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1. Introduction. One of the many mysteries of the zeros of L-functions
is embodied by the following theorem of Sprindžuk [11], [12], obtained by a
development of Linnik’s [8] ideas. Assume the Riemann Hypothesis (RH) for
the Riemann zeta function ζ(s); then the generalized RH for the Dirichlet
L-functions is equivalent to the asymptotic formulae∑

γ

|γ|iγe−iγ−π|γ|/2
(
x+ 2πi

a

q

)−1/2−iγ
= − µ(q)

x
√

2π ϕ(q)
+O(x−1/2−ε)

as x→ 0+, where γ runs over the imaginary parts of the non-trivial zeros of
ζ(s), and q ≥ 2 and a are integers with (a, q) = 1, 0 < |a| ≤ q/2. Roughly
speaking, the Linnik–Sprindžuk theorem says that the generalized RH is
equivalent to RH plus a suitable property of the vertical distribution of the
zeros of ζ(s). Another way of looking at this theorem is to say that the gen-
eralized RH is equivalent to RH plus a suitable behaviour of certain “twists”
of the zeta-zeros. In other words, the zeros of ζ(s) contain information on the
zeros of L(s, χ), and conversely. Such a result has been extended in various
ways by Fujii [2]–[4] and by Suzuki [13]. In particular, Suzuki [13] extended
the Linnik–Sprindžuk theorem to the Selberg class S of L-functions, thus
obtaining a similar relation between the zeros of a function F (s) and those
of the twists F (s, χ) by primitive Dirichlet characters, provided both F (s)
and F (s, χ) belong to S.

Our aim in this paper is to obtain a different form of the above Linnik–
Sprindžuk phenomenon. We formulate our results in the framework of the
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Selberg class S, defined as follows. Every function F ∈ S is a Dirichlet series

F (s) =
∞∑
n=1

a(n)
ns

absolutely convergent for σ > 1, and there exists an integer m ≥ 0 such
that (s− 1)mF (s) is an entire function of finite order; the minimum of such
integers is denoted by mF . Moreover, F (s) satisfies a functional equation of
type

(1) Qs
r∏
j=1

Γ (λjs+ µj)F (s) = ωQ1−s
r∏
j=1

Γ (λj(1− s) + µj)F (1− s),

where F (s) = F (s), |ω| = 1, Q > 0, λj > 0 and <µj ≥ 0. In addition,
a(n)� nε for every ε > 0, and F (s) has an Euler product satisfying

logF (s) =
∞∑
n=1

b(n)
ns

,

where b(n) = 0 unless n = pk with k ≥ 1, and b(n)� nϑ for some ϑ < 1/2.
We refer to our surveys [5], [6], [9] and [10] for the basic theory of the Selberg
class. We also use the notation

ψ(s) =
Γ ′

Γ
(s)

for the logarithmic derivative of Γ (s).
For F ∈ S and α ∈ R \ {0} we write

HF (s, α) =
∑
%

Γ (%− s)(2πiα)s−%,

GF (s, α) = HF (s, α) +
r∑
j=1

λjψ(λjs+ µj),

where % runs over the non-trivial zeros of F (s). By the Riemann–von Man-
goldt and Stirling’s formulae, the series forHF (s, α) converges absolutely and
uniformly on compact sets for σ > 3/2 and s 6= % + l with l = 1, 2, . . . (see
beginning of the next section). Moreover, assuming the General Riemann
Hypothesis (GRH) for F (s), the above condition σ > 3/2 can be replaced
by σ > 1. The analytic properties of GF (s, α) are given by the following
theorem.

Theorem 1. Let F ∈ S and m ∈ Z\{0}. Then GF (s,m) is meromorphic
on C. Moreover , GF (s,m) is holomorphic for σ < 1, while for σ ≥ 1 it has
simple poles at s = % + k, where % runs over the non-trivial zeros of F (s)
and k = 1, 2, . . . , and at s = 1 if mF 6= 0.

