An odd square as a sum of an odd number of odd squares

by

Heng Huat Chan (Singapore), Shaun Cooper (Auckland) and Wen-Chin Liaw (Min-Hsiung)

1. Introduction. Let $s_{k}(n)$ be the number of representations of n as sum of k positive odd squares. The generating function for $s_{k}(n)$ is

$$
S_{k}(q):=\sum_{n=0}^{\infty} s_{k}(n) q^{n}=\left(\sum_{j=0}^{\infty} q^{(2 j+1)^{2}}\right)^{k}
$$

and clearly $s_{k}(n)=0$ if $n \not \equiv k(\bmod 8)$. The goal of this article is to prove that for any odd positive integer n and every positive integer k,

$$
\begin{equation*}
s_{8 k+1}\left(n^{2}\right)=-\frac{\left(2^{4 k}-1\right) B_{4 k}}{8 k} \sum_{d \mid n} \mu(d) d^{4 k-1} s_{16 k}\left(\frac{8 n}{d}\right)+O\left(n^{6 k-1}\right) \tag{1.1}
\end{equation*}
$$

where B_{k} is the k th Bernoulli number $\left({ }^{1}\right)$ given by

$$
\frac{x}{e^{x}-1}=\sum_{k=0}^{\infty} B_{k} \frac{x^{k}}{k!}
$$

and

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{j} & \text { if } n=p_{1} \cdots p_{j}, \text { for distinct primes } p_{1}, \ldots, p_{j} \\ 0 & \text { otherwise }\end{cases}
$$

[^0]When $k=1$ or 2 , the error term in (1.1) is zero, and we obtain the identities

$$
\begin{aligned}
s_{9}\left(n^{2}\right) & =\frac{1}{16} \sum_{d \mid n} \mu(d) d^{3} s_{16}\left(\frac{8 n}{d}\right) \\
s_{17}\left(n^{2}\right) & =\frac{17}{32} \sum_{d \mid n} \mu(d) d^{7} s_{32}\left(\frac{8 n}{d}\right)
\end{aligned}
$$

When $n=p$ is prime, these simplify further to

$$
\begin{align*}
s_{9}\left(p^{2}\right) & =\frac{1}{16} s_{16}(8 p) \tag{1.2}\\
\frac{1}{17} s_{17}\left(p^{2}\right) & =\frac{1}{32} s_{32}(8 p)
\end{align*}
$$

The method we shall use in proving (1.1) is motivated by the work of A. Hurwitz [5]. In Section 2, we illustrate the main idea by proving (1.1) in the case when $k=1$ and deducing (1.2).

In Section 3, we prove (1.1) and give a precise formula for the error term. We also give an asymptotic formula for $s_{8 k+1}\left(n^{2}\right)$ in terms of the divisors of n.
2. Proof of (1.1) for $k=1$. Let

$$
\begin{equation*}
T_{k}(q)=\sum_{n=0}^{\infty} t_{k}(n) q^{n}=\left(\sum_{j=0}^{\infty} q^{(2 j+1)^{2} / 8}\right)^{k} \tag{2.1}
\end{equation*}
$$

Note that $T_{k}\left(q^{8}\right)=S_{k}(q)$ and for all positive integers n,

$$
\begin{equation*}
t_{8 k}(n)=s_{8 k}(8 n) \tag{2.2}
\end{equation*}
$$

Next, recall that for $|q|<1$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} t_{8}(n) q^{n}=\sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{2 n}} \tag{2.3}
\end{equation*}
$$

Identity (2.3) is the classical sum of eight triangular numbers formula of Legendre [7, p. 133] and Jacobi [6, p. 170]. It was rediscovered by Ramanujan [9, p. 191], and many proofs have since been given. For example, see [3, eq. (3.71)]. Equating coefficients of q^{n} on both sides of (2.3), we deduce that

$$
\begin{equation*}
t_{8}(n)=\sum_{d \mid n} \varepsilon(d)\left(\frac{n}{d}\right)^{3} \tag{2.4}
\end{equation*}
$$

where

$$
\varepsilon(n)= \begin{cases}0 & \text { if } n \text { is even } \tag{2.5}\\ 1 & \text { if } n \text { is odd }\end{cases}
$$

