An odd square as a sum of an odd number of odd squares

by

HENG HUAT CHAN (Singapore), SHAUN COOPER (Auckland) and WEN-CHIN LIAW (Min-Hsiung)

1. Introduction. Let $s_k(n)$ be the number of representations of n as sum of k positive odd squares. The generating function for $s_k(n)$ is

$$S_k(q) := \sum_{n=0}^{\infty} s_k(n) q^n = \left(\sum_{j=0}^{\infty} q^{(2j+1)^2}\right)^k,$$

and clearly $s_k(n) = 0$ if $n \not\equiv k \pmod{8}$. The goal of this article is to prove that for any odd positive integer n and every positive integer k,

(1.1)
$$s_{8k+1}(n^2) = -\frac{(2^{4k}-1)B_{4k}}{8k} \sum_{d|n} \mu(d) d^{4k-1} s_{16k}\left(\frac{8n}{d}\right) + O(n^{6k-1}),$$

where B_k is the kth Bernoulli number (¹) given by

$$\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} B_k \, \frac{x^k}{k!},$$

and

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^j & \text{if } n = p_1 \cdots p_j, \text{ for distinct primes } p_1, \dots, p_j, \\ 0 & \text{otherwise.} \end{cases}$$

²⁰⁰⁰ Mathematics Subject Classification: 11F03, 11F11, 11F20.

Key words and phrases: Dirichlet series, Eisenstein series, Hecke operator, modular form, newform, oldform, sum of squares.

The first author is supported by National University of Singapore Academic Research Fund R146000103112.

^{(&}lt;sup>1</sup>) Note that $B_{4k} < 0$.

When k = 1 or 2, the error term in (1.1) is zero, and we obtain the identities

$$s_9(n^2) = \frac{1}{16} \sum_{d|n} \mu(d) d^3 s_{16} \left(\frac{8n}{d}\right),$$
$$s_{17}(n^2) = \frac{17}{32} \sum_{d|n} \mu(d) d^7 s_{32} \left(\frac{8n}{d}\right).$$

When n = p is prime, these simplify further to

(1.2)
$$s_9(p^2) = \frac{1}{16} s_{16}(8p),$$

(1.3)
$$\frac{1}{17}s_{17}(p^2) = \frac{1}{32}s_{32}(8p).$$

The method we shall use in proving (1.1) is motivated by the work of A. Hurwitz [5]. In Section 2, we illustrate the main idea by proving (1.1) in the case when k = 1 and deducing (1.2).

In Section 3, we prove (1.1) and give a precise formula for the error term. We also give an asymptotic formula for $s_{8k+1}(n^2)$ in terms of the divisors of n.

2. Proof of (1.1) for k = 1. Let

(2.1)
$$T_k(q) = \sum_{n=0}^{\infty} t_k(n)q^n = \left(\sum_{j=0}^{\infty} q^{(2j+1)^2/8}\right)^k.$$

Note that $T_k(q^8) = S_k(q)$ and for all positive integers n,

(2.2)
$$t_{8k}(n) = s_{8k}(8n).$$

Next, recall that for |q| < 1,

(2.3)
$$\sum_{n=0}^{\infty} t_8(n)q^n = \sum_{n=1}^{\infty} \frac{n^3 q^n}{1 - q^{2n}}.$$

Identity (2.3) is the classical sum of eight triangular numbers formula of Legendre [7, p. 133] and Jacobi [6, p. 170]. It was rediscovered by Ramanujan [9, p. 191], and many proofs have since been given. For example, see [3, eq. (3.71)]. Equating coefficients of q^n on both sides of (2.3), we deduce that

(2.4)
$$t_8(n) = \sum_{d|n} \varepsilon(d) \left(\frac{n}{d}\right)^3,$$

where

(2.5)
$$\varepsilon(n) = \begin{cases} 0 & \text{if } n \text{ is even,} \\ 1 & \text{if } n \text{ is odd.} \end{cases}$$

360

From (2.4), we see that the corresponding Dirichlet series for $T_8(q)$ (for $\operatorname{Re} s > 4$) is

$$\zeta_{T_8}(s) := \sum_{n=1}^{\infty} \frac{t_8(n)}{n^s} = \zeta(s-3)L(s),$$

where $\zeta(s)$ is the Riemann zeta function, and

$$L(s) = \sum_{n=1}^{\infty} \frac{\varepsilon(n)}{n^s}.$$

Hence $\zeta_{T_8}(s)$ has the Euler product

(2.6)
$$\zeta_{T_8}(s) = \prod_p \frac{1}{1 - \frac{\varepsilon(p) + p^3}{p^s} + \frac{\varepsilon(p)}{p^{2s-3}}}.$$