Theorem 1 immediately yields the analytic properties of HF (s,m).
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Corollary 1. Let F ∈ S and m ∈ Z \ {0}. Then HF (s,m) is mero-
morphic on C. Moreover , HF (s,m) has simple poles at the points s =
−(µj + k)/λj , j = 1, . . . , r and k = 0, 1, . . . , for σ < 1, while for σ ≥ 1
it has simple poles at s = % + k, where % runs over the non-trivial zeros of
F (s) and k = 1, 2, . . . , and at s = 1 if mF 6= 0.

Note that the polar structure of HF (s,m) does not depend on m; this
is already clear for σ > 3/2 from the convergence properties of the series
for HF (s, α). Note also that the poles of HF (s,m) in the half-plane σ < 1
almost coincide with the trivial zeros of F (s), the only difference occurring
at s = 0 if mF 6= 0; moreover, such poles lie in the half-plane σ ≤ 0.

Let now χ (mod q), q ≥ 2, be a primitive Dirichlet character and write

l∗(s, χ) = 2χ(−1)ωχqs−1/2l(s, χ) cos
(
π(s+ a(χ))

2

)
,

where

l(s, χ) =
∑

0<a<q/2

χ(a)
as

, a(χ) =
{

0 if χ(−1) = 1,
1 if χ(−1) = −1,

ωχ =
τ(χ)
ia(χ)√q

and τ(χ) is the Gauss sum. Moreover, let

F (s, χ) =
∞∑
n=1

a(n)χ(n)
ns

be the twist of F (s) by χ, and write

HF (s, χ) =
∑
%

Γ (%− s)(2π)s−% l∗(%− s, χ),

GF (s, χ) = HF (s, χ)− F ′

F
(s, χ),

where again the summation is over the non-trivial zeros of F (s). The func-
tion HF (s, χ) is a kind of twist of HF (s, α) (see Lemma 4 below), and its
convergence properties are similar to those of HF (s, α) (i.e. convergence for
σ > 3/2 with s 6= %+ l, and for σ > 1 under GRH). We have

Theorem 2. Let F ∈ S and χ (mod q), q ≥ 2, be a primitive Dirich-
let character. Then GF (s, χ) is meromorphic on C. Moreover , GF (s, χ) is
holomorphic for σ < 1, while for σ ≥ 1 it has simple poles at s = % + k,
where % runs over the non-trivial zeros of F (s) and k = 1, 2, . . . , provided
l∗(−k, χ) 6= 0, and at s = 1 if mF 6= 0 and l∗(−1, χ) 6= 0.

We briefly discuss the meaning of Theorem 2 after Corollary 2 below.
Note that the zeros of l∗(−k, χ) come from those of l(−k, χ) and of
cos(π(−k + a(χ))/2), and the zeros of the latter are easily described; in
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particular, the cosine factor cancels the poles of GF (s, χ) in infinitely many
strips of type k ≤ σ ≤ k + 1.

Given F ∈ S, it is expected that the conductor qF = (2π)dFQ2
∏r
j=1 λ

2λj

j

is an integer (where dF = 2
∑r

j=1 λj is the degree and Q, λj are given
by (1)), and that the twists F (s, χ) belong to the class S for every primitive
character χ (mod q) with (q, qF ) = 1; see [7]. However, at present nothing is
known in general about the analytic properties of F (s, χ) outside the half-
plane σ > 1 of absolute convergence, although the above twist conjecture
is known to hold for most classical L-functions. Theorem 2 shows that the
continuation properties of F (s, χ) and of HF (s, χ) are closely related; in
particular, the meromorphic continuation to the whole complex plane of
F (s, χ) is equivalent to that of HF (s, χ), and more precise information can
be obtained assuming the twist conjecture. Therefore, in this case we cannot
switch from GF (s, χ) to the more interesting functionHF (s, χ) for σ ≤ 1. We
can, however, immediately deduce the meromorphic continuation ofHF (s, χ)
to σ > 1 without assuming GRH.