From (2.4), we see that the corresponding Dirichlet series for $T_{8}(q)$ (for $\operatorname{Re} s>4$) is

$$
\zeta_{T_{8}}(s):=\sum_{n=1}^{\infty} \frac{t_{8}(n)}{n^{s}}=\zeta(s-3) L(s),
$$

where $\zeta(s)$ is the Riemann zeta function, and

$$
L(s)=\sum_{n=1}^{\infty} \frac{\varepsilon(n)}{n^{s}} .
$$

Hence $\zeta_{T_{8}}(s)$ has the Euler product

$$
\begin{equation*}
\zeta_{T_{8}}(s)=\prod_{p} \frac{1}{1-\frac{\varepsilon(p)+p^{3}}{p^{s}}+\frac{\varepsilon(p)}{p^{2 s-3}}} . \tag{2.6}
\end{equation*}
$$

For positive integers m, k and some arithmetical function χ, let $\mathbf{T}_{m, \chi}$ be the operator on a power series

$$
A(q)=\sum_{n=0}^{\infty} a(n) q^{n}
$$

defined by

$$
\mathbf{T}_{m, \chi}(A(q))=\sum_{n=0}^{\infty} b(n) q^{n},
$$

where

$$
b(n)=\sum_{d \mid \operatorname{gcd}(m, n)} \chi(d) d^{k-1} a\left(\frac{m n}{d^{2}}\right)
$$

Let

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\} .
$$

Let $M_{k}(N)=M\left(\Gamma_{0}(N), k, 1\right)$ be the space of weight k modular forms on $\Gamma_{0}(N)$ with multiplier 1 . When $\chi=\varepsilon$ with ε given by (2.5), $\mathbf{T}_{m, \varepsilon}$ are the Hecke operators on $M_{k}(2)$.

It is known that if $A(q) \in M_{k}(2)$, with $a(1)=1$, and the corresponding Dirichlet series for $A(q)$ has an Euler product, then (see for example [8, Theorem 4.5.16])

$$
\mathbf{T}_{m, \varepsilon}(A(q))=a(m) A(q) .
$$

Hence

$$
\begin{equation*}
a(m) a(n)=\sum_{d \mid \operatorname{gcd}(m, n)} \varepsilon(d) d^{k-1} a\left(\frac{m n}{d^{2}}\right) . \tag{2.7}
\end{equation*}
$$

Using (2.6) and the fact that $T_{8 k} \in M_{4 k}(2)$ [10, p. 222, Theorem 7.1.4] for $q=e^{2 \pi i \tau}$, we deduce from (2.7) that

$$
\begin{equation*}
t_{8}(m) t_{8}(n)=\sum_{d \mid \operatorname{gcd}(m, n)} \varepsilon(d) d^{3} t_{8}\left(\frac{m n}{d^{2}}\right) . \tag{2.8}
\end{equation*}
$$

When $m=2$ and n is any positive integer, we deduce from (2.8) that

$$
\begin{equation*}
t_{8}(2) t_{8}(n)=t_{8}(2 n) \tag{2.9}
\end{equation*}
$$

We now state and prove a simple lemma.
Lemma 2.1. If f satisfies

$$
\begin{equation*}
f(m) f(n)=\sum_{d \mid \operatorname{gcd}(m, n)} g(d) f\left(\frac{m n}{d^{2}}\right), \tag{2.10}
\end{equation*}
$$

where g is a completely multiplicative function, then

$$
\begin{align*}
f(m n) & =\sum_{d \mid \operatorname{gcd}(m, n)} \mu(d) g(d) f\left(\frac{m}{d}\right) f\left(\frac{n}{d}\right) \tag{2.11}\\
& =\sum_{d} \mu(d) g(d) f\left(\frac{m}{d}\right) f\left(\frac{n}{d}\right),
\end{align*}
$$

where we use the convention that the coefficient $f(n / d)$ is zero if d is not a divisor of n.

Proof. Let N be any positive integer. Let m and n be any positive integers satisfying $N=\operatorname{gcd}(m, n)$ and write $m=N s$ and $n=N t$, with $\operatorname{gcd}(s, t)=1$. From (2.10), we have

$$
f(N s) f(N t)=\sum_{d \mid N} g(d) f\left(\frac{s t N^{2}}{d^{2}}\right) .
$$

Since

$$
\sum_{d \mid N} h(d)=\sum_{d \mid N} h(N / d),
$$

we conclude that

$$
f(N s) f(N t)=\sum_{d \mid N} g\left(\frac{N}{d}\right) f\left(s t d^{2}\right),
$$

or

$$
\frac{f(N s) f(N t)}{g(N)}=\sum_{d \mid N} \frac{1}{g(d)} f\left(s t d^{2}\right) .
$$

Applying the Möbius inversion formula, we find that

$$
\frac{f\left(s t N^{2}\right)}{g(N)}=\sum_{d \mid N} \mu\left(\frac{N}{d}\right) \frac{f(d s) f(d t)}{g(d)}
$$

Simplifying the above, we obtain the first equality of (2.11). The second equality of (2.11) follows immediately.