For positive integers m, k and some arithmetical function χ , let $\mathbf{T}_{m,\chi}$ be the operator on a power series

$$A(q) = \sum_{n=0}^{\infty} a(n)q^n$$

defined by

$$\mathbf{T}_{m,\chi}(A(q)) = \sum_{n=0}^{\infty} b(n)q^n,$$

where

$$b(n) = \sum_{d | \gcd(m,n)} \chi(d) d^{k-1} a\left(\frac{mn}{d^2}\right).$$

Let

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \, \middle| \, c \equiv 0 \pmod{N} \right\}.$$

Let $M_k(N) = M(\Gamma_0(N), k, 1)$ be the space of weight k modular forms on $\Gamma_0(N)$ with multiplier 1. When $\chi = \varepsilon$ with ε given by (2.5), $\mathbf{T}_{m,\varepsilon}$ are the Hecke operators on $M_k(2)$.

It is known that if $A(q) \in M_k(2)$, with a(1) = 1, and the corresponding Dirichlet series for A(q) has an Euler product, then (see for example [8, Theorem 4.5.16])

$$\mathbf{T}_{m,\varepsilon}(A(q)) = a(m)A(q).$$

Hence

(2.7)
$$a(m)a(n) = \sum_{d|\gcd(m,n)} \varepsilon(d) d^{k-1}a\left(\frac{mn}{d^2}\right).$$

Using (2.6) and the fact that $T_{8k} \in M_{4k}(2)$ [10, p. 222, Theorem 7.1.4] for $q = e^{2\pi i \tau}$, we deduce from (2.7) that

(2.8)
$$t_8(m)t_8(n) = \sum_{d|\gcd(m,n)} \varepsilon(d) d^3 t_8\left(\frac{mn}{d^2}\right).$$

When m = 2 and n is any positive integer, we deduce from (2.8) that

(2.9)
$$t_8(2)t_8(n) = t_8(2n).$$

We now state and prove a simple lemma.

LEMMA 2.1. If f satisfies

(2.10)
$$f(m)f(n) = \sum_{d|\gcd(m,n)} g(d)f\left(\frac{mn}{d^2}\right),$$

where g is a completely multiplicative function, then

(2.11)
$$f(mn) = \sum_{d|\gcd(m,n)} \mu(d)g(d)f\left(\frac{m}{d}\right)f\left(\frac{n}{d}\right)$$
$$= \sum_{d} \mu(d)g(d)f\left(\frac{m}{d}\right)f\left(\frac{n}{d}\right),$$

where we use the convention that the coefficient f(n/d) is zero if d is not a divisor of n.

Proof. Let N be any positive integer. Let m and n be any positive integers satisfying N = gcd(m, n) and write m = Ns and n = Nt, with gcd(s, t) = 1. From (2.10), we have

$$f(Ns)f(Nt) = \sum_{d|N} g(d)f\left(\frac{stN^2}{d^2}\right).$$

Since

$$\sum_{d|N} h(d) = \sum_{d|N} h(N/d),$$

we conclude that

$$f(Ns)f(Nt) = \sum_{d|N} g\left(\frac{N}{d}\right) f(std^2),$$

or

$$\frac{f(Ns)f(Nt)}{g(N)} = \sum_{d|N} \frac{1}{g(d)} f(std^2).$$

Applying the Möbius inversion formula, we find that

$$\frac{f(stN^2)}{g(N)} = \sum_{d|N} \mu\left(\frac{N}{d}\right) \frac{f(ds)f(dt)}{g(d)}.$$

Simplifying the above, we obtain the first equality of (2.11). The second equality of (2.11) follows immediately. \blacksquare

Applying Lemma 2.1 with $f = t_8$ and using equation (2.8), we conclude that

(2.12)
$$t_8(mn) = \sum_d \varepsilon(d)\mu(d)d^3t_8\left(\frac{m}{d}\right)t_8\left(\frac{n}{d}\right).$$

We are now ready to prove the main result of this section.