Corollary 2. Let F ∈ S and χ (mod q), q ≥ 2, be a primitive Dirichlet
character. Then HF (s, χ) is meromorphic for σ > 1 with simple poles at
s = %+ k, where % runs over the non-trivial zeros of F (s) and k = 1, 2, . . . ,
provided l∗(−k, χ) 6= 0, and at s = 1 if mF 6= 0 and l∗(−1, χ) 6= 0.

In the spirit of the Linnik–Sprindžuk theorem, we now assume the twist
conjecture and observe the behaviour of the poles when switching from
HF (s, α) to HF (s, χ). We first note from Corollary 1 that HF (s,m) has poles
at (essentially) the trivial zeros of F (s), is holomorphic for 0 < σ < 1 and
has poles at the shifted non-trivial zeros of F (s) in each strip k ≤ σ ≤ k+ 1
with integer k ≥ 1. Then, if we “twist” H(s, α) to getHF (s, χ), by Theorem 2
the poles in the strips k ≤ σ ≤ k + 1 remain unchanged (if l∗(−k, χ) 6= 0)
or disappear (if l∗(−k, χ) = 0), but for σ < 1 simple poles at the zeros of
F (s, χ) pop up. In particular, HF (s, χ) is defined by means of the non-trivial
zeros of F (s), and its poles keep track of the non-trivial zeros of both F (s)
and F (s, χ).

We finally remark that suitable variants of Theorem 2 can be obtained
by the arguments in this paper. For example, in the prototypical case of ζ(s)
we may consider functions of type

K(s, χ) =
∑
γ>0

g∗(%− s, χ)
(%/i)s+1/2−% ,

where % = β + iγ runs over the non-trivial zeros of ζ(s) and

g∗(s, χ) =
(
q

2π

)s
g(s, χ), g(s, χ) =

q∑
a=1

χ(a)
as

.
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Then K(s, χ) is convergent for σ > 3/2 (for σ > 1 under RH), has meromor-
phic continuation to the whole complex plane, and its poles are located at
the points s = %χ−k, with integer k ≥ 0 and %χ running over the non-trivial
zeros of L(s, χ), and at s = k with integer k ≤ 1.

Acknowledgments. This research was partially supported by a MUR
grant Cofin2006 and by the KBN grant N N201 1482 33.

2. Proofs. Let α ∈ R \ {0}, X > 0, zX(α) = 1/X + 2πiα, e(x) = e2πix

and for σ > 1

−F
′

F
(s) =

∞∑
n=1

b(n) log n
ns

=
∞∑
n=1

ΛF (n)
ns

,

say. By Mellin’s transform and then shifting the line of integration to −∞
we have

(2)
∞∑
n=1

ΛF (n)
ns

e(−nα)e−n/X

=
1

2πi

�

(2)

{
−F

′

F
(s+ w)

}
Γ (w)zX(α)−w dw

= mFΓ (1− s)zX(α)s−1 +
∞∑
k=0

(−1)k

k!

{
−F

′

F
(s− k)

}
zX(α)k

−
∑
%

Γ (%− s)zX(α)s−% −
r∑
j=1

∞∑
l=0

Γ

(
−s− l + µj

λj

)
zX(α)s+(l+µj)/λj

for s different from the poles of the Γ -functions involved and of −F ′

F (s− k).
In fact, the series on the right hand side of (2) are convergent and

�

(−K)

{
−F

′

F
(s+ w)

}
Γ (w)zX(α)−w dw → 0

as K →∞ over a suitable sequence such that the lines σ = K are free from
the poles of the integrand.