Applying Lemma 2.1 with $f=t_{8}$ and using equation (2.8), we conclude that

$$
\begin{equation*}
t_{8}(m n)=\sum_{d} \varepsilon(d) \mu(d) d^{3} t_{8}\left(\frac{m}{d}\right) t_{8}\left(\frac{n}{d}\right) \tag{2.12}
\end{equation*}
$$

We are now ready to prove the main result of this section.
Theorem 2.2. For all odd positive integers n,

$$
s_{9}\left(n^{2}\right)=\frac{1}{16} \sum_{d \mid n} \mu(d) d^{3} s_{16}\left(\frac{8 n}{d}\right)
$$

Proof. Observe that

$$
s_{9}\left(n^{2}\right)=\sum_{\substack{0<i<n \\ i \text { odd }}} s_{8}\left(n^{2}-i^{2}\right)=\sum_{\substack{0<i<n \\ i \text { odd }}} s_{8}\left(4\left(\frac{n+i}{2}\right)\left(\frac{n-i}{2}\right)\right)
$$

Since $n-i$ and $n+i$ are both even, let $n-i=2 j$ so that $n+i=2(n-j)$. Then

$$
s_{9}\left(n^{2}\right)=\sum_{j=1}^{(n-1) / 2} s_{8}(4 j(n-j))=\frac{1}{2} \sum_{j=1}^{n-1} s_{8}(4 j(n-j)) .
$$

Now apply (2.2), (2.9), (2.12) and then (2.1) to get

$$
\begin{aligned}
s_{9}\left(n^{2}\right) & =\frac{1}{2} \sum_{j=1}^{n-1} t_{8}\left(\frac{j(n-j)}{2}\right)=\frac{1}{16} \sum_{j=1}^{n-1} t_{8}(j(n-j)) \\
& =\frac{1}{16} \sum_{j=1}^{n-1} \sum_{d \text { odd }} \mu(d) d^{3} t_{8}\left(\frac{j}{d}\right) t_{8}\left(\frac{n-j}{d}\right) \\
& =\frac{1}{16} \sum_{d \mid n} \mu(d) d^{3}\left[q^{n / d}\right]\left(T_{16}(q)\right)
\end{aligned}
$$

where $\left[q^{n}\right] f(q)$ denotes the coefficient of q^{n} in the Taylor series expansion of $f(q)$ about $q=0$. By (2.1) and (2.2), we finally obtain

$$
s_{9}\left(n^{2}\right)=\frac{1}{16} \sum_{d \mid n} \mu(d) d^{3} t_{16}\left(\frac{n}{d}\right)=\frac{1}{16} \sum_{d \mid n} \mu(d) d^{3} s_{16}\left(\frac{8 n}{d}\right)
$$

From Theorem 2.2, we immediately obtain (1.2) by letting n be an odd prime.
3. The main result. Let $M_{4 k}^{\prime}(2)$ denote the subspace of $M_{4 k}(2)$ that consists of forms which vanish at $q=0$. The space $M_{4 k}^{\prime}(2)$ has a basis consisting of the functions [10, p. 222]

$$
\begin{align*}
& F_{k, 0}(q)=\sum_{n=0}^{\infty} f_{k, 0}(n) q^{n}=\sum_{j=1}^{\infty} \frac{j^{4 k-1} q^{j}}{1-q^{2 j}} \\
& F_{k, r}(q)=\sum_{n=r}^{\infty} f_{k, r}(n) q^{n}=(\eta(2 \tau))^{24 r-8 k}(\eta(\tau))^{16 k-24 r}, \quad 0<r<k . \tag{3.1}
\end{align*}
$$

Since $T_{8 k}(q) \in M_{4 k}^{\prime}(2)[10$, p. 222, Theorem 7.1.4], we have the following lemma.

