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Powers of 2 with five distinct summands
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0. Summary. We show that every sufficiently large, finite set of positive
integers of density larger than 1/3 contains five or fewer pairwise distinct
elements whose sum is a power of 2.

This provides a sharp answer to a question of Erdős and Freud.

1. Introduction: powers of 2 and subset sums. Let A be a set of
integers. Evidently, if all elements of A are divisible by 3, then no integer
power of 2 can be represented as a sum of elements of A. On the other hand,
Erdős and Freud conjectured in [E89] that if A ⊆ [1, l] and |A| > l/3 with a
sufficiently large positive integer l, so that A cannot consist only of multiples
of 3, then there exist pairwise distinct elements of A whose sum is a power
of 2. Notice that if the elements are not required to be pairwise distinct,
the assertion becomes trivial; indeed, it is well known that for any set A of
coprime positive integers, all sufficiently large integers are representable as
a sum of elements of A. On the other hand, the assumption that l is large
excludes several sporadic exceptional sets, like A = {10, 11, 12, 13, 14} or
A = {7, 10, 11, 13, 17, 18, 20}.

The above-stated conjecture was settled by Erdős and Freiman in [EF90],
and independently by Nathanson and Sárközy in [NS89]. As proven in the
former of the two papers, there are at most O(ln l) pairwise distinct elements
of A the sum of which is a power of 2. In the latter paper it is shown that
at most 30961 distinct summands are needed, and if the requirement that
the summands are distinct is dropped, then at most 3504 summands suffice.
These results were further sharpened by Freiman who reduced in [F92] the
number of summands to at most sixteen if they are required to be pairwise
distinct, and at most six in the unconstrained case.

In [L96a] the present author showed that four not necessarily distinct
summands suffice. This is best possible since, as Alon has observed (this
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example was presented with his kind permission in [L96a]), if s ≥ 4 is an
even integer, l = 2s + 3, and A = {3, 6, 9, . . . , l − 1} ∪ {l}, then one cannot
represent a power of 2 as a sum of at most three elements of A. For, if
0 ≤ t ≤ s, then 2t < l; if t = s + 1, then 2t 6≡ l (mod 3) and 2t < 2l; and
finally, if t ≥ s+ 2 then 2t ≥ 4l− 12 > 3l. (The interested reader will easily
fill in the details.)

Similarly, if s is an odd positive integer, l = 2s + 3, and A = {3, 6, 9, . . . ,
l− 2}∪ {l}, then no power of 2 can be represented as a sum of at most four
pairwise distinct elements of A: for, if 0 ≤ t ≤ s, then 2t < l; if t = s+1, then
2t 6≡ l (mod 3); and if t ≥ s+2, then 2t ≥ 4l−12 > l+(l−2)+(l−5)+(l−8).

In this paper we show that at most five distinct elements suffice; in view
of the example above, this is best possible. In fact, we even relax slightly
the density condition.

Theorem 1. There exists a positive integer L with the following prop-
erty. Let l > L be an integer and suppose that A ⊆ [1, l] is a set of integers
with |A| ≥ 6

19 l and such that not all elements of A are divisible by 3. Then
there exists a subset B ⊆ A with |B| ≤ 5 such that the sum of the elements
of B is a power of 2.

Using our method, the multiplicative factor 6/19 in the statement of
Theorem 1 can be replaced with any value, larger than 17/54. There is little
doubt that further minor refinements are possible, but obtaining the sharp
constant may be difficult. We mention in this connection that if s ≥ 3 is
an integer, l = 2s + 3, k = 2s−2 + 1, and A = {3, 6, . . . , 3k} ∪ {l}, then
|A| > 0.25l and no power of 2 can be represented as a sum of five or fewer
pairwise distinct elements of A.

In the next section we prepare the ground for the proof of Theorem 1;
the proof itself is presented in Section 3.

2. Notation and auxiliary results. Let A be a set of integers. We
denote the smallest and largest elements of A by minA and maxA, respec-
tively; these quantities are undefined if A is empty, unbounded from below
(for minA) or from above (for maxA). The greatest common divisor of the
elements of A is denoted gcdA; notice that the assumption gcdA = 1 im-
plies that A contains at least one non-zero element. For an integer h ≥ 1
the h-fold sumset of A is defined by

hA := {a1 + · · ·+ ah : a1, . . . , ah ∈ A};
this is the set of all integers representable as a sum of exactly h elements
of A. We set hA = {0} for h = 0.

