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1. Introduction. The purpose of this paper is to explicitly compute
some examples of Weyl group multiple Dirichlet series over the rational
function field Fq(t). As described in [2], these are Dirichlet series in r complex
variables s1, . . . , sr whose coefficients can be expressed in terms of nth order
Gauss sums. The general theory implies that over a function field, these
multiple Dirichlet series will be rational functions of q−s1 , . . . , q−sr . Except
when n = 2, no examples of these rational functions have been written down.

Using explicit knowledge of the functional equations, we will express the
A2 series as a rational function of q−s1 and q−s2 . This is the main result of
this paper and is given in Theorem 4.2. The functional equations of multiple
Dirichlet series arise from the functional equations of single variable Gauss
sum Dirichlet series of the type initially studied by Kubota [17] using the
theory of metaplectic Eisenstein series on the n-fold cover of GL2 . This
theory was further developed by Kazhdan and Patterson [16] who studied
Eisenstein series on the n-fold cover of GLr . It is conjectured that the Weyl
group multiple Dirichlet series are related to Whittaker coefficients of these
metaplectic Eisenstein series. This conjecture and much supporting evidence
for it is given in [2, 4]

In [2] is described a heuristic method to associate to a positive integer n,
and a root system Φ of rank r, a multiple Dirichlet series Z in r complex
variables with coefficients given by nth order Gauss sums. Moreover, Z is
expected to have an analytic continuation to Cr and to satisfy a group of
functional equations isomorphic to W , the Weyl group of the root system.
Brubaker, Bump, and Friedberg [3] have given a precise definition of Z in
the stable case; by definition, this means n is sufficiently large for a fixed Φ.
In [3] the authors show that for such n, the Weyl group multiple Dirichlet
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series admit meromorphic continuation and have the expected group of func-
tional equations.

The multiple Dirichlet series studied in this paper fall in the stable range.
Therefore, the general shape of the results of this paper is already a conse-
quence of the results of [2, 3]. What is new is the precise description of the
functional equations and the explicitness of Theorem 4.2. The explicit com-
putations in the case of the rational function field are considerably simpler
than in the general case. This fact was exploited by J. Hoffstein [15] in his
investigations of the theta function θn on the n-fold cover of SL2. We will
make use of his results on the Fourier expansions and functional equation
of the metaplectic Eisenstein series in this context.

There are two reasons for carrying out the rational function field com-
putation in such detail. First, we believe that the computation of higher
rank multiple Dirichlet series can give new information on the Fourier co-
efficients of the theta function θn. The nature of the Fourier coefficients of
θn(z) for n ≥ 3 grows increasingly complicated as n increases. Patterson
explictly computed θ3(z) in [18, 19] and formulated a conjecture about the
Fourier coefficients of θ4(z) (see [12]). Despite partial results of Hoffstein [15]
and Suzuki [21, 22], the conjecture remains unproven. For n = 6, some in-
teresting structure was also noticed by Wellhausen [23]. But for n = 5 and
n ≥ 7, there is at present not even a conjectural understanding of the Fourier
coefficients of θn(z).

In our work, these mysterious coefficients arise after taking residues in
multiple Dirichlet series. Since the multiple Dirichlet series we compute are
explicitly given rational functions, one can hope to directly take residues
and try to identify the resulting object in terms of known objects. Though
the main focus of this paper is the multiple Dirichlet series associated to the
root system A2, we do also give an example in Section 5 of the cubic (n = 3)
A3 series. Taking residues of the cubic A3 series gives the rational function
field analogue of a recent result of Brubaker and Bump [1]. They show that
the cubic double Dirichlet series of Friedberg, Hoffstein and Lieman [14] are
residues of the cubic A3 Weyl group multiple Dirichlet series. They interpret
their result in terms of the Bump–Hoffstein conjecture [5] and make further
conjectures on how the series of Friedberg, Hoffstein and Lieman arise as
multiresidues of higher rank multiple Dirichlet series. Unfortunately, their
method of proof relies heavily on Patterson’s explicit computation of θ3 and
therefore will not readily generalize to higher n. The methods developed
in this paper, however, do generalize and hopefully can be used to address
these questions.