Lemma 3.1. Let k be a positive integer. Then there exist unique rational numbers $a_{k, 0}, a_{k, 1}, \ldots, a_{k, k-1}$ such that

$$
\begin{equation*}
T_{8 k}(q)=\sum_{r=0}^{k-1} a_{k, r} F_{k, r}(q) \tag{3.2}
\end{equation*}
$$

Remarks. The equality in (3.2) is equivalent to the theorem for sums of $8 k$ triangular numbers, discovered by Ramanujan [9, p. 191, eqs. 12.6, 12.61]. Ramanujan's formula showed further that

$$
\begin{equation*}
a_{k, 0}=\frac{-8 k}{2^{4 k}\left(2^{4 k}-1\right) B_{4 k}} \tag{3.3}
\end{equation*}
$$

For another proof of Lemma 3.1, including the value of $a_{k, 0}$, see [3, Theorem 3.6].

Our proof of (1.1) given in Section 2 relies heavily on the fact that the coefficients t_{8} of T_{8} satisfy (2.7). The modular form $F_{k, 0}$ satisfies (2.7) by the same argument we gave for T_{8}. However, in general, the cusp forms

$$
F_{k, r}=\sum_{n=r}^{\infty} f_{k, r}(n) q^{n}, \quad 1 \leq r \leq k-1
$$

do not have coefficients $f_{k, r}$ that satisfy (2.7).
In order to prove (1.1) using the ideas in Section 2, we need the following lemma:

Lemma 3.2. The space $M_{4 k}^{\prime}(2)$ has a basis of modular forms

$$
\left\{E_{k, r} \mid 0 \leq r \leq k-1\right\}
$$

with $E_{k, 0}=F_{k, 0}$, such that the coefficients of the series expansion of each $E_{k, r}$ at $q=0$ satisfy (2.7).

Proof. The space $M_{4 k}^{\prime}(2)$ can be written as

$$
M_{4 k}^{\prime}(2)=\mathbb{C} F_{k, 0} \oplus S_{4 k}(2)
$$

where \mathbb{C} is the field of complex numbers and $S_{4 k}(2)$ is the space of cusp forms on $\Gamma_{0}(2)$ of weight $4 k$ and multiplier 1 . It is known that the space of cusp forms can be further written as [1, Theorem 5]

$$
S_{4 k}(2)=S_{4 k}^{\text {new }}(2) \oplus S_{4 k}^{\text {old }}(2)
$$

where $S_{4 k}^{\text {new }}(2)$ and $S_{4 k}^{\text {old }}(2)$ are the spaces of newforms and oldforms, respectively. Furthermore, it is known [1, Theorem 5] that the space of newforms can be expressed as a direct sum of one-dimensional subspaces generated by eigenforms of $\mathbf{T}_{m, \varepsilon}$, for all positive integers m. As a result, the eigenforms that generate the space of newforms satisfy (2.7).

It remains to show that there is a basis of eigenforms of $\mathbf{T}_{m, \varepsilon}$ for the space of oldforms.

Using the notation in Section 2, we denote by $M_{k}(1)$ the space of modular forms of weight k on $\mathrm{SL}_{2}(\mathbb{Z})$. The corresponding Hecke operators on $M_{k}(1)$ are $\mathbf{T}_{m, u}$ with $u(n)=1$ for all integers n.

It is known that

$$
\begin{equation*}
S_{4 k}^{\mathrm{old}}(2)=\bigoplus O_{i} \tag{3.4}
\end{equation*}
$$

where O_{i} is a two-dimensional space generated by $f_{i}(q)$ and $f_{i}\left(q^{2}\right)$, where $f_{i}(q)$ is an eigenform of the Hecke operators $\mathbf{T}_{m, u}$. Note that when m is odd and $f(q) \in M_{k}(1)$, the actions of $\mathbf{T}_{m, u}$ and $\mathbf{T}_{m, \varepsilon}$ on $f(q)$ are identical. Hence if $f_{i}(q)$ is an eigenform for $\mathbf{T}_{m, u}$ for odd m then $f_{i}(q)$ is also an eigenform for $\mathbf{T}_{m, \varepsilon}$ for odd m.