THEOREM 2.2. For all odd positive integers n,

$$s_9(n^2) = \frac{1}{16} \sum_{d|n} \mu(d) d^3 s_{16} \left(\frac{8n}{d}\right).$$

Proof. Observe that

$$s_9(n^2) = \sum_{\substack{0 < i < n \\ i \text{ odd}}} s_8(n^2 - i^2) = \sum_{\substack{0 < i < n \\ i \text{ odd}}} s_8\left(4\left(\frac{n+i}{2}\right)\left(\frac{n-i}{2}\right)\right).$$

Since n - i and n + i are both even, let n - i = 2j so that n + i = 2(n - j). Then

$$s_9(n^2) = \sum_{j=1}^{(n-1)/2} s_8(4j(n-j)) = \frac{1}{2} \sum_{j=1}^{n-1} s_8(4j(n-j)).$$

Now apply (2.2), (2.9), (2.12) and then (2.1) to get

$$s_{9}(n^{2}) = \frac{1}{2} \sum_{j=1}^{n-1} t_{8} \left(\frac{j(n-j)}{2} \right) = \frac{1}{16} \sum_{j=1}^{n-1} t_{8}(j(n-j))$$
$$= \frac{1}{16} \sum_{j=1}^{n-1} \sum_{d \text{ odd}} \mu(d) d^{3} t_{8} \left(\frac{j}{d} \right) t_{8} \left(\frac{n-j}{d} \right)$$
$$= \frac{1}{16} \sum_{d|n} \mu(d) d^{3} [q^{n/d}] (T_{16}(q)),$$

where $[q^n]f(q)$ denotes the coefficient of q^n in the Taylor series expansion of f(q) about q = 0. By (2.1) and (2.2), we finally obtain

$$s_9(n^2) = \frac{1}{16} \sum_{d|n} \mu(d) d^3 t_{16} \left(\frac{n}{d}\right) = \frac{1}{16} \sum_{d|n} \mu(d) d^3 s_{16} \left(\frac{8n}{d}\right).$$

From Theorem 2.2, we immediately obtain (1.2) by letting n be an odd prime.

3. The main result. Let $M'_{4k}(2)$ denote the subspace of $M_{4k}(2)$ that consists of forms which vanish at q = 0. The space $M'_{4k}(2)$ has a basis consisting of the functions [10, p. 222]

(3.1)

$$F_{k,0}(q) = \sum_{n=0}^{\infty} f_{k,0}(n)q^n = \sum_{j=1}^{\infty} \frac{j^{4k-1}q^j}{1-q^{2j}},$$

$$F_{k,r}(q) = \sum_{n=r}^{\infty} f_{k,r}(n)q^n = (\eta(2\tau))^{24r-8k}(\eta(\tau))^{16k-24r}, \quad 0 < r < k.$$

Since $T_{8k}(q) \in M'_{4k}(2)$ [10, p. 222, Theorem 7.1.4], we have the following lemma.

LEMMA 3.1. Let k be a positive integer. Then there exist unique rational numbers $a_{k,0}, a_{k,1}, \ldots, a_{k,k-1}$ such that

(3.2)
$$T_{8k}(q) = \sum_{r=0}^{k-1} a_{k,r} F_{k,r}(q).$$

REMARKS. The equality in (3.2) is equivalent to the theorem for sums of 8k triangular numbers, discovered by Ramanujan [9, p. 191, eqs. 12.6, 12.61]. Ramanujan's formula showed further that

(3.3)
$$a_{k,0} = \frac{-8k}{2^{4k}(2^{4k}-1)B_{4k}}.$$

For another proof of Lemma 3.1, including the value of $a_{k,0}$, see [3, Theorem 3.6].

Our proof of (1.1) given in Section 2 relies heavily on the fact that the coefficients t_8 of T_8 satisfy (2.7). The modular form $F_{k,0}$ satisfies (2.7) by the same argument we gave for T_8 . However, in general, the cusp forms

$$F_{k,r} = \sum_{n=r}^{\infty} f_{k,r}(n)q^n, \quad 1 \le r \le k-1,$$

do not have coefficients $f_{k,r}$ that satisfy (2.7).

In order to prove (1.1) using the ideas in Section 2, we need the following lemma:

LEMMA 3.2. The space $M'_{4k}(2)$ has a basis of modular forms

$${E_{k,r} \mid 0 \le r \le k-1},$$

with $E_{k,0} = F_{k,0}$, such that the coefficients of the series expansion of each $E_{k,r}$ at q = 0 satisfy (2.7).