The second motivation for carrying out these explicit computations is to
gain insight into the problem of constructing unstable Weyl group multiple
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Dirichlet series. In the unstable case, that is, when n is small relative to Φ, a
complete description of the coefficients of the Weyl group multiple Dirichlet
series does not yet exist except in the case n = 2, which was treated in Chinta
and Gunnells [9]. Important partial progress including a beautiful conjecture
for multiple Dirichlet series associated to root systems of type Ar is given in
Brubaker, Bump, Friedberg and Hoffstein [4]. The conjecture describes the
p-parts of the multiple Dirichlet series in terms of Gelfand–Tsetlin patterns.
This Gelfand–Tsetlin conjecture is verified to give the correct coefficients in
the stable range and also to give the correct coefficients when n = 2 for Ar,
r ≤ 5, which were first computed by the author in [6].

The relevance of the present paper to the description of the unstable
coefficients is given by the striking resemblance between the rational func-
tion field multiple Dirichlet series and the p-part of that series (cf. (3.3)
and (4.8)). More striking is the resemblance in the A3 series between the
24 terms of Table 1 of [1] and (5.3). This resemblance was previously noted
by the author in the quadratic case (n = 2), in which case it can be shown
that both the p-part and the multiple Dirichlet series are uniquely charac-
terized by the functional equations they satisfy. To see this worked out in
detail for A2, we refer the reader to Section 5 of [8].

It is very likely that a similar phenomenon accounts for the resemblance
for arbitrary n. Regardless, it suggests a promising approach to the prob-
lem of defining unstable Weyl group multiple Dirichlet series—namely, to
generalize to arbitrary n the invariant function methods used in [6, 7, 9] to
treat the quadratic case. A first step, using a group action motivated by
the functional equation (4.4), has been carried out in a joint work with
Gunnells, [10].

This work was supported by NSF Grant FRG DMS-0652605 and by
the Alexander von Humboldt Foundation. The author warmly thanks Joel
Mohler for very careful readings of drafts of this article, and Prof. S. J. Pat-
terson for several illuminating discussions. The author is also grateful to the
Hausdorff Research Institute of Mathematics for their hospitality during the
completion of this work.

2. Preliminaries. We review some concepts and notation from Patter-
son [20]. Let n be an integer ≥ 2 and q a power of an odd prime p. We
assume that q is congruent to 1 mod n. For convenience, we also assume
that q is congruent to 1 mod 4.

Let µn = {a ∈ Fq : an = 1} and let χ : F×q → µn be the character
a 7→ a(q−1)/n. Let K be the rational function field Fq(t) with polynomial
ring O = Fq[t]. We let K∞ = Fq((t)) denote the field of Laurent series in
t−1. Also, let Omon denote the set of monic polynomials in O.
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For x, y ∈ O relatively prime,
(
x
y

)
denotes the nth order power residue

symbol. We have the reciprocity law

(2.1)
(
x

y

)
=
(
y

x

)
for x, y monic. (Here we make use of the fact that q is congruent to 1 mod 4.)

We next define an additive character on K∞. First let e0 be a non-
trivial additive character on Fp. Use this to define a character e∗ of Fq by
e∗(a) = e0(TrFq/Fp

a). Let ω be the global differential dx/x2. Finally define
the character e of K∞ by e(y) = e∗(Res∞(ωy)) for y ∈ K∞. Note that

{y ∈ K : e|yO = 1} = O.

Fix an embedding ε from the nth roots of unity of Fq to C×. For r, c ∈ O
we define the Gauss sum

g(r, ε, c) =
∑

ymod c

ε

((
y

c

))
e

(
ry

c

)
.

The main subject of this paper is Dirichlet series and multiple Dirichlet series
constructed from such Gauss sums. It will be necessary for us to consider
sums over certain ideal classes in O. To this end, for x, y ∈ K∞ we write
x ∼ y if x/y ∈ K×n∞ .