Using $f_{i}(q)$ and $f_{i}\left(q^{2}\right)$, we proceed to construct $e_{i}(q)$ and $e_{i}^{*}(q)$ which are eigenforms for $\mathbf{T}_{2, \varepsilon}$ and generate O_{i}. From now on, we drop the subscript and normalize

$$
f(q)=\sum_{n=1}^{\infty} a(n) q^{n}
$$

so that $a(1)=1$. Note that

$$
f\left(q^{2}\right)=\sum_{n=1}^{\infty} a(n / 2) q^{n}
$$

where $a(k)=0$ when $k \notin \mathbb{Z}^{+}$. We also let

$$
e(q)=\sum_{n=1}^{\infty} \alpha(n) q^{n} \quad \text { and } \quad e^{*}(q)=\sum_{n=1}^{\infty} \alpha^{*}(n) q^{n}
$$

so that $\alpha(1)=\alpha^{*}(1)=1$. Note that $e(q)$ is a linear combination of $f(q)$ and $f\left(q^{2}\right)$ and we may write

$$
e(q)=c_{1} f(q)+c_{2} f\left(q^{2}\right)
$$

Since both $f(q)$ and $e(q)$ are normalized, by comparing coefficients of q, we deduce that $c_{1}=1$.

Next, we want $e(q)$ to satisfy the relation

$$
\mathbf{T}_{2, \varepsilon}(e(q))=\alpha(2) e(q)
$$

This leads to the relation

$$
\begin{equation*}
a(2 n)+c_{2} a(n)=\left(a(2)+c_{2}\right)\left(a(n)+c_{2} a(n / 2)\right) \tag{3.5}
\end{equation*}
$$

When $n=2$, (3.5) gives

$$
\begin{equation*}
a(4)+c_{2} a(2)=\left(a(2)+c_{2}\right)\left(a(2)+c_{2}\right) . \tag{3.6}
\end{equation*}
$$

Since $f(q)$ is an eigenform of $\mathbf{T}_{2, u}$, we find that

$$
\begin{equation*}
a(4)+2^{4 k-1}=a^{2}(2) \tag{3.7}
\end{equation*}
$$

Substituting (3.7) into (3.6), we conclude that

$$
c_{2}^{2}+a(2) c_{2}+2^{4 k-1}=0
$$

In order to obtain two distinct values of c_{2} that correspond to two eigenforms $e(q)$ and $e^{*}(q)$ of $\mathbf{T}_{2, \varepsilon}$, we must show that

$$
\begin{equation*}
a^{2}(2) \neq 4 \cdot 2^{4 k-1} \tag{3.8}
\end{equation*}
$$

To establish (3.8), we follow an argument by J.-P. Serre [11]. First, note that if

$$
a^{2}(2)=4 \cdot 2^{4 k-1}
$$

then

$$
\begin{equation*}
a^{2}(2) \equiv-1(\bmod 3) \tag{3.9}
\end{equation*}
$$

On the other hand, from [4, (5)], we find that $(a(p)-1-p) / 3$ is an algebraic integer. When $p=2$, this says that

$$
a(2) \equiv 0(\bmod 3)
$$

This clearly contradicts (3.9), and (3.8) must hold. Hence, we conclude that each O_{i} in (3.4) is spanned by two eigenforms of $\mathbf{T}_{m, \varepsilon}$, and this completes our proof of Lemma 3.2.

Since $E_{k, 0}=F_{k, 0}$, we deduce from Lemmas 3.1 and 3.2 that

$$
\begin{equation*}
T_{8 k}(q)=\sum_{r=0}^{k-1} a_{k, r}^{\prime} E_{k, r}(q) \tag{3.10}
\end{equation*}
$$

where (see (3.3))

$$
a_{k, 0}^{\prime}=a_{k, 0}=\frac{-8 k}{2^{4 k}\left(2^{4 k}-1\right) B_{4 k}}
$$

We are now ready to prove the generalization of Theorem 2.2.