As we already remarked in the Introduction, the series

HF (s, α) =
∑
%

Γ (%− s)z∞(α)s−%

converges absolutely and uniformly on compact sets for σ > 3/2 and s 6= %+l
with l = 1, 2, . . . (for σ > 1 under GRH). Indeed,

Γ (%− s)� e−π|γ|/2|γ|1/2−σ and zs−%∞ � eπ|γ|/2,
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hence for %− s /∈ Z,

HF (s, α)�
∑
%

(1 + |γ|)1/2−σ,

which is convergent for σ > 3/2 thanks to the Riemann–von Mangoldt for-
mula for the number of zeros in the critical strip (similarly under GRH).
Therefore, letting X →∞ in (2), for σ > 3/2 and s different from the poles
of the Γ -functions involved and of −F ′

F (s− k) we get

HF (s, α) = −
∞∑
n=1

ΛF (n)
ns

e(−nα) +mFΓ (1− s)z∞(α)s−1(3)

+
∞∑
k=0

(−1)k

k!

{
−F

′

F
(s− k)

}
z∞(α)k

−
r∑
j=1

∞∑
l=0

Γ

(
−s− l + µj

λj

)
z∞(α)s+(l+µj)/λj .

We have z∞(α) = 2πiα and, by the functional equation,

−F
′

F
(s) = 2 logQ+

r∑
j=1

λjψ(λjs+µj) +
r∑
j=1

λjψ(λj(1− s) +µj) +
F ′

F
(1− s),

hence (3) becomes, for the same values of s,

HF (s, α) = −
∞∑
n=1

ΛF (n)
ns

e(−nα) +
∞∑
n=1

ΛF (n)
ns

+mFΓ (1− s)(2πiα)s−1

+
∞∑
k=1

(−1)k

k!

{
2 logQ+

r∑
j=1

λjψ(λj(s− k) + µj)

+
r∑
j=1

λjψ(λj(1− s+ k) + µj) +
F ′

F
(1− s+ k)

}
(2πiα)k

−
r∑
j=1

∞∑
l=0

Γ

(
−s− l + µj

λj

)
(2πiα)s+(l+µj)/λj

=
∞∑
n=1

ΛF (n)(1− e(−nα))
ns

+mFΓ (1− s)(2πiα)s−1

+ 2e(−α) logQ−
r∑
j=1

λjψ(λjs+ µj)

+
r∑
j=1

( ∞∑
k=0

(−1)k

k!
λjψ(λj(s− k) + µj)(2πiα)k
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−
∞∑
l=0

Γ

(
−s− l + µj

λj

)
(2πiα)s+(l+µj)/λj

)

+
r∑
j=1

λj

∞∑
k=1

(−1)k

k!
ψ(λj(1− s+ k) + µj)(2πiα)k

+
∞∑
k=1

(−1)k

k!
F ′

F
(1− s+ k)(2πiα)k

=
∞∑
n=1

ΛF (n)(1− e(−nα))
ns

+mFΓ (1− s)(2πiα)s−1 + 2e(−α) logQ

−
r∑
j=1

λjψ(λjs+ µj) +A(s, α) +B(s, α) + C(s, α),

say. With this notation, we have proved the following

Lemma 1. Let F ∈ S and α ∈ R \ {0}. Then HF (s, α) is meromorphic
for σ > 3/2, and

HF (s, α) +
r∑
j=1

λjψ(λjs+ µj)

=
∞∑
n=1

ΛF (n)(1− e(−nα))
ns

+mFΓ (1− s)(2πiα)s−1

+ 2e(−α) logQ+A(s, α) +B(s, α) + C(s, α).

The functions B(s, α) and C(s, α) are easy to deal with. Indeed, for σ < 2
and k ≥ 1 we have <(λj(1− s+ k) + µj) ≥ λj(2− σ) > 0, therefore

ψ(λj(1− s+ k) + µj)�s log k

and hence the series in B(s, α) is absolutely convergent. Thus

(4) B(s, α) is holomorphic for σ < 2.

Moreover, for σ < 2 and k ≥ 2 we have <(1− s+ k) ≥ 3− σ > 1, hence

(5) C(s, α) = −2πiα
F ′

F
(2− s) +Os

( ∞∑
k=2

(2π|α|)k

k!