Proof. The space $M'_{4k}(2)$ can be written as

$$M'_{4k}(2) = \mathbb{C}F_{k,0} \oplus S_{4k}(2),$$

where \mathbb{C} is the field of complex numbers and $S_{4k}(2)$ is the space of cusp forms on $\Gamma_0(2)$ of weight 4k and multiplier 1. It is known that the space of cusp forms can be further written as [1, Theorem 5]

$$S_{4k}(2) = S_{4k}^{\text{new}}(2) \oplus S_{4k}^{\text{old}}(2),$$

where $S_{4k}^{\text{new}}(2)$ and $S_{4k}^{\text{old}}(2)$ are the spaces of newforms and oldforms, respectively. Furthermore, it is known [1, Theorem 5] that the space of newforms can be expressed as a direct sum of one-dimensional subspaces generated by eigenforms of $\mathbf{T}_{m,\varepsilon}$, for all positive integers m. As a result, the eigenforms that generate the space of newforms satisfy (2.7).

It remains to show that there is a basis of eigenforms of $\mathbf{T}_{m,\varepsilon}$ for the space of oldforms.

Using the notation in Section 2, we denote by $M_k(1)$ the space of modular forms of weight k on $SL_2(\mathbb{Z})$. The corresponding Hecke operators on $M_k(1)$ are $\mathbf{T}_{m,u}$ with u(n) = 1 for all integers n.

It is known that

$$(3.4) S_{4k}^{\text{old}}(2) = \bigoplus O_i,$$

where O_i is a two-dimensional space generated by $f_i(q)$ and $f_i(q^2)$, where $f_i(q)$ is an eigenform of the Hecke operators $\mathbf{T}_{m,u}$. Note that when m is odd and $f(q) \in M_k(1)$, the actions of $\mathbf{T}_{m,u}$ and $\mathbf{T}_{m,\varepsilon}$ on f(q) are identical. Hence if $f_i(q)$ is an eigenform for $\mathbf{T}_{m,u}$ for odd m then $f_i(q)$ is also an eigenform for $\mathbf{T}_{m,\varepsilon}$ for odd m.

Using $f_i(q)$ and $f_i(q^2)$, we proceed to construct $e_i(q)$ and $e_i^*(q)$ which are eigenforms for $\mathbf{T}_{2,\varepsilon}$ and generate O_i . From now on, we drop the subscript and normalize

$$f(q) = \sum_{n=1}^{\infty} a(n)q^n$$

so that a(1) = 1. Note that

$$f(q^2) = \sum_{n=1}^{\infty} a(n/2)q^n,$$

where a(k) = 0 when $k \notin \mathbb{Z}^+$. We also let

$$e(q) = \sum_{n=1}^{\infty} \alpha(n)q^n$$
 and $e^*(q) = \sum_{n=1}^{\infty} \alpha^*(n)q^n$

so that $\alpha(1) = \alpha^*(1) = 1$. Note that e(q) is a linear combination of f(q) and $f(q^2)$ and we may write

$$e(q) = c_1 f(q) + c_2 f(q^2).$$

Since both f(q) and e(q) are normalized, by comparing coefficients of q, we deduce that $c_1 = 1$.

Next, we want e(q) to satisfy the relation

$$\mathbf{T}_{2,\varepsilon}(e(q)) = \alpha(2)e(q).$$

This leads to the relation

(3.5)
$$a(2n) + c_2 a(n) = (a(2) + c_2)(a(n) + c_2 a(n/2)).$$

When n = 2, (3.5) gives

(3.6)
$$a(4) + c_2 a(2) = (a(2) + c_2)(a(2) + c_2).$$

Since f(q) is an eigenform of $\mathbf{T}_{2,u}$, we find that

(3.7)
$$a(4) + 2^{4k-1} = a^2(2).$$

Substituting (3.7) into (3.6), we conclude that

$$c_2^2 + a(2)c_2 + 2^{4k-1} = 0.$$

In order to obtain two distinct values of c_2 that correspond to two eigenforms e(q) and $e^*(q)$ of $\mathbf{T}_{2,\varepsilon}$, we must show that