Theorem 3.3. Let n be an odd positive integer and $E_{k, r}$ be the basis given in Lemma 3.2. Then

$$
s_{8 k+1}\left(n^{2}\right)=\sum_{d \mid n} \mu(d) d^{4 k-1}\left[q^{n / d}\right]\left\{\sum_{r=0}^{k-1} c_{k, r} E_{k, r}^{2}(q)\right\},
$$

for some complex numbers $c_{k, r}, 1 \leq r \leq k-1$, and

$$
\begin{equation*}
c_{k, 0}=\frac{a_{k, 0}}{2^{4 k}}=\frac{-8 k}{2^{8 k}\left(2^{4 k}-1\right) B_{4 k}} . \tag{3.11}
\end{equation*}
$$

Proof. The proof is similar to that for Theorem 2.2. We write

$$
s_{8 k+1}\left(n^{2}\right)=\frac{1}{2} \sum_{j=1}^{n-1} t_{8 k}\left(\frac{j(n-j)}{2}\right)
$$

From (3.10), we can rewrite the above as

$$
s_{8 k+1}\left(n^{2}\right)=\frac{1}{2} \sum_{j=1}^{n-1} \sum_{r=0}^{k-1} a_{k, r}^{\prime} e_{k, r}\left(\frac{j(n-j)}{2}\right)
$$

where $e_{k, r}(n)$ are given by

$$
\begin{equation*}
E_{k, r}(q)=\sum_{n=0}^{\infty} e_{k, r}(n) q^{n} \tag{3.12}
\end{equation*}
$$

Since each $e_{k, r}(n)$ satisfies (2.7), we find that

$$
s_{8 k+1}\left(n^{2}\right)=\frac{1}{2} \sum_{j=1}^{n-1} \sum_{r=0}^{k-1} b_{k, r} e_{k, r}(j(n-j))
$$

with

$$
b_{k, r}=\frac{a_{k, r}^{\prime}}{e_{k, r}(2)}
$$

Hence, by Lemma 2.1, we deduce that

$$
s_{8 k+1}\left(n^{2}\right)=\sum_{d \mid n} \mu(d) d^{4 k-1}\left[q^{n / d}\right] \sum_{r=0}^{k-1} c_{k, r} E_{k, r}^{2}(q),
$$

where $c_{k, r}=b_{k, r} / 2$. Furthermore,

$$
c_{k, 0}=\frac{b_{k, 0}}{2}=\frac{a_{k, 0}^{\prime}}{2 e_{k, 0}(2)}=\frac{a_{k, 0}}{2 f_{k, 0}(2)}=\frac{a_{k, 0}}{2^{4 k}}
$$

where $f_{k, 0}$ is given by (3.1).
Corollary 3.4. For odd positive integers n,

$$
s_{8 k+1}\left(n^{2}\right)=\sum_{d \mid n} \mu(d) d^{4 k-1}\left[q^{n / d}\right](F(q))
$$

where $F(q) \in M_{8 k}(2)$ with a zero of order at least two at $\tau=i \infty$.

As an application of Corollary 3.4, we give a proof of (1.3).
Proof of (1.3). By Corollary 3.4 with $k=2$, we have

$$
\begin{equation*}
s_{17}\left(n^{2}\right)=\sum_{d \mid n} \mu(d) d^{7}\left[q^{n / d}\right](F(q)), \tag{3.13}
\end{equation*}
$$

where $F(q) \in M_{16}(2)$ has a zero of order at least two at $\tau=i \infty$. It is known [2, proof of (1.8)] that $F(q)$ is a linear combination of $\mathcal{T}_{2 k} \mathcal{T}_{2 l}$, where $2 k+2 l=16, l \geq k>1$, and

$$
\mathcal{T}_{k}=\sum_{n=1}^{\infty} \frac{n^{k-1} q^{n}}{1-q^{2 n}} .
$$

Accordingly, let

$$
F(q)=c_{1} \mathcal{T}_{4} \mathcal{T}_{12}+c_{2} \mathcal{I}_{6} \mathcal{I}_{10}+c_{3} \mathcal{T}_{8}^{2}
$$

where c_{1}, c_{2} and c_{3} are some constants to be determined. If we use this in (3.13), successively let $n=3, n=5$, and solve, we obtain

$$
\begin{align*}
F(q)= & \frac{17}{32 \cdot 75600}\left(\mathcal{T}_{4} \mathcal{T}_{12}-\frac{25}{4} \mathcal{T}_{6} \mathcal{I}_{10}+\frac{21}{4} \mathcal{T}_{8}^{2}\right) \tag{3.14}\\
& +c\left(\mathcal{T}_{4} \mathcal{T}_{12}+\frac{15}{4} \mathcal{T}_{6} \mathcal{T}_{10}-16 \mathcal{T}_{8}^{2}\right),
\end{align*}
$$

where c is an arbitrary constant. Now [2, (1.9)]

