‖−2fU−2fV .

Hence,∑
U∈IG , V ∈IG

(U,V )/∈E′
2fU≤‖m‖, 2fV ≤‖n‖

Z ′(S,m,n, U, V )

≤ %(R)2q‖m‖+‖n‖
( ∑

U∈I
2fU>‖m‖/3

q−2fU
∑
V ∈I

q−2fV +
∑
V ∈I

2fV >λ‖n‖/3

q−2fV
∑
U∈I

q−2fU
)
.

Thus, by (3.5),∑
U∈IG , V ∈IG

(U,V )/∈E′
2fU≤‖m‖, 2fV ≤‖n‖

Z ′(S,m,n, U, V )

≤ h2

(
q

q − 1

)2

%(R)4q‖m‖+‖n‖(q−‖m‖/6 + q−λ‖n‖/6),

and by (1),
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(5)
∑

U∈IG , V ∈IG
(U,V )/∈E′

2fU≤‖m‖, 2fV ≤‖n‖

Z ′(S,m,n, U, V )

≤ 2h2

(
q

q − 1

)2

%(R)4q‖m‖+‖n‖−λ‖n‖/6.

If (U, V ) ∈ E′ is not in E then either 2fV ≥ ‖n‖ − ‖m‖+ 2fU , and in this
case 2fV > ‖n‖−α‖m‖+ 2αfU ≥ ‖n‖−α‖m‖, or 2fV < ‖n‖−‖m‖+ 2fU ,
and in this case 2fU > ‖m‖ − α‖n‖+ 2αfV ≥ ‖m‖ − α‖n‖. So by (3.5),

(6)
∑

(U,V )∈E′
(U,V )/∈E

Z ′(S,m,n, U, V )

≤ h2

(
q

q − 1

)2

%(R)4q‖m‖+‖n‖(q−(‖n‖−α‖m‖)/2 + q−(‖m‖−α‖n‖)/2).

Let

(7) F = F (S,m,n) =
∑

(U,V )∈E

Z ′(S,m,n, U, V ).

Then, by (2), (5), (1) and (3),

(8) |H(S,m,n)− F | ≤ 4h2

(
q

q − 1

)2

%(R)4q‖m‖+‖n‖−λ‖n‖/6.

If (U, V ) ∈ E, then

min(‖m‖ − 2fU , ‖n‖ − 2fV ) ≥ αmax(‖m‖ − 2fU , ‖n‖ − 2fV )

with log 2/log q < α ≤ 1 and we may apply Theorem 4.8 to Z ′(S,m,n, U, V ).
Doing this, we get

(9) |F − 2−τ(m,n)C ′(S)q‖m‖+‖n‖F ?| ≤ β6(S, %)2r+fG/2q‖m‖+‖n‖F ′

with

F ? =
∑

(U,V )∈E

q−2fU−2fV (‖m‖ − 2fU )−1/2(‖n‖ − 2fV )−1/2,(10)

F ′ =
∑

(U,V )∈E

q−2fU−2fV (‖m‖ − 2fU )−1(‖n‖ − 2fV )−1.(11)

If (U, V ) ∈ E then (U, V ) ∈ E′ and by (3), (‖m‖ − 2fU )(‖n‖ − 2fV ) ≥
2
9(3− λ)‖m‖ ‖n‖. Therefore,

F ′ ≤ 9
2(3− λ)‖m‖ ‖n‖

(∑
U∈I

q−2fU
)2
.

By (3.5),

(12) F ′ ≤ 9h2q2%(R)2

2(3− λ)(q − 1)2‖m‖ ‖n‖
.
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We have

0 ≤ 1√
(‖m‖ − 2fU )(‖n‖ − 2fV )

− 1√
‖m‖ ‖n‖

≤ 2fV√
2/3(

√
1− λ/3 + 1− λ/3)‖m‖1/2‖n‖3/2

+
2fU

(
√

2/3 + 2/3)‖m‖3/2‖n‖1/2

≤ 1
‖m‖ ‖n‖

(
2fV√

2/3(
√

1− λ/3 + 1− λ/3)
+

2fU√
λ(
√

2/3 + 2/3)

)
.