Most of the results gathered in this section show that if the set A is
sufficiently dense, then the sumsets hA are large and well-structured.
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Theorem 2 (Freiman [F66, Theorem 1.9]). Let A be a finite set of
integers such that minA = 0 and gcdA = 1. Write n := |A| and l := maxA.
Then

|2A| ≥ min{l, 2n− 3}+ n.

A generalization of Theorem 2 is as follows.

Theorem 3 (Lev [L96b, Corollary 1]). Let A be a finite set of integers
such that minA = 0 and gcdA = 1. Write n := |A| and l := maxA and
suppose that κ is an integer satisfying κ(n− 2) + 1 ≤ l ≤ (κ+ 1)(n− 2) + 1.
Then for any non-negative integer h we have

|hA| ≥


h(h+ 1)

2
(n− 2) + h+ 1 if h ≤ κ,

κ(κ+ 1)
2

(n− 2) + κ+ 1 + (h− κ)l if h ≥ κ.

Corollary 4. Let A be a finite set of integers such that minA = 0
and gcdA = 1. Write n := |A| and l := maxA and suppose that l ≥ 3n−5.
Then

|3A| ≥ 6n− 8.

Proof. If n = 2, then A = {0, 1} and the assertion is immediate. If n ≥ 3,
set κ := b(l − 1)/(n− 2)c and apply Theorem 3 observing that κ ≥ 3.

The following result describes the structure of the sets hA and shows
that if h is sufficiently large, these sets contain long blocks of consecutive
integers.

Theorem 5 (Lev, reformulation of [L97, Theorem 1]). Let A be a finite
set of integers such that minA = 0 and gcdA = 1. Write n := |A| and
l := maxA and suppose that κ is an integer satisfying κ(n − 2) + 1 ≤ l ≤
(κ+ 1)(n− 2) + 1. Then for any non-negative integer h ≥ 2κ we have

[(2l − (κ+ 1)(n− 2)− 2)κ, hl − (2l − (κ+ 1)(n− 2)− 2)κ] ⊆ hA.

Remark. The complicated-looking expression (2l− (κ+ 1)(n−2)−2)κ
provides a sharp bound: the interval of Theorem 5 is widest possible and
cannot be extended in either direction. One can replace it with the narrower
interval [κl, (h− κ)l], but in some applications (such as the one considered
in this paper) this results in a critical loss of accuracy.

Applying Theorem 5 with κ = 1 and h = 4 we obtain

Corollary 6. Let A be a finite set of integers such that minA = 0.
Write n := |A| and l := maxA and suppose that l ≤ 2n − 3. Then
[2l − 2n+ 2, 2l + 2n− 2] ⊆ 4A.
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By a three-term arithmetic progression we mean a three-element set of
real numbers, one of which is the arithmetic mean of the other two; thus, the
zero difference is forbidden, and progressions with the differences d and −d
are considered identical. To pass from the sumsets hA to sums of pairwise
distinct elements of A we use a theorem by Varnavides.

Theorem 7 (Varnavides [V59]). For any real number α > 0 there exists
a real number c > 0 (depending on α) with the property that if l is a positive
integer and A ⊆ [1, l] is a set of integers satisfying |A| > αl, then A contains
at least cl2 three-term arithmetic progressions.

The sumset of two potentially distinct sets of integers B and C is defined
by B+C := {b+c : b ∈ B, c ∈ C}. The following lemma is a straightforward
generalization of [L96a, Lemma 1] and a particular case of [A04, Lemma 2.1].

Lemma 8. Let l be a positive integer and suppose that B,C ⊆ [0, l] are
integer sets satisfying |B|+ |C| ≥ l+ 2. Then the sumset B +C contains a
power of 2.

We sketch the proof mainly for the sake of completeness.

Proof of Lemma 8. Assuming that B+C does not contain a power of 2,
we show that |B|+|C| ≤ l+1. We use induction on l; the case l = 1 is obvious
and we assume that l ≥ 2. Fix an integer r ≥ 1 so that 2r ≤ l < 2r+1. If
b ∈ B, then 2r+1 − b /∈ C, and it follows that

(1) |B ∩ [2r+1 − l, l]|+ |C ∩ [2r+1 − l, l]| ≤ 2l + 1− 2r+1.