Define the Dirichlet series

ψ(r, ε, η, s) = (1− qn−ns)−1
∑

c∈Omon
c∼η

g(r, ε, c)|c|−s,

where the sum is over all nonzero monic polynomials c ∼ η and |c| is qdeg c.
The η we will use are of the form π−i∞ , 0 ≤ i < n. We will henceforth suppress
the embedding ε from the notation, and identify the value of a power residue
symbol with its image in C under ε. Thus ψ(r, π−i∞ , s) = ψ(r, ε, π−i∞ , s) and
g(r, c) = g(r, ε, c). We also allow linear combinations of the πi∞’s. So, for
example, letting I =

∑n−1
i=0 π

−i
∞ , we have

ψ(r, I, s) =
n−1∑
i=0

ψ(r, π−i∞ , s) =
∑

c∈Omon

g(r, c)|c|−s.

We now describe the functional equation which the Gauss sum Dirichlet
series ψ(r, π−i∞ , s) satisfies. Let i, j be integers mod n, and r be monic of
degree d = nk + j, n ≥ 0. Define

Pij(s) = Pi,deg r(s) = −q(1−s)(1−(j+1−2i)n) q − 1
1− qn+1q−ns

,

Qij(s) = Qi,deg r(s) = −τ(ε2i−j−1)q(1−s)(1−n) 1− qnq−ns

1− qn+1q−ns
.
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Here, (β)n = β − nbβ/nc and τ(εj) is the Gauss sum

τ(εj) =
∑
a∈F×q

εj(χ(a))e∗(a).

Then it is proven in [15, Proposition 2.1] that ψ satisfies the functional
equation

ψ(r, π−i∞ , s) = |r|1−sPi,deg r(s)ψ(r, π−i∞ , 2− s)(2.2)

+ |r|1−sQi,deg r(s)ψ(r, πi−deg r−1
∞ , 2− s).

(See also [20, eq. (2)].) Summing both sides over i, we can also write this as

(2.3) ψ(r, I, s) = |r|1−s
n−1∑
i=0

Ti,deg r(s)ψ(r, π−i∞ , 2− s),

where, if 2i− j − 1 6≡ 0 (mod n), then

Tij(s) = − q(1−s)(1−n)

1− qn+1−ns [q(1−s)(2i−j−1)n(q − 1) + τ(ε2i−j−1)(1− qn(1−s))],

and if 2i− j − 1 ≡ 0 (mod n), then

Tij(s) = q(1−n)(1−s).

We observe that for fixed s, each of the functions Pij , Qij , Tij depends only
on 2i− j. This fact will be used later in the proof of Lemma 3.4.

The general theory [15, 16] tells us that (1 − qn+1−ns)ψ(r, π−i∞ , s) is a
polynomial in q−s. The functional equation then allows us to give a bound
on the degree of this polynomial (see e.g. [15, Prop. 2.1] or [20]). As a simple
consequence we have

Proposition 2.1. The Gauss sum Dirichlet series associated to the con-
stant polynomial is

ψ(1, I, s) =
1 + qτ(ε)

1− qn+1−ns .

The main subject of the papers of Hoffstein [15] and Patterson [20] is the
residues of the Gauss sum Dirichlet series ψ(r, I, s) at s = 1 + 1/n. These
residues are related to the Fourier coefficients of the theta function on the
n-fold metaplectic cover of GL2(K). Following [20] we define

%n(r) = lim
s→1+1/n

(1− qn+1−ns)ψ(r, I,s).

In Section 5 we indicate how the theory of multiple Dirichlet series can be
used to deduce information on the coefficients %n(r).

3. The A2 multiple Dirichlet series. In this section we define and
describe the functional equations of a double Dirichlet series constructed
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from nth order Gauss sums. This series is heuristically of the form∑
c1

∑
c2

g(1, ε, c1)g(1, ε, c2)
(
c1
c2

)−1

|c1|s1 |c2|s2
,

where the sum is over all c1, c2 nonzero monic polynomials.
More precisely, we define

(3.1) Z(s1, s2; η1, η2)

= (1− qn−ns1)−1(1− qn−ns2)−1(1− q2n−ns1−ns2)−1
∑
c1∼η1

∑
c2∼η2

H(c1, c2)
|c1|s1 |c2|s2

,

where the coefficient H(c1, c2) is defined by the following two conditions:

(1) If gcd(c1c2, d1d2) = 1 then

(3.2)
H(c1d1, c2d2)

H(c1, c2)H(d1, d2)
=
(
c1
d1

)(
d1

c1

)(
c2
d2

)(
d2

c2

)(
c1
d2

)−1(d1

c2

)−1

.