)
.

Therefore the O-term in (5) is holomorphic for σ < 2, and in particular

(6) C(s, α) is meromorphic for σ < 2 and holomorphic for σ < 1.

In order to study A(s, α) we write

(7) A(s, α) =
r∑
j=1

A(s;λj , µj , α),
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where

A(s;λ, µ, α) =
∞∑
k=0

(−1)k

k!
λψ(λ(s− k) + µ)(2πiα)k(8)

−
∞∑
l=0

Γ

(
−s− l + µ

λ

)
(2πiα)s+(l+µ)/λ,

and prove the following

Lemma 2. For λ > 0, µ ∈ C and α ∈ R the function A(s;λ, µ, α) is
entire.

Proof. We write (8) as

(9) A(s;λ, µ, α) = A1(s;λ, µ, α)−A2(s;λ, µ, α)

and investigate first A2(s;λ, µ, α). For σ > 0 and ξ > 0 we have

Γ (s) =
∞�

0

e−xxs−1 dx =
∞∑
k=0

(−1)k

k!

ξ�

0

xs+k−1 dx+
∞�

ξ

e−xxs−1 dx

=
∞∑
k=0

(−1)k

k!
ξs+k

s+ k
+
∞�

ξ

e−xxs−1 dx,

and by analytic continuation this holds for every s ∈ C \ {0,−1,−2, . . . }.
Hence, assuming

(10) ξ > 2π|α|,
we have

A2(s;λ, µ, α) =
∞∑
l=0

∞∑
k=0

(−1)k

k!
ξ−s−(l+µ)/λ+k

−s− (l + µ)/λ+ k
(2πiα)s+(l+µ)/λ

+
∞∑
l=0

(2πiα)s+(l+µ)/λ
∞�

ξ

e−xx−s−(l+µ)/λ−1 dx

= −
∞∑
l=0

∞∑
k=0

(−ξ)k

k!

(
2πiα
ξ

)s+(l+µ)/λ 1
s+ (l + µ)/λ− k

+ (2πiα)s+µ/λ
∞�

ξ

e−xx−s−µ/λ−1
∞∑
l=0

(
2πiα
x

)l/λ
dx

= −
∞∑
l=0

∞∑
k=0

(−ξ)k

k!

(
2πiα
ξ

)s+(l+µ)/λ 1
s+ (l + µ)/λ− k

+ (2πiα)s+µ/λ
∞�

ξ

e−xx−s−µ/λ−1 1
1− (2πiα/x)1/λ

dx.
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Since the last summand is an entire function of s we get

(11) A2(s;λ, µ, α)

= −
∞∑
l=0

∞∑
k=0

(−ξ)k

k!

(
2πiα
ξ

)s+(l+µ)/λ 1
s+ (l + µ)/λ− k

+ E1(s, ξ),

where E1(s, ξ) is an entire function.
In order to deal with A1(s;λ, µ, α) we recall (see eq. (3) on p. 15 of [1])

that for s 6= 0,−1, . . . ,

ψ(s) = −γ +
∞∑
l=0

s− 1
(l + 1)(s+ l)

,

where γ is Euler’s constant. Hence

(12) A1(s;λ, µ, α)

= −γλe(−α) + λ

∞∑
k=0

∞∑
l=0

(−1)k

k!
λ(s− k) + µ− 1

(l + 1)(λ(s− k) + µ+ l)
(2πiα)k

= −γλe(−α) + λ
∞∑
k=0

∞∑
l=0

(−2πiα)k

k!
s+ (µ− 1)/λ− k

(l + 1)(s+ (l + µ)/λ− k)
.

Thus from (9), (11) and (12) we obtain

(13) A(s;λ, µ, α)

= λ

∞∑
k=0

∞∑
l=0

(−2πiα)k

k!
s+ (µ− 1)/λ− k

(l + 1)(s+ (l + µ)/λ− k)

+
∞∑
l=0

∞∑
k=0

(−ξ)k

k!