$$
\begin{equation*}
\frac{1}{75600}\left(\mathcal{T}_{4} \mathcal{T}_{12}-\frac{25}{4} \mathcal{T}_{6} \mathcal{T}_{10}+\frac{21}{4} \mathcal{T}_{8}^{2}\right)=T_{32}(q) \tag{3.15}
\end{equation*}
$$

and the methods in [2] can be used to show that

$$
\left.\begin{array}{rl}
\mathcal{T}_{4} \mathcal{T}_{12}+\frac{15}{4} \mathcal{T}_{10} & \mathcal{T}_{6} \tag{3.16}
\end{array}\right)
$$

which clearly contains only even powers of q. If we substitute the results of (3.14)-(3.16) into (3.13), we obtain

$$
s_{17}\left(n^{2}\right)=\frac{17}{32} \sum_{d \mid n} \mu(d) d^{7}\left[q^{n / d}\right]\left(T_{32}(q)\right)=\frac{17}{32} \sum_{d \mid n} \mu(d) d^{7} s_{32}\left(\frac{8 n}{d}\right) .
$$

If we let $n=p$ be prime, we obtain (1.3).
We are now ready to prove (1.1).
Theorem 3.5. Let n be an odd positive integer. Then

$$
s_{8 k+1}\left(n^{2}\right)=-\frac{\left(2^{4 k}-1\right) B_{4 k}}{8 k} \sum_{d \mid n} \mu(d) d^{4 k-1} s_{16 k}\left(\frac{8 n}{d}\right)+O\left(n^{6 k-1}\right) .
$$

Proof. We begin by writing the result of Theorem 3.3 as

$$
\begin{align*}
s_{8 k+1}\left(n^{2}\right)= & \sum_{d \mid n} \mu(d) d^{4 k-1}\left[q^{n / d}\right] c_{k, 0} E_{k, 0}^{2}(q) \tag{3.17}\\
& +\sum_{d \mid n} \mu(d) d^{4 k-1}\left[q^{n / d}\right]\left\{\sum_{r=1}^{k-1} c_{k, r} E_{k, r}^{2}(q)\right\} .
\end{align*}
$$

Now

$$
\begin{aligned}
E_{k, 0}^{2}(q)-\frac{1}{a_{k, 0}^{2}} T_{16 k}(q) & =E_{k, 0}^{2}(q)-\frac{1}{a_{k, 0}^{2}}\left(T_{8 k}(q)\right)^{2} \\
& =\frac{1}{a_{k, 0}^{2}}\left(a_{k, 0} E_{k, 0}(q)-T_{8 k}(q)\right)\left(a_{k, 0} E_{k, 0}(q)+T_{8 k}(q)\right)
\end{aligned}
$$

By (3.10) this can be written as

$$
\begin{align*}
E_{k, 0}^{2}(q) & -\frac{1}{a_{k, 0}^{2}} T_{16 k}(q) \tag{3.18}\\
& =-\frac{1}{a_{k, 0}^{2}}\left(\sum_{r=1}^{k-1} a_{k, r}^{\prime} E_{k, r}(q)\right)\left(2 a_{k, 0} E_{k, 0}(q)+\sum_{r=1}^{k-1} a_{k, r}^{\prime} E_{k, r}(q)\right)
\end{align*}
$$

Substituting (3.18) into (3.17), we deduce that

$$
\begin{aligned}
s_{8 k+1}\left(n^{2}\right)= & \frac{c_{k, 0}}{a_{k, 0}^{2}} \sum_{d \mid n} \mu(d) d^{4 k-1} s_{16 k}\left(\frac{8 n}{d}\right) \\
& +\sum_{d \mid n} \mu(d) d^{4 k-1}\left[q^{n / d}\right] \sum_{\substack{0 \leq r, m \leq k-1 \\
(r, m) \neq(0,0)}} d_{k, r, m} E_{k, r}(q) E_{k, m}(q)
\end{aligned}
$$

for some numbers $d_{k, r, m}$. From $(3.1),(3.12)$ and Lemma 3.2, we find that

$$
e_{k, 0}(n)=O\left(n^{4 k-1}\right)
$$

The order of $e_{k, r}(n), 1 \leq r \leq k-1$, on the other hand, is given by [10, Theorem 4.5.2(i)]

$$
e_{k, r}(n)=O\left(n^{2 k}\right)
$$

This implies that

$$
s_{8 k+1}\left(n^{2}\right)=\frac{c_{k, 0}}{a_{k, 0}^{2}} \sum_{d \mid n} \mu(d) d^{4 k-1} s_{16 k}\left(\frac{8 n}{d}\right)+O\left(n^{6 k-1}\right)
$$

Rewriting $c_{k, 0} / a_{k, 0}^{2}$ using (3.3) and (3.11), we conclude our proof of Theorem 3.5.