(2) If p is prime, then∑
k,l≥0

H(pk, pl)xkyl = 1 + g(1, p)x+ g(1, p)y + g(1, p)g(p, p2)xy2(3.3)

+ g(1, p)g(p, p2)x2y + g(1, p)2g(p, p2)x2y2.

It can be seen that summing (3.1) over one of the indices, say c1, with
the other index fixed will produce a Dirichlet series

(3.4) E(c2, η, s1) = (1− qn−ns1)−1
∑

c1∈Omon
c1∼η

H(c1, c2)|c1|−s1

which is closely related to a Gauss sum Dirichlet series. This will have a
functional equation as s1 7→ 2 − s1, which will in turn induce a functional
equation in the double Dirichlet series Z. The rest of this section is devoted
to verifying this assertion and describing the precise functional equations
of Z.

Let a be a function defined on Fq[t].We say that a is twisted multiplicative
if a(xy) = a(x)a(y)

(
x
y

)( y
x

)
whenever x and y are relatively prime. The first

lemma below is a standard property of Gauss sums.

Lemma 3.1. Let r be a monic polynomial in Fq[t]. The map x 7→ g(r, x)
is twisted multiplicative.

Lemma 3.2. Fix a cubefree monic polynomial c. Write c = c1c
2
2 where

c1 is monic and squarefree. The map

x 7→ H(xc2, c)
H(c2, c)

is twisted multiplicative.
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Proof. First note that c2 is the minimal monic polynomial such that
H(c2, c) 6= 0, i.e., if H(d, c) 6= 0 then c2 | d. To prove the lemma, take
relatively prime monic polynomials x and y. We need to show

(3.5) H(xyc2, c) =
H(xc2, c)H(yc2, c)

H(c2, c)

(
x

y

)(
y

x

)
.

Write

c2 = c
(1)
2 c

(2)
2 , c = c(1)c(2), with (xc(1)

2 c(1), yc
(2)
2 c(2)) = 1

and compute both sides of (3.5) using (3.2).

We can now express E(c, η, s) in terms of a Gauss sum Dirichlet series.

Lemma 3.3. Let c be a cubefree monic polynomial and write c = c1c
2
2 as

above. Then

E(c, I, s) =
H(c2, c)
|c2|s

ψ(c1, I, s).

Proof. Having already established the twisted multiplicativity of the co-
efficients

x 7→ H(c2x, c)
H(c2, c)

it only remains to verify that

(3.6)
H(c2P l, c)
H(c2, c)

= g(c1, P l)

for all irreducible polynomials P and integers l ≥ 0. Note that

(3.7) H(c2, c) = H(1, c1)H(c2, c22)
(
c1
c22

)(
c22
c1

)(
c2
c1

)−1

.

To go further, we break the argument into three cases, depending on whether
(P, c) = 1, P ‖ c1 or P ‖ c2. Since the equality is trivially satisfied for l = 0,
we will assume that l > 0.

If (P, c) = 1 the numerator of the left hand side of (3.6) is

H(c2, c)H(P l, 1)
(
c2
P l

)(
P l

c2

)(
P l

c

)−1

.

This is nonzero only when l = 1, in which case we get

H(c2P, c) = H(c2, c)g(c1, P )

as desired.
If P | c1 we compute

(3.8) H(P l · c2, c1 · c22)

= H(P l, c1)H(c2, c22)
(
P l

c2

)(
c2
P l

)(
c1
c22

)(
c22
c1

)(
P l

c22

)−1(c2
c1

)−1

.
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Since P ‖ c1 this expression is nonzero only when l = 2. Write c1 = P ĉ1. Thus
H(1, c1) = H(1, ĉ1)H(1, P )

(
Pbc1 )(bc1

P

)
. Using this and again the definition

(3.2)–(3.3) of H, we find

H(P 2, c1) = H(P 2, P )H(1, P )−1H(1, c1)
(
P 2

ĉ1

)−1

(3.9)

= g(P, P 2)H(1, c1)
(
P 2

ĉ1

)−1

= g(c1, P 2)H(1, c1).