(3.8)
$$a^2(2) \neq 4 \cdot 2^{4k-1}.$$

To establish (3.8), we follow an argument by J.-P. Serre [11]. First, note that if

$$a^2(2) = 4 \cdot 2^{4k-1}$$

then

(3.9)
$$a^2(2) \equiv -1 \pmod{3}$$

On the other hand, from [4, (5)], we find that (a(p)-1-p)/3 is an algebraic integer. When p = 2, this says that

$$a(2) \equiv 0 \pmod{3}.$$

This clearly contradicts (3.9), and (3.8) must hold. Hence, we conclude that each O_i in (3.4) is spanned by two eigenforms of $\mathbf{T}_{m,\varepsilon}$, and this completes our proof of Lemma 3.2. \blacksquare

Since $E_{k,0} = F_{k,0}$, we deduce from Lemmas 3.1 and 3.2 that

(3.10)
$$T_{8k}(q) = \sum_{r=0}^{k-1} a'_{k,r} E_{k,r}(q),$$

where (see (3.3))

$$a_{k,0}' = a_{k,0} = \frac{-8k}{2^{4k}(2^{4k}-1)B_{4k}}.$$

We are now ready to prove the generalization of Theorem 2.2.

366

THEOREM 3.3. Let n be an odd positive integer and $E_{k,r}$ be the basis given in Lemma 3.2. Then

$$s_{8k+1}(n^2) = \sum_{d|n} \mu(d) d^{4k-1}[q^{n/d}] \Big\{ \sum_{r=0}^{k-1} c_{k,r} E_{k,r}^2(q) \Big\},$$

for some complex numbers $c_{k,r}$, $1 \le r \le k-1$, and

(3.11)
$$c_{k,0} = \frac{a_{k,0}}{2^{4k}} = \frac{-8k}{2^{8k}(2^{4k}-1)B_{4k}}.$$

Proof. The proof is similar to that for Theorem 2.2. We write

$$s_{8k+1}(n^2) = \frac{1}{2} \sum_{j=1}^{n-1} t_{8k} \left(\frac{j(n-j)}{2} \right).$$

From (3.10), we can rewrite the above as

$$s_{8k+1}(n^2) = \frac{1}{2} \sum_{j=1}^{n-1} \sum_{r=0}^{k-1} a'_{k,r} e_{k,r} \left(\frac{j(n-j)}{2}\right),$$

where $e_{k,r}(n)$ are given by

(3.12)
$$E_{k,r}(q) = \sum_{n=0}^{\infty} e_{k,r}(n)q^n$$

Since each $e_{k,r}(n)$ satisfies (2.7), we find that

$$s_{8k+1}(n^2) = \frac{1}{2} \sum_{j=1}^{n-1} \sum_{r=0}^{k-1} b_{k,r} e_{k,r}(j(n-j)),$$

with

$$b_{k,r} = \frac{a'_{k,r}}{e_{k,r}(2)}.$$

Hence, by Lemma 2.1, we deduce that

$$s_{8k+1}(n^2) = \sum_{d|n} \mu(d) d^{4k-1}[q^{n/d}] \sum_{r=0}^{k-1} c_{k,r} E_{k,r}^2(q),$$

where $c_{k,r} = b_{k,r}/2$. Furthermore,

$$c_{k,0} = \frac{b_{k,0}}{2} = \frac{a'_{k,0}}{2e_{k,0}(2)} = \frac{a_{k,0}}{2f_{k,0}(2)} = \frac{a_{k,0}}{2^{4k}},$$

where $f_{k,0}$ is given by (3.1).

COROLLARY 3.4. For odd positive integers n,

$$s_{8k+1}(n^2) = \sum_{d|n} \mu(d) d^{4k-1}[q^{n/d}](F(q)),$$

where $F(q) \in M_{8k}(2)$ with a zero of order at least two at $\tau = i\infty$.

H. H. Chan et al.

As an application of Corollary 3.4, we give a proof of (1.3).