On the other hand, by the induction hypothesis we have

(2) |B ∩ [0, 2r+1 − l − 1]|+ |C ∩ [0, 2r+1 − l − 1]| ≤ 2r+1 − l,
unless l = 2r+1−1. Actually, (2) remains valid also if l = 2r+1−1, provided
that at least one of the sets B and C does not contain 0. Since the inequality
|B|+ |C| ≤ l + 1 is a direct corollary of (1) and (2), it remains to consider
the case where l = 2r+1 − 1 and 0 ∈ B ∩ C. In this case we have 2r /∈ B
and 2r /∈ C; in other words, if b = 2r then b /∈ B and 2r+1 − b /∈ C.
Consequently, (1) can be strengthened to |B∩ [1, l]|+ |C ∩ [1, l]| ≤ l−1, and
the result follows.

3. Proof of Theorem 1. The key ingredient of our proof is

Theorem 9. Let A be a finite set of integers with minA = 0. Write
l := maxA and n := |A| and suppose that n ≥ 17

54 l + 2. Then the sumset
5A contains a power of 2, unless all elements of A are divisible by 3.

Proof. Since n > l/4 + 1, we have gcdA ≤ 3, and in fact gcdA = 1 can
be assumed without loss of generality: for, if gcdA = 2, then one can replace
A with the set A′ := {a/2 : a ∈ A}.
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If l ≤ 2n−2, then the sumset 2A ⊆ 5A contains a power of 2 by Lemma 8,
applied to the sets B = C = A. If l ≥ 2n− 1, then

(3) |2A| ≥ 3n− 3

by Theorem 2; if, in addition, we assume that l ≤ 3n − 4, then 2|2A| ≥
6n − 6 ≥ 2l + 2 and by Lemma 8 applied to B = C = 2A ⊆ [0, 2l], the
sumset 4A ⊆ 5A contains a power of 2. For the rest of the proof we assume
that l ≥ 3n− 3, and so by Corollary 4,

(4) |3A| ≥ 6n− 8.

We assume, furthermore, that 5A does not contain a power of 2 (and so
neither do any of A, 2A, 3A, 4A ⊆ 5A) and obtain a contradiction.

By Lemma 8 we have
|2A|+ |(3A) ∩ [0, 2l]| ≤ 2l + 1,

whence
|(3A) ∩ [0, 2l]| ≤ 2l − 3n+ 4

by (3); using (4) we get

|(3A) ∩ [2l, 3l]| = |3A|+ 1− |(3A) ∩ [0, 2l]| ≥ 9n− 2l − 11

so that

(5) |[2l, 3l] \ (3A)| ≤ 3l − 9n+ 12.

Fix now a positive integer r with 2l < 2r < 4l. (The equalities 2r = 2l
and 2r = 4l are ruled out by the assumption that 5A does not contain a
power of 2.) For any a ∈ A we have 2r − a /∈ 4A, and hence

(6) |[2r − l, 2r] \ (4A)| ≥ n.
If 2r > 3l then 3l ∈ [2r− l, 2r] and in view of (3A)∪ (3A+ l) ⊆ 4A we derive
from (6) and (5) that

n ≤ |[2r − l, 3l] \ (4A)|+ |[3l, 2r] \ (4A)|
≤ |[2r − l, 3l] \ (3A)|+ |[2l, 2r − l] \ (3A)|
≤ |[2l, 3l] \ (3A)|+ 1
≤ 3l − 9n+ 13,

whence 3l ≥ 10n− 13 > (85/27)l, a contradiction. Thus, 2l < 2r < 3l.
Next, we notice that if b ∈ 2A, then 2r − b /∈ 3A. Consequently,

|(2A) ∩ [0, 2r−1]| ≤ |[2r−1, 2r] \ (3A)|
≤ |[2r−1, 2l − 1] \ (2A)|+ |[2l, 2r] \ (3A)|
= 2l − 2r−1 − |(2A) ∩ [2r−1, 2l − 1]|+ |[2l, 2r] \ (3A)|,

and using (3) we conclude that

(7) 2r−1 ≤ 2l − 3n+ 4 + |[2l, 2r] \ (3A)|.
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In conjunction with (5) this gives

2r−1 ≤ 5l − 12n+ 16 ≤
(

5− 12 · 17
54

)
l =

11
9
l <

5
4
l.

With this in mind and observing that if b ∈ 2A, then 2r+1 − b /∈ 3A, we get

|(2A) ∩ [2r+1 − 3l, 2l]| ≤ |[2r+1 − 2l, 3l] \ (3A)|.
Taking into account (3) and applying Lemma 8 with B = C = (2A) ∩
[0, 2r+1 − 3l − 1] we obtain

|[2r+1 − 2l, 3l] \ (3A)| ≥ |2A| − |(2A) ∩ [0, 2r+1 − 3l − 1]|(8)

≥ 3n− 3− 2r +
3
2
l.