Combining (3.8) and (3.7) with (3.9) we conclude that

H(c2P 2, c)
H(c2, c)

= g(c1, p2),

as was to be shown.
The proof of the third case (when P | c2) is similar and will be omitted.

Lemma 3.4. Let c be a monic polynomial. Then

E(c, I, s) = |c|1−s
n−1∑
i=0

Ti,deg c(s)E(c, π−i∞ , 2− s).

Equivalently ,

E(c, π−i∞ , s)
= |c|1−s(Pi,deg c(s)E(c, π−i∞ , 2− s) +Qi,deg c(s)E(c, πi−deg c−1

∞ , 2− s)).

The functions Pij , Qij , Tij are as defined at the end of Section 2.

Proof. We may assume c is cubefree, as otherwise D(c, s) = 0. Write
c = c1c

2
2 with c1 monic and squarefree. By the previous lemma,

E(c, I, s) =
H(c2, c)
|c2|s

ψ(c1, I, s).

Let deg ck ≡ jk(n), 0 ≤ jk < n for k = 1, 2. Thus

E(c, I, s) =
H(c2, c)
|c2|s

ψ(c1, I, s)

= H(c2, c)
n−1∑
i=0

|c1|1−sTij1(s)
ψ(c1, π−i∞ , 2− s)

|c2|s

= H(c2, c)
n−1∑
i=0

|c|1−sTij1(s)
ψ(c1, π−i∞ , 2− s)

|c2|2−s
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= |c|1−s
n−1∑
i=0

Tij1(s)E(c, π−i−j2∞ , 2− s)

= |c|1−s
n−1∑
i=0

Ti−j2,j1(s)E(c, π−i∞ , 2− s).

The proof is completed by noting that Ti−j2,j1(s) = Ti,j1+2j2(s) = Ti,deg c(s).

From Lemma 3.4 follow immediately the functional equations of Z(s1, s2).

Theorem 3.5. Let 0 ≤ i, j < n. The collection of double Dirichlet series
Z(s1, s2;π−i∞ , π

−j
∞ ) satisfies the functional equations

Z(s1, s2;π−i∞ , π
−j
∞ ) = Pij(s1)Z(2− s1, s1 + s2 − 1;π−i∞ , π

−j
∞ )(3.10)

+Qij(s1)Z(2− s1, s1 + s2 − 1;π−j−1+i
∞ , π−j∞ )

and

Z(s1, s2;π−i∞ , π
−j
∞ ) = Pji(s2)Z(s1 + s2 − 1, 2− s2;π−i∞ , π

−j
∞ )(3.11)

+Qji(s2)Z(s1 + s2 − 1, 2− s2;π−i∞ , π
−i−1+j
∞ ).

Remark. Let G be the symmetric group on three letters with gener-
ating reflections σ1, σ2. Let V be the set of double Dirichlet series with
meromorphic continuation to C2. For f(s1, s2) = f(s1, s2; I, I) in V , define

(f |σ1)(s1, s2) =
n∑

i,j=0

(Pij(s1)f(2− s1, s1 + s2 − 1;π−i∞ , π
−j
∞ )

+Qij(s1)f(2− s1, s1 + s2 − 1;π−j−1+i
∞ , π−j∞ )),

(f |σ2)(s1, s2) =
n∑

i,j=0

(Pji(s2)f(s1 + s2 − 1, 2− s2;π−i∞ , π
−j
∞ )

+Qji(s2)f(s1 + s2 − 1, 2− s2;π−i∞ , π
−i−1+j
∞ )).

It turns out that these two transformations generate an action of G on V.
The functional equations of the previous theorem assert the invariance of
Z(s1, s2) under this group action.