(
2πiα
ξ

)s+(l+µ)/λ 1
s+ (l + µ)/λ− k

+ E2(s, ξ)

=
∞∑
k=0

∞∑
l=0

(−2πiα)k

k!

(
λs+ µ− 1− kλ

l + 1
+
(

2πiα
ξ

)s+(l+µ)/λ−k)
× 1
s+ (l + µ)/λ− k

+ E2(s, ξ)

=
∑
k,l≥0

|s+(l+µ)/λ−k|<1

(−2πiα)k

k!

(
λs+ µ− 1− kλ

l + 1
+
(

2πiα
ξ

)s+(l+µ)/λ−k)

× 1
s+ (l + µ)/λ− k



92 J. Kaczorowski and A. Perelli

+
∑
k,l≥0

|s+(l+µ)/λ−k|≥1

(−2πiα)k

k!

(
λs+ µ− 1− kλ

l + 1
+
(

2πiα
ξ

)s+(l+µ)/λ−k)

× 1
s+ (l + µ)/λ− k

+ E2(s, ξ)

= S1(s, ξ) + S2(s, ξ) + E2(s, ξ)

say, with an entire function E2(s, ξ). In S1(s, ξ) we always have k � l � k
and, recalling (10), also∣∣∣∣ λs+µ−1−kλ

l+1 + (2πiα/ξ)s+(l+µ)/λ−k

s+ (l + µ)/λ− k

∣∣∣∣ =
∣∣∣∣ λ

l + 1
+

(2πiα/ξ)s+(l+µ)/λ−k − 1
s+ (l + µ)/λ− k

∣∣∣∣� 1,

therefore

S1(s, ξ)�
∞∑
k=0

1
k!

∑
k�l�k

1.

Since the series is convergent, S1(s, ξ) is an entire function. Moreover, again
recalling (10) we obtain

S2(s, ξ)�
∑
k,l≥0

|s+(l+µ)/λ−k|≥1

|2πα|k

k!

(
k + 1
l + 1

+
∣∣∣∣2παξ

∣∣∣∣l/λ−k) 1
|s+ (l + µ)/λ− k|

�
∞∑
k=0

|2πα|k(k + 1)
k!

∑
l≥0

|s+(l+µ)/λ−k|≥1

1
(l + 1)|s+ (l + µ)/λ− k|

+
∞∑
k=0

∞∑
l=0

ξk

k!

∣∣∣∣2παξ
∣∣∣∣l/λ.

The two series are convergent, and hence S2(s, ξ) is an entire function as
well. Lemma 2 then follows from (13).

Remark. If λ ∈ Q+ the proof of Lemma 1 can be simplified: one just has
to compute the residue at each suspected pole and to show that it vanishes.

From Lemma 1, (4), (6), (7) and Lemma 2 we immediately deduce the
following basic formula.

Lemma 3. Let F ∈ S and α ∈ R \ {0}. Then

HF (s, α) +
r∑
j=1

λjψ(λjs+ µj) =
∞∑
n=1

ΛF (n)(1− e(−nα))
ns

+ MF (s, α),

where MF (s, α) is meromorphic on C and holomorphic for σ < 1.
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The proof of Theorem 1 is now easy. By Lemma 3, for α = m ∈ Z \ {0}
we have

GF (s,m) = HF (s,m) +
r∑
j=1

λjψ(λjs+ µj) = MF (s,m),

and the first two statements of Theorem 1 follow. To prove the last statement
we first note that HF (s,m), GF (s,m) and MF (s,m) have the same poles
for σ ≥ 1. Thanks to the convergence properties of the series, for σ > 3/2
the function HF (s,m) is holomorphic apart from simple poles at s = %+ k,
where % and k run over the non-trivial zeros of F (s) and over the integers≥ 2,
respectively. Concerning the remaining range 1 ≤ σ ≤ 3/2, from Lemma 1,
(4), (5) and Lemma 2 we have