Finally, (5), (7), and (8) give

6l − 18n+ 24 ≥ 2|[2l, 3l] \ (3A)|
≥ 2|[2l, 2r] \ (3A)|+ |[2r+1 − 2l, 3l] \ (3A)|

≥ (2r − 4l + 6n− 8) +
(

3n− 3− 2r +
3
2
l

)
= 9n− 5

2
l − 11,

and therefore
17
2
l ≥ 27n− 35,

n ≤ 17
54
l +

35
27
,

the contradiction sought.

Proof of Theorem 1. Denote by A0 the set of all those elements of A
which are the midterm of at least four three-term arithmetic progressions
with elements in A. Write n0 := |A0|, l0 := maxA0, and A1 := A \ A0.
Evidently, the number of three-term arithmetic progressions in A1 is at
most 3|A1| ≤ 3l. If we had |A1| > l/1026 − 1, then for sufficiently large l
this would contradict Theorem 7. Consequently, we can assume that |A1| ≤
l/1026 − 1, and hence n0 ≥ (6/19)l − l/1026 + 1 = (17/54)l + 1. We have
gcdA0 ≤ l0/n0 < 54/17 < 4, so that in fact gcdA0 ∈ {1, 2, 3}, and we
first consider the case where gcdA0 < 3. By Theorem 9 as applied to the
set A0 ∪ {0}, there is an integer 1 ≤ k ≤ 5 and elements a1, . . . , ak ∈ A0

such that σ := a1 + · · · + ak is a power of 2. Suppose that k ≥ 2 and
some of the ai are equal; say, a1 = a2. By the definition of A0, we can then
find four representations of a1 + a2 as a sum of two elements of A, so that
the two summands in each representation are distinct from each other and
from the summands in all other representations. For at most three of the
representations in question one of the summands lies in {a3, . . . , ak}, and it
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follows that there is a representation a1 + a2 = a′1 + a′2 such that each of a′1
and a′2 is distinct from a3, . . . , ak. We now write σ = a′1 + a′2 + a3 + · · ·+ ak,
and repeating the procedure if necessary, we represent σ (which is a power
of 2) as a sum of pairwise distinct elements of A, as desired.

It remains to consider the case where gcdA0 = 3. Write A′ := {a/3 :
a ∈ A0}, so that maxA′ = l0/3, gcdA′ = 1, and |A′| = n0. We have

l0 ≤
54
17

(n0 − 1) < 6(n0 − 1),

whence
l0/3 < 2(n0 + 1)− 3.

Therefore, applying Corollary 6 to the set A′ ∪ {0}, we conclude that every
integer from the interval T := [2l0/3− 2n0 + 2, 2l0/3 + 2n0 − 2] is a sum of
at most four elements of A′. Let a be an element of A, not divisible by 3.
Since

a+ 3(2l0/3 + 2n0 − 2) ≥ 4(a+ 3(2l0/3− 2n0 + 2))

(as follows from a ≤ l ≤ −2l + 10n0 − 10 ≤ −2l0 + 10n0 − 10), the interval
[a+3(2l0/3−2n0+2), a+3(2l0/3+2n0−2)] contains two consecutive powers
of 2. One of them is congruent to a modulo 3, hence can be represented as
a + 3t with an integer t ∈ T and furthermore as a + a1 + · · · + ak, where
1 ≤ k ≤ 4 and a1, . . . , ak ∈ A0. The proof can now be completed as above,
by eliminating possible repetitions of the summands.

Acknowledgements. The two exceptional sets at the beginning of the
paper were found at our request by Talmon Silver, using an exhaustive
computer search. For l ≤ 60, the complete list of all sets A ⊆ [1, l] with
|A| > l/3 and such that no power of 2 can be represented as a sum of
pairwise distinct elements of A is

{5, 6, 7}, {3, 6, 9, 11}, {3, 7, 10, 11}, {3, 9, 10, 11}, {3, 9, 10, 11, 14},
{5, 7, 10, 12, 14}, {3, 9, 10, 12, 14}, {5, 9, 10, 12, 14}, {3, 10, 11, 12, 14},
{6, 9, 11, 13, 14}, {10, 11, 12, 13, 14}, {7, 10, 11, 13, 17, 18, 20},

and it is quite possible that no other sets with the property in question exist.
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