The series

(13) Y4 =
∑

(U,V )∈I×I

fUq
−2fU−2fV

is convergent and by (10),

(14) 0 ≤ F ? − 1√
‖m‖ ‖n‖

∑
(U,V )∈E

q−2fU−2fV ≤ κ(λ)Y4

‖m‖ ‖n‖

with

(15) κ(λ) = 2
(

1√
2/3(

√
1− λ/3 + 1− λ/3)

+
1√

λ(
√

2/3 + 2/3)

)
.

The series

(16) Y5 =
∑

(U,V )∈IG×IG

q−2fU−2fV

is convergent. As above we get∣∣∣Y5 −
∑

(U,V )∈E

q−2fU−2fV
∣∣∣ ≤ 4h2

(
q

q − 1

)2

%(R)2q‖m‖+‖n‖−λ‖n‖/6,

and by (14),

0 ≤ F ? − Y5√
‖m‖ ‖n‖

(17)

≤ κ(λ)Y4

‖m‖ ‖n‖
+ 4h2

(
q

q − 1

)2

%(R)2
q‖m‖+‖n‖−λ‖n‖/6√

‖m‖ ‖n‖
.

By (8), (9), (12) and (17) we get

(18)
∣∣∣∣H(S,m,n)− 2−τ(m,n)C ′(S)Y5

q‖m‖+‖n‖√
‖m‖ ‖n‖

∣∣∣∣ ≤ β7(R, λ)
q‖m‖+‖n‖

‖m‖ ‖n‖
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with β7(R, λ) a constant. In order to complete the proof, it remains to
compute the constant

(19) C(S) = C ′(S)Y5.

Expanding Y5 as a product, we get

Y5 =
∏
P∈PG

(1− q−2fP )−2 =
∏
P∈P

(1− q−2fP )−2 ·
∏
P∈P
P |G

(1− q−2fP )2.

By (2.1) and (4.1),

Y5 = ζK

(
1
q2

)2 ∏
v∈S

(
1− 1

q2fv

)2

,

and by (4.38),

C(S) =
2hζK(q−2)(q − 1)

πqg−1
·
∏
v∈V
v/∈S

(
1 +

1
2qfv(qfv + 1)

)

×
∏
v∈S

(
1− 1

q2fv

)−2(
1 +

1
qfv

)−1

.

5. Quadratic forms with coefficients in the ring RS. In this section
we end the proof of the announced theorem.

Let S be a finite, non-empty set of r places of K. For r-tuples m =
(mv)v∈S and n = (nv)v∈S of rational integers, let QS(m,n) denote the
number of (a, b) ∈ RS ×RS such that

(1) v(a) = mv and v(b) = nv for all v ∈ S,
(2) the quadratic form

(fa,b) X2 − aY 2 − bZ2

represents 0 over the field K.

Similarly, let Q1,S(m,n) denote the number of (a, b) ∈ RS ×RS with ideals
RSa and RSb square-free and coprime and such that (1) and (2) are true;
and let Q′S(m,n) denote the number of (a, b) ∈ RS ×RS with RSa and RSb
square-free and such that (1) and (2) are true.

Theorem 5.1. Let λ and θ be real numbers with 3 log 2/(2 log q) < λ ≤ 1
and log 2/log q < θ ≤ 1. Let m = (mv)v∈S and n = (nv)v∈S be r-tuples of
rational integers. If

0 < λmax(‖m‖, ‖n‖) ≤ min(‖m‖, ‖n‖), (5.1)
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then ∣∣∣∣QS(m,n)− 2−τ(m,n)C(S)
q‖m‖+‖n‖√
‖m‖ ‖n‖