MF (s,m) = mFΓ (1− s)(2πim)s−1 − 2πim
F ′

F
(2− s) + h(s),

where h(s) is holomorphic for σ < 2. Hence in that range the poles of
MF (s,m) are a simple pole at s = 1 (if mF 6= 0) and simple poles at
2 − s = %̄, since the zeros of F (s) are at %̄. Therefore MF (s,m) has simple
poles at s = 2− %̄ = 2− β + iγ = 1 + 1− β + iγ = 1 + % by the functional
equation. Theorem 1 is thus proved.

Turning to the proof of Theorem 2, the next lemma supports the assertion
that HF (s, χ) is a kind of twist of HF (s, α).

Lemma 4. Let χ (mod q), q > 2, be a primitive Dirichlet character.
Then for σ > 3/2 we have

HF (s, χ) =
τ(χ)
q

∑
0<|a|<q/2

χ(a)HF

(
s,
a

q

)
.

Proof. Thanks to the convergence properties of HF (s, α), for σ > 3/2 we
have

(14)
τ(χ)
q

∑
0<|a|<q/2

χ(a)HF

(
s,
a

q

)

=
∑
%

Γ (%− s)(2π)s−%
τ(χ)
q

∑
0<|a|<q/2

χ(a)
(
i
a

q

)s−%
.

But, writing w = %− s,
τ(χ)
q

∑
0<|a|<q/2

χ(a)
(
i
a

q

)−w

=
τ(χ)
q

∑
0<a<q/2

χ(a)
(
a

q

)−w
(i−w + χ(−1)(−1)−w)
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= χ(−1)
τ(χ)
q

qw
∑

0<a<q/2

χ(a)
aw

(χ(−1)e−iπw/2 + eiπw/2)

= χ(−1)
τ(χ)
√
q
qw−1/2 l(w,χ)i−a(χ)(e−iπ(w+a(χ))/2 + eiπ(w+a(χ))/2)

= 2χ(−1)
τ(χ)
ia(χ)√q

qw−1/2l(w,χ) cos
(
π(w + a(χ))

2

)
= l∗(w,χ),

and the lemma follows from (14).

Theorem 2 now follows from Lemmas 3 and 4. In fact, for a primitive
character χ (mod q) we have, since q > 2 and hence (q/2, q) > 1 if q/2 ∈ N,

(15)
τ(χ)
q

∑
0<|a|<q/2

χ(a)e
(
−na
q

)
=

1
τ(χ)

∑
0<|a|<q/2

χ(a)e
(
na

q

)
= χ(n)

and hence, using the orthogonality of the characters, by Lemmas 4 and 3 for
σ > 3/2 we obtain

HF (s, χ) =
τ(χ)
q

∑
0<|a|<q/2

χ(a)
( ∞∑
n=1

ΛF (n)
ns

−
∞∑
n=1

ΛF (n)e(−na/q)
ns

−
r∑
j=1

λjψ(λjs+ µj) +MF

(
s,
a

q

))

=
F ′

F
(s, χ) +

τ(χ)
q

∑
0<|a|<q/2

χ(a)MF

(
s,
a

q

)
.

Hence Lemma 3 implies that G(s, χ) is meromorphic on C and holomorphic
for σ < 1. As in the proof of Theorem 1, the poles of GF (s, χ) in the half-
plane σ > 3/2 are detected by means of the convergence properties of the
series defining HF (s, χ).