Proof of (1.3). By Corollary 3.4 with k = 2, we have

(3.13)
$$s_{17}(n^2) = \sum_{d|n} \mu(d) d^7[q^{n/d}](F(q)),$$

where $F(q) \in M_{16}(2)$ has a zero of order at least two at $\tau = i\infty$. It is known [2, proof of (1.8)] that F(q) is a linear combination of $\mathcal{T}_{2k}\mathcal{T}_{2l}$, where $2k + 2l = 16, l \geq k > 1$, and

$$\mathcal{T}_k = \sum_{n=1}^{\infty} \frac{n^{k-1}q^n}{1-q^{2n}}$$

Accordingly, let

$$F(q) = c_1 \mathcal{T}_4 \mathcal{T}_{12} + c_2 \mathcal{T}_6 \mathcal{T}_{10} + c_3 \mathcal{T}_8^2,$$

where c_1 , c_2 and c_3 are some constants to be determined. If we use this in (3.13), successively let n = 3, n = 5, and solve, we obtain

(3.14)
$$F(q) = \frac{17}{32 \cdot 75600} \left(\mathcal{T}_4 \mathcal{T}_{12} - \frac{25}{4} \, \mathcal{T}_6 \mathcal{T}_{10} + \frac{21}{4} \, \mathcal{T}_8^2 \right) \\ + c \left(\mathcal{T}_4 \mathcal{T}_{12} + \frac{15}{4} \, \mathcal{T}_6 \mathcal{T}_{10} - 16 \mathcal{T}_8^2 \right),$$

where c is an arbitrary constant. Now [2, (1.9)]

(3.15)
$$\frac{1}{75600} \left(\mathcal{T}_4 \mathcal{T}_{12} - \frac{25}{4} \, \mathcal{T}_6 \mathcal{T}_{10} + \frac{21}{4} \, \mathcal{T}_8^2 \right) = \mathcal{T}_{32}(q),$$

and the methods in [2] can be used to show that

(3.16)
$$T_4 T_{12} + \frac{15}{4} T_{10} T_6 - 16 T_8^2$$

= $-\frac{45}{4} q^2 \prod_{j=1}^{\infty} (1 - q^{2j})^{24} \left(1 + 240 \sum_{j=1}^{\infty} \frac{j^3 q^{2j}}{1 - q^{2j}} \right),$

which clearly contains only even powers of q. If we substitute the results of (3.14)–(3.16) into (3.13), we obtain

$$s_{17}(n^2) = \frac{17}{32} \sum_{d|n} \mu(d) d^7[q^{n/d}](T_{32}(q)) = \frac{17}{32} \sum_{d|n} \mu(d) d^7 s_{32}\left(\frac{8n}{d}\right).$$

If we let n = p be prime, we obtain (1.3).

We are now ready to prove (1.1).

THEOREM 3.5. Let n be an odd positive integer. Then

$$s_{8k+1}(n^2) = -\frac{(2^{4k}-1)B_{4k}}{8k} \sum_{d|n} \mu(d)d^{4k-1}s_{16k}\left(\frac{8n}{d}\right) + O(n^{6k-1}).$$

368

Proof. We begin by writing the result of Theorem 3.3 as

(3.17)
$$s_{8k+1}(n^2) = \sum_{d|n} \mu(d) d^{4k-1}[q^{n/d}] c_{k,0} E_{k,0}^2(q) + \sum_{d|n} \mu(d) d^{4k-1}[q^{n/d}] \left\{ \sum_{r=1}^{k-1} c_{k,r} E_{k,r}^2(q) \right\}.$$

Now

$$E_{k,0}^{2}(q) - \frac{1}{a_{k,0}^{2}} T_{16k}(q) = E_{k,0}^{2}(q) - \frac{1}{a_{k,0}^{2}} (T_{8k}(q))^{2}$$
$$= \frac{1}{a_{k,0}^{2}} (a_{k,0} E_{k,0}(q) - T_{8k}(q))(a_{k,0} E_{k,0}(q) + T_{8k}(q)).$$

By (3.10) this can be written as

$$(3.18) \qquad E_{k,0}^{2}(q) - \frac{1}{a_{k,0}^{2}} T_{16k}(q) \\ = -\frac{1}{a_{k,0}^{2}} \Big(\sum_{r=1}^{k-1} a_{k,r}' E_{k,r}(q) \Big) \Big(2a_{k,0} E_{k,0}(q) + \sum_{r=1}^{k-1} a_{k,r}' E_{k,r}(q) \Big).$$