4. Determination of the A2 multiple Dirichlet series. In this sec-
tion we will explicitly write down the double Dirichlet series of the previous
section as rational functions in q−s1 , q−s2 . We will find it convenient to
introduce the variables x = q−s1 , y = q−s2 . We write

Pij(x) = −(qx)1−(−2i+j+1)n
q − 1

1− qn+1xn
,(4.1)

Qij(x) = −τ(ε2i−j−1)(qx)1−n
1− qnxn

1− qn+1xn
,(4.2)
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and let Tij(x) be

(4.3)


−(qx)1−n

(qx)(2i−j−1)n(q − 1) + τ(ε2i−j−1)(1− qnxn)
1− qn+1xn

if 2i− j − 1 6≡ 0,
(qx)1−n otherwise.

We also introduce

Z(x, y; i, j) = Z(s1, s2;π−i∞ , π
−j
∞ ), Z(x, y; I, I) =

∑
0≤i,j<n

Z(x, y; i, j).

When we wish to make the notation reflect the dependence on n, we shall
write Z(n)(x, y; i, j).

Then the functional equation (3.10) takes the form

Z(x, y; i, j) = Pij(x)Z
(

1
q2x

, qxy; i, j
)

(4.4)

+Qij(x)Z
(

1
q2x

, qxy; j + 1− i, j
)
.

Summing over i, j between 0 and n− 1 we can also write this as

(4.5) Z(x, y, I, I) =
∑∑

Tij(x)Z
(

1
q2x

, qxy; i, j
)
.

Because of the reciprocity law we have as well the relation

(4.6) Z(x, y; I, I) = Z(y, x; I, I).

Knowledge of these functional equations allows the explicit computation
of Z(x, y; I, I). Let D(x, y) = (1−qn+1xn)(1−qn+1yn)(1−q2n+1xnyn) and set
N(x, y) = D(x, y)Z(x, y; I, I). The following proposition shows that D(x, y)
is the denominator of Z and gives a bound on the degree of the numerator.

Proposition 4.1. The function N(x, y) is a polynomial in x, y of degree
bounded by 2 in both variables.

Proof. The proof that the product

N(x, y) = (1− qn+1xn)(1− qn+1yn)(1− q2n+1xnyn)Z(x, y; I, I)

is entire is identical to the proof of Theorem 2 in [2]. To show that N(x, y)
is a polynomial and bound the degrees, we argue as in the proof of Theorem
4.1 of Fisher–Friedberg [13]. Let ~Z(x, y) denote the column vector consisting
of all the Z(x, y; i, j) with 0 ≤ i, j < n (with the pairs (i, j) in some fixed
order). In matrix notation the functional equation (4.4) can be expressed as

~Z(x, y) = A(x) ~Z
(

1
q2x

, qxy

)
,
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where A(x) is an n2 × n2 matrix whose coefficients are the functions Pij(x)
and Qij(x). From (4.1) we have A(x) � x1−n, that is, every entry of the
matrix A(x) satisfies this bound as x→∞. Similarly, (4.6) implies

~Z(x, y) = B ~Z(y, x)

where B is the identity matrix. (We write it like this because it helps us keep
track of an application of the functional equation.) Repeatedly applying the
two functional equations, we get

~Z(x, y) = A(x)BA(qxy)BA(y)B ~Z
(

1
q2x

,
1
q2y

)
.

Multiply both sides by D(x, y)D(1/(q2x), 1/(q2y)):

(4.7) D

(
1
q2x

,
1
q2y

)
~N(x, y) = D(x, y)A(x)BA(qxy)BA(y)B ~N

(
1
q2x

,
1
q2y

)
,

where ~N(x, y) is the vector with components D(x, y)Z(x, y; i, j). To show
that N(x, y) is a polynomial of the stated degree, it suffices to show that
each entry of ~N(x, y) is O(|xy|2). Let x, y → ∞ in (4.7). Then the terms
D(1/(q2x), 1/(q2y)) and ~N(1/(q2x), 1/(q2y)) remain bounded, while

D(x, y) = O(|xy|2n) and A(x)A(y)A(xy) = O(|xy|2−2n).

Therefore the right hand side is O(x2y2). This establishes that N(x, y) is a
polynomial in x and y of degree at most 2 in both x and y.