∣∣∣∣ ≤ β7(S, λ)
q‖m‖+‖n‖

‖m‖ ‖n‖
; (5.2)

if
0 < θmax(‖m‖, ‖n‖) ≤ min(‖m‖, ‖n‖), (5.3)

then∣∣∣∣Q1,S(m,n)− 2−τ(m,n)C1(S)
q‖m‖+‖n‖√
‖m‖ ‖n‖

∣∣∣∣ ≤ β5(S, θ)
q‖m‖+‖n‖

‖m‖ ‖n‖
, (5.4)∣∣∣∣Q′S(m,n)− 2−τ(m,n)C ′(S)

q‖m‖+‖n‖√
‖m‖ ‖n‖

∣∣∣∣ ≤ β6(S, θ)
q‖m‖+‖n‖

‖m‖ ‖n‖
, (5.5)

with ‖ · ‖, τ(m,n), C(S), C ′(S), C1(S), β5(S, θ), β6(S, θ), β7(S, λ) defined as
in Section 4.

Proof. Let v0 ∈ S and let R = R{v0}. If S = {v0}, then (5.2), (5.4)
and (5.5) are respectively given by Theorem 4.10, Corollary 4.7 and Corol-
lary 4.9. We now assume that the set S′ = S − {v0} is not empty. Let G be
defined by (4.1). For v ∈ S′, we denote by dv the order of the ideal class of
Pv in the ideal class group of the ring R, and by pv the monic element such
that Rpv = P dvv . Let (iv)v∈S′ , (mv)v∈S′ , (jv)v∈S′ , (nv)v∈S′ be defined by the
relations

(3) mv = 2dviv +mv, 0 ≤ mv < 2dv; nv = 2dvjv + nv, 0 ≤ nv < 2dv.

Let XS(m,n) denote the set of (a, b) ∈ RS × RS such that v(a) = m and
v(b) = n. Let (a, b) ∈ XS(m,n) and set

a′ = a
∏
v∈S′

p−2iv
v , b′ = b

∏
v∈S′

p−2jv
v .

We look at (v(a′))v∈V and (v(b′))v∈V . For v ∈ S′, we have v(a′) = mv ≥ 0
and v(b′) = nv ≥ 0. For v /∈ S, v(a′) = v(a) ≥ 0 and v(b′) = v(b) ≥ 0. Hence
a′ and b′ belong to the ring R = R{v0}. By the product formula,

v0(a′) = mv0 +
2
f0

∑
v∈S′

ivdvfv, v0(b′) = nv0 +
2
f0

∑
v∈S′

jvdvfv.

Hence, (a′, b′) ∈ XS(m′,n′), where

(4) m′ = (mv)v∈S , n′ = (nv)v∈S ,

with

(5) mv0 = mv0 +
2
f0

∑
v∈S′

ivdvfv, nv0 = nv0 +
2
f0

∑
v∈S′

jvdvfv.

Moreover, the map (a, b) 7→ (a′, b′) is bijective and the quadratic form (fa,b)
represents 0 over K if and only if (fa′,b′) does. Hence, QS(m,n) is equal
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to the number of pairs (a′, b′) ∈ XS(m′,n′) such that (fa′,b′) represents 0
over K, that is, the number H(S,m′,n′) defined in the previous section. By
(3)–(5),

−‖m′‖ =
∑
v∈S

fvmv = f0mv0 +
∑
v∈S′

2ivdvfv +
∑
v∈S′

(mv − 2ivdv)fv,

and

(6) ‖m′‖ = ‖m‖, ‖n′‖ = ‖n‖.
We now deduce (5.2) from (4.40).

Let X1,S(m,n), resp. X′S(m,n), denote the set of (a, b) ∈ XS(m,n)
such that (fa,b) represents zero with a and b coprime and square-free, resp.
with a and b square-free. As above, the map (a, b) 7→ (a′, b′) is bijec-
tive from X1,S(m,n) to Z(S,m′,n′, (1), (1), (1)), and from X′S(m,n) to
Z(S,m′,n′, (1), (1)), the sets Z(S,m′,n′, (1), (1), (1)) and Z ′(S,m′,n′,
(1), (1)) being defined in Section 4. We now get (5.4) and (5.5) from (4.35)
and (4.39).
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