Substituting (3.18) into (3.17), we deduce that

$$s_{8k+1}(n^2) = \frac{c_{k,0}}{a_{k,0}^2} \sum_{d|n} \mu(d) d^{4k-1} s_{16k} \left(\frac{8n}{d}\right) + \sum_{d|n} \mu(d) d^{4k-1}[q^{n/d}] \sum_{\substack{0 \le r,m \le k-1 \\ (r,m) \ne (0,0)}} d_{k,r,m} E_{k,r}(q) E_{k,m}(q),$$

for some numbers $d_{k,r,m}$. From (3.1), (3.12) and Lemma 3.2, we find that

$$e_{k,0}(n) = O(n^{4k-1}).$$

The order of $e_{k,r}(n), 1 \leq r \leq k-1$, on the other hand, is given by [10, Theorem 4.5.2(i)]

$$e_{k,r}(n) = O(n^{2k}).$$

This implies that

$$s_{8k+1}(n^2) = \frac{c_{k,0}}{a_{k,0}^2} \sum_{d|n} \mu(d) d^{4k-1} s_{16k}\left(\frac{8n}{d}\right) + O(n^{6k-1}).$$

Rewriting $c_{k,0}/a_{k,0}^2$ using (3.3) and (3.11), we conclude our proof of Theorem 3.5. \blacksquare

H. H. Chan et al.

COROLLARY 3.6. Let n be an odd positive integer. Then

$$s_{8k+1}(n^2) = \frac{B_{4k}}{2^{8k-1}(2^{4k}+1)B_{8k}} \sum_{d|n} \mu(d)d^{4k-1}\sigma_{8k-1}\left(\frac{n}{d}\right) + O(n^{6k-1}),$$

where

$$\sigma_k(n) = \sum_{d|n} d^k.$$

Proof. From Lemma 3.2, we may write

$$(3.19) \quad s_{16k}\left(\frac{8n}{d}\right) = t_{16k}\left(\frac{n}{d}\right) = -\frac{16k}{2^{8k}(2^{8k}-1)B_{8k}}\sigma_{8k-1}\left(\frac{n}{d}\right) + O(n^{4k}).$$

Substituting (3.19) into Theorem 3.5, we deduce Corollary 3.6.

It is clear that when p is prime, we have

$$s_{8k+1}(p^2) \sim \frac{B_{4k}}{2^{8k-1}(2^{4k}+1)B_{8k}} p^{8k-1}$$

Acknowledgements. We are grateful to Profs. A. Knapp, W. Kohnen and W. Li for answering our questions on modular forms during the preparation of this article.

References

- [1] A. O. L. Atkin and J. Lehner, *Hecke operators on* $\Gamma_0(m)$, Math. Ann. 185 (1970), 134–160.
- [2] H. H. Chan and K. S. Chua, Representations of integers as sums of 32 squares, Ramanujan J. 7 (2003), 79–89.
- [3] S. Cooper, On sums of an even number of squares, and an even number of triangular numbers: an elementary approach based on Ramanujan's 1ψ1 summation formula, in: q-Series with Applications to Combinatorics, Number Theory, and Physics, B. C. Berndt and K. Ono (eds.), Contemp. Math. 291, Amer. Math. Soc., Providence, RI, 2001, 115–137.
- [4] K. Hatada, Eigenvalues of Hecke operators on $SL_2(\mathbb{Z})$, Math. Ann. 239 (1979), 75–96.
- [5] A. Hurwitz, Sur la décomposition des nombres en cinq carrés, C. R. Acad. Sci. Paris 98 (1884), 504–507. Reprinted in: Mathematische Werke, Band 2, Birkhäuser, Basel, 1933, 5–7.
- [6] C. G. J. Jacobi, Gesammelte Werke, Erster Band, Chelsea, New York, 1969.
- [7] A. M. Legendre, *Traité des Fonctions Elliptiques*, Huzard-Courcier, Paris, 1828.
- [8] T. Miyake, Modular Forms, Springer, New York, 1989.
- [9] S. Ramanujan, Collected Papers, AMS Chelsea, Providence, RI, 2000.
- [10] R. A. Rankin, Modular Forms and Functions, Cambridge Univ. Press, Cambridge, 1977.

[11] J.-P. Serre, private communication, 28 Feb. 2006.

Department of Mathematics National University of Singapore 2 Science Drive 2 Singapore 117543 E-mail: matchh@nus.edu.sg Massey University Albany Campus Private Bag 102 904 North Shore Mail Centre Auckland, New Zealand E-mail: s.cooper@massey.ac.nz

Department of Mathematics National Chung Cheng University Min-Hsiung, Chia-Yi, 62101 Taiwan, Republic of China E-mail: wcliaw@math.ccu.edu.tw

> Received on 8.8.2007 and in revised form on 26.2.2008

(5496)