Corollary 3.6. Let n be an odd positive integer. Then

$$
s_{8 k+1}\left(n^{2}\right)=\frac{B_{4 k}}{2^{8 k-1}\left(2^{4 k}+1\right) B_{8 k}} \sum_{d \mid n} \mu(d) d^{4 k-1} \sigma_{8 k-1}\left(\frac{n}{d}\right)+O\left(n^{6 k-1}\right)
$$

where

$$
\sigma_{k}(n)=\sum_{d \mid n} d^{k} .
$$

Proof. From Lemma 3.2, we may write

$$
\begin{equation*}
s_{16 k}\left(\frac{8 n}{d}\right)=t_{16 k}\left(\frac{n}{d}\right)=-\frac{16 k}{2^{8 k}\left(2^{8 k}-1\right) B_{8 k}} \sigma_{8 k-1}\left(\frac{n}{d}\right)+O\left(n^{4 k}\right) . \tag{3.19}
\end{equation*}
$$

Substituting (3.19) into Theorem 3.5, we deduce Corollary 3.6.
It is clear that when p is prime, we have

$$
s_{8 k+1}\left(p^{2}\right) \sim \frac{B_{4 k}}{2^{8 k-1}\left(2^{4 k}+1\right) B_{8 k}} p^{8 k-1} .
$$

Acknowledgements. We are grateful to Profs. A. Knapp, W. Kohnen and W. Li for answering our questions on modular forms during the preparation of this article.

References

[1] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_{0}(m)$, Math. Ann. 185 (1970), 134-160.
[2] H. H. Chan and K. S. Chua, Representations of integers as sums of 32 squares, Ramanujan J. 7 (2003), 79-89.
[3] S. Cooper, On sums of an even number of squares, and an even number of triangular numbers: an elementary approach based on Ramanujan's ${ }_{1} \psi_{1}$ summation formula, in: q-Series with Applications to Combinatorics, Number Theory, and Physics, B. C. Berndt and K. Ono (eds.), Contemp. Math. 291, Amer. Math. Soc., Providence, RI, 2001, 115-137.
[4] K. Hatada, Eigenvalues of Hecke operators on $S L_{2}(\mathbb{Z})$, Math. Ann. 239 (1979), 75-96.
[5] A. Hurwitz, Sur la décomposition des nombres en cinq carrés, C. R. Acad. Sci. Paris 98 (1884), 504-507. Reprinted in: Mathematische Werke, Band 2, Birkhäuser, Basel, 1933, 5-7.
[6] C. G. J. Jacobi, Gesammelte Werke, Erster Band, Chelsea, New York, 1969.
[7] A. M. Legendre, Traité des Fonctions Elliptiques, Huzard-Courcier, Paris, 1828.
[8] T. Miyake, Modular Forms, Springer, New York, 1989.
[9] S. Ramanujan, Collected Papers, AMS Chelsea, Providence, RI, 2000.
[10] R. A. Rankin, Modular Forms and Functions, Cambridge Univ. Press, Cambridge, 1977.
[11] J.-P. Serre, private communication, 28 Feb. 2006.

Department of Mathematics
National University of Singapore
2 Science Drive 2
Singapore 117543
E-mail: matchh@nus.edu.sg
Massey University
Albany Campus
Private Bag 102904
North Shore Mail Centre
Auckland, New Zealand
E-mail: s.cooper@massey.ac.nz
Department of Mathematics
National Chung Cheng University
Min-Hsiung, Chia-Yi, 62101
Taiwan, Republic of China
E-mail: wcliaw@math.ccu.edu.tw

Received on 8.8.2007
and in revised form on 26.2.2008

[^0]: 2000 Mathematics Subject Classification: 11F03, 11F11, 11F20.
 Key words and phrases: Dirichlet series, Eisenstein series, Hecke operator, modular form, newform, oldform, sum of squares.

 The first author is supported by National University of Singapore Academic Research Fund R146000103112.
 $\left({ }^{1}\right)$ Note that $B_{4 k}<0$.