The remaining range 1 ≤ σ ≤ 3/2 is treated as follows. By the properties
of HF (s, α) in Lemma 1, (4), (6) and Lemma 2, for 1 < σ < 2 we have

(16) HF

(
s,
a

q

)
=
F ′

F
(s)−

∞∑
n=1

ΛF (n)e(−an/q)
ns

+mFΓ (1− s)
(

2πi
a

q

)s−1

− 2πi
a

q

F ′

F
(2− s) + k1(s)

where k1(s) is holomorphic for 1 ≤ σ < 2. Inserting (16) in Lemma 4, by
(15) we get
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HF (s, χ) =
F ′

F
(s, χ) +

mF τ(χ)
q

Γ (1− s)
∑

0<|a|<q/2

χ(a)
(

2πi
a

q

)s−1

(17)

− 2πiτ(χ)
q2

F ′

F
(2− s)

∑
0<|a|<q/2

aχ(a) + k2(s)

=
F ′

F
(s, χ) +

mF τ(χ)
q

Γ (1− s)g(1− s, χ)

− 2π
F ′

F
(2− s)l∗(−1, χ) + k2(s),

say, where k2(s) is holomorphic for 1 ≤ σ < 2. But, by the orthogonality
of characters, g(0, χ) = 0 and hence the corresponding term in (17) is also
holomorphic for 1 ≤ σ < 2. Therefore, (17) takes the form

GF (s, χ) = −2π
F ′

F
(2− s)l∗(−1, χ) + k3(s)

with k3(s) holomorphic for 1 ≤ σ < 2. This means that GF (s, χ) has poles
at the points %+ 1 if l∗(−1, χ) = l∗(−1, χ) 6= 0, and also at s = 1 if mF 6= 0
and l∗(−1, χ) 6= 0.

References

[1] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental
Functions, Vol. I, McGraw-Hill, 1953.

[2] A. Fujii, Zeta zeros and Dirichlet L-functions, Proc. Japan Acad. 64 (1988), 215–218.
[3] —, Zeta zeros and Dirichlet L-functions. II, ibid. 64 (1988), 296–299.
[4] —, Some observations concerning the distribution of the zeros of the zeta function.

III, ibid. 68 (1992), 105–110.
[5] J. Kaczorowski, Axiomatic theory of L-functions: the Selberg class, in: Analytic

Number Theory (Cetraro, 2002), A. Perelli and C. Viola (eds.), Lecture Notes in
Math. 1891, Springer, 2006, 133–209.

[6] J. Kaczorowski and A. Perelli, The Selberg class: a survey, in: Number Theory in
Progress, Proc. Conf. in Honor of A. Schinzel, K. Györy et al. (eds.), de Gruyter,
1999, 953–992.

[7] —, —, On the structure of the Selberg class, II: invariants and conjectures, J. Reine
Angew. Math. 524 (2000), 73–96.

[8] Yu. V. Linnik, On the expression of L-series by the ζ-function, Dokl. Akad. Nauk
SSSR 57 (1947), 435–437 (in Russian).

[9] A. Perelli, A survey of the Selberg class of L-functions, part I, Milan J. Math. 73
(2005), 19–52.

[10] —, A survey of the Selberg class of L-functions, part II, Riv. Mat. Univ. Parma (7)
3* (2004), 83–118.

[11] V. G. Sprindžuk, Vertical distribution of zeros of the zeta-function and the extended
Riemann hypothesis, Acta Arith. 27 (1975), 317–332 (in Russian).

[12] —, On extended Riemann hypothesis, in: Topics in Number Theory, P. Turán (ed.),
Colloq. Math. Soc. János Bolyai 13, North-Holland, 1976, 369–372.



96 J. Kaczorowski and A. Perelli

[13] M. Suzuki, A relation between the zeros of an L-function belonging to the Selberg
class and the zeros of an associated L-function twisted by a Dirichlet character,
Arch. Math. (Basel) 83 (2004), 514–527.

Faculty of Mathematics and Computer Science
A. Mickiewicz University
61-614 Poznań, Poland
E-mail: kjerzy@amu.edu.pl

Dipartimento di Matematica
Università di Genova

via Dodecaneso 35
16146 Genova, Italy

E-mail: perelli@dima.unige.it

Received on 4.12.2007 (5585)