We now present our main result.

Theorem 4.2. For n > 2 we have

(4.8) Z(n)(x, y; I, I)

=
1 + τ1qx+ τ1qy + τ1τ2q

3x2y + τ1τ2q
3xy2 + τ2

1 τ2q
4x2y2

(1− qn+1xn)(1− qn+1yn)(1− q2n+1xnyn)

where τi = τ(εi).

Remark 4.3. The case n = 2 is dealt with in Fisher–Friedberg [13] and
Chinta–Friedberg–Hoffstein [8], where it is shown that

Z(2)(x, y; I, I) =
1 + q3/2x+ q3/2y − q9/2x2y − q9/2xy2 − q6x2 y2

(1− q3x2)(1− q3y2)(1− q5x2y2)
.

The method of proof below will work in this case as well, but a slight ad-
justment needs to be made to deal with a degenerate Gauss sum.

Proof of Theorem 4.2. We first show that Z(x, y; 1, 1) = 0. With i =
j = 1, the functional equation (4.4) implies that

Z(x, y; 1, 1) = [P11(x) +Q11(x)]Z
(

1
q2x

, qxy; 1, 1
)
.
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Multiplying through by D(x, y), we get

N(x, y; 1, 1) = −x 1− qn+1xn

1− qn−1xn
N

(
1
q2x

, qxy; 1, 1
)
.

But because of Proposition 4.1 we know that N(x, y; 1, 1) is a constant
multiple of the monomial xy. It follows that N(x, y; 1, 1) = 0.

Furthermore, setting x = 0 and y = 0 and using Proposition 2.1, we
deduce that N(x, y) is of the form

N(x, y) = 1 + qτ(ε)x+ qτ(ε)y + αx2y + αxy2 + βx2y2

for some constants α, β. To determine these constants, we again use the
functional equations. For example,

Z(x, y; 2, 1) = P21(x)Z
(

1
q2x

, qxy; 2, 1
)

+Q21(x)Z
(

1
q2x

, qxy; 0, 1
)
.

We solve for α and find α = q3τ(ε)τ(ε2). Similarly, applying the functional
equation to Z(x, y; 2, 2) we find β = τ2

1 τ2q
4. This completes the proof of the

theorem.

5. Examples. In this section we compute some examples of residues of
multiple Dirichlet series and deduce information on the residues %n of the
Gauss sum Dirichlet series. By Lemma 3.3, we have

(5.1) lim
s1→1+1/n

(1− qn+1−ns1)Z(s1, s2; I, I) =
∑

c1,c2∈Omon

(c1,c2)=1
squarefree

H(c2, c1c22)%n(c1)
|c1c22|s2 |c2|2+2/n

.

When n = 3, we have

Z(x, y; I, I) =
1 + qτx+ qτy + q4x2y + q4xy2 + q5τx2y2

(1− q4x3)(1− q4y3)(1− q7x3y3)

where τ = τ(ε). Note that this series has a simple pole at s2 = 4/3. The
residue of Z at the simple pole s1 = 4/3 is a constant multiple of

1 + τq−1/3

(1− q4/3y)(1− q3y3)
= const · ζ(s2 − 1/3)ζ(3s2 − 2).

Comparison of this Dirichlet series with (5.1) suggests that, for a squarefree
monic polynomial c,

%3(c) = const · g(1, c)|c|−2/3.

This agrees with [18], [19], in which Patterson determines the Fourier coef-
ficients of the cubic theta function.

Our second example involves the A3 series constructed from cubic Gauss
sums. We will not provide complete details here as we plan to return to the
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topic more systematically in a later work. Let

Φ(s1, s2, s3) = (1− qn−ns1)−1(1− qn−ns2)−1(1− q2n−ns1−ns2)−1

× (1− qn−ns3)−1(1− q2n−ns2−ns3)−1(1− q3n−ns1−ns2−ns3)−1.

The A3 series is defined by

(5.2) Z(s1, s2, s3) = Φ(s1, s2, s3)
∑

c1,c2,c3∈Omon

H(c1, c2, c3)
|c1|s1 |c2|s2 |c3|s3

,

where the coefficient H(c1, c2, c3) satisfies the twisted multiplicativity equa-
tion (16) of [1] and is defined in Table 1 of [1] for prime power arguments.

When n = 3, a lengthy computation similar to that given in the proof
of Theorem 4.2 shows that Z(s1, s2, s3) is a rational function in x = q−s1 ,
y = q−s2 , z = q−s3 with denominator

(1− q4x3)(1− q4y3)(1− q4z3)(1− q7x3y3)(1− q7y3z3)(1− q10x3y3z3)

and numerator the sum of 24 terms

(5.3) 1 + qτx+ qτy + qτz + q4x2y + q4xy2 + q4y2z + q4yz2 + q5τx2y2

+ q5τy2z2 + q2τ2xz − q12x3y3z3 − q9τxy3z3 − q9τx3y2z2 − q9τx2y2z3

− q9τx3y3z − q8xy2z3 − q8x3y2z − q12x2y4z3 − q12x3y4z2 − q6τ2xy3z

+ q6τx2yz2 − q10τx2y4z2 − q13τx3y4z3.

We now show that residues of this series give the rational function field
analogues of the two multiple Dirichlet series considered by Friedberg–
Hoffstein–Lieman [14]. These analogues have been defined and computed
by Chinta and Mohler, [11]. They are given by

(5.4) ZFHL,1(s, w)

= (1− q1−3s)−1(1− q1−3w)−1(1− q3−3s−3w)−1
∑

c1,c2∈Omon

(
c1
c2

)
a(c1, c2)

|c1|s|c2|w

and

(5.5) ZFHL,2(s, w) = (1− qn/2−ns)−1
∑

c1,c2∈Omon

g(c2, c1)
|c1|s+1/2|c2|w

.

Here a(g, f) is a multiplicative weighting factor defined on prime powers by∑
k,l≥0

a(pk, pl)xkyl = 1 + x+ y + x2 + y2 − x3y − xy3 − y2x3 − x2y3 − x3y3.

(The shift by 1/2 in the s variable in ZFHL,2 occurs because the Gauss
sums of [14] are normalized to have modulus 1. Also, we have reversed the
s and w.)
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It is shown in [11] that

ZFHL,1(s,w) =
1− q2−s−w

(1− q1−s)(1− q1−w)(1− q4−3s−3w)
,

ZFHL,2(s,w) =
1+q1/2−sτ+ q3/2−s−wτ+q2−2s−2τ−q3−2s−2wτ−q9/2−3s−2w

(1− q1−w)(1− q5/2−3s)(1− q9/2−3s−3w)
.

On the other hand,

(5.6) lim
s3→4/3

(1− q4−3s3)Z(s1, s2, s3)

=
(1 + q−1/3τ)(1 + qτx− q7/3τxy + q10/3τx2y − q14/3τx2y2 − q20/3x3y2)

(1− q4/3y)(1− q4x3)(1− q7x3y3)(1− q3y3)(1− q6x3y3)
.

Hence

Res
s3=4/3

Z(s1, s2, s3)

= const · ζ(3s2 − 2)ζ(3s1 + 3s2 − 5)ZFHL,2(s1 − 1/2, s2 − 1/3).
Similarly,

Res
s2=4/3

Z(s1, s2, s3) = const · ζ(3s1 − 2)ζ(3s3 − 2)ZFHL,1(s1 − 1/3, s3 − 1/3).

This identity of the residues of the cubic A3 multiple Dirichlet series with
the series studied in [14] was first established by Brubaker and Bump, [1].
(Actually, Brubaker and Bump work over the number field Q(

√
−3) but, up

to a finite number of bad primes, their methods will work over any global
field containing a cube root of unity.)

Guided by the Bump–Hoffstein conjecture [5], Brubaker and Bump fur-
ther suggest that n − 2-fold residues of the nth order Weyl group multiple
Dirichlet series associated to the root system An should coincide with the
nth order double Dirichlet series of Friedberg–Hoffstein–Lieman. We hope
that explicit computations over the rational function field such as those
described above will give more evidence for this expectation.
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