On the Linnik-Sprindžuk theorem about the zeros of L-functions

by
J. Kaczorowski (Poznań) and A. Perelli (Genova)
Dedicated to Professor W. M. Schmidt on the occasion of his 75th birthday

1. Introduction. One of the many mysteries of the zeros of L-functions is embodied by the following theorem of Sprindžuk [11], [12], obtained by a development of Linnik's [8] ideas. Assume the Riemann Hypothesis (RH) for the Riemann zeta function $\zeta(s)$; then the generalized RH for the Dirichlet L-functions is equivalent to the asymptotic formulae

$$
\sum_{\gamma}|\gamma|^{i \gamma} e^{-i \gamma-\pi|\gamma| / 2}\left(x+2 \pi i \frac{a}{q}\right)^{-1 / 2-i \gamma}=-\frac{\mu(q)}{x \sqrt{2 \pi} \varphi(q)}+O\left(x^{-1 / 2-\varepsilon}\right)
$$

as $x \rightarrow 0^{+}$, where γ runs over the imaginary parts of the non-trivial zeros of $\zeta(s)$, and $q \geq 2$ and a are integers with $(a, q)=1,0<|a| \leq q / 2$. Roughly speaking, the Linnik-Sprindžuk theorem says that the generalized RH is equivalent to RH plus a suitable property of the vertical distribution of the zeros of $\zeta(s)$. Another way of looking at this theorem is to say that the generalized RH is equivalent to RH plus a suitable behaviour of certain "twists" of the zeta-zeros. In other words, the zeros of $\zeta(s)$ contain information on the zeros of $L(s, \chi)$, and conversely. Such a result has been extended in various ways by Fujii [2]-[4] and by Suzuki [13]. In particular, Suzuki [13] extended the Linnik-Sprindžuk theorem to the Selberg class \mathcal{S} of L-functions, thus obtaining a similar relation between the zeros of a function $F(s)$ and those of the twists $F(s, \chi)$ by primitive Dirichlet characters, provided both $F(s)$ and $F(s, \chi)$ belong to \mathcal{S}.

Our aim in this paper is to obtain a different form of the above LinnikSprindžuk phenomenon. We formulate our results in the framework of the

[^0]Selberg class \mathcal{S}, defined as follows. Every function $F \in \mathcal{S}$ is a Dirichlet series

$$
F(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

absolutely convergent for $\sigma>1$, and there exists an integer $m \geq 0$ such that $(s-1)^{m} F(s)$ is an entire function of finite order; the minimum of such integers is denoted by m_{F}. Moreover, $F(s)$ satisfies a functional equation of type

$$
\begin{equation*}
Q^{s} \prod_{j=1}^{r} \Gamma\left(\lambda_{j} s+\mu_{j}\right) F(s)=\omega Q^{1-s} \prod_{j=1}^{r} \Gamma\left(\lambda_{j}(1-s)+\bar{\mu}_{j}\right) \bar{F}(1-s) \tag{1}
\end{equation*}
$$

where $\bar{F}(s)=\overline{F(\bar{s})},|\omega|=1, Q>0, \lambda_{j}>0$ and $\Re \mu_{j} \geq 0$. In addition, $a(n) \ll n^{\varepsilon}$ for every $\varepsilon>0$, and $F(s)$ has an Euler product satisfying

$$
\log F(s)=\sum_{n=1}^{\infty} \frac{b(n)}{n^{s}}
$$

where $b(n)=0$ unless $n=p^{k}$ with $k \geq 1$, and $b(n) \ll n^{\vartheta}$ for some $\vartheta<1 / 2$. We refer to our surveys [5], [6], [9] and [10] for the basic theory of the Selberg class. We also use the notation

$$
\psi(s)=\frac{\Gamma^{\prime}}{\Gamma}(s)
$$

for the logarithmic derivative of $\Gamma(s)$.
For $F \in \mathcal{S}$ and $\alpha \in \mathbb{R} \backslash\{0\}$ we write

$$
\begin{aligned}
& H_{F}(s, \alpha)=\sum_{\varrho} \Gamma(\varrho-s)(2 \pi i \alpha)^{s-\varrho} \\
& G_{F}(s, \alpha)=H_{F}(s, \alpha)+\sum_{j=1}^{r} \lambda_{j} \psi\left(\lambda_{j} s+\mu_{j}\right)
\end{aligned}
$$

where ϱ runs over the non-trivial zeros of $F(s)$. By the Riemann-von Mangoldt and Stirling's formulae, the series for $H_{F}(s, \alpha)$ converges absolutely and uniformly on compact sets for $\sigma>3 / 2$ and $s \neq \varrho+l$ with $l=1,2, \ldots$ (see beginning of the next section). Moreover, assuming the General Riemann Hypothesis (GRH) for $F(s)$, the above condition $\sigma>3 / 2$ can be replaced by $\sigma>1$. The analytic properties of $G_{F}(s, \alpha)$ are given by the following theorem.

Theorem 1. Let $F \in \mathcal{S}$ and $m \in \mathbb{Z} \backslash\{0\}$. Then $G_{F}(s, m)$ is meromorphic on \mathbb{C}. Moreover, $G_{F}(s, m)$ is holomorphic for $\sigma<1$, while for $\sigma \geq 1$ it has simple poles at $s=\varrho+k$, where ϱ runs over the non-trivial zeros of $F(s)$ and $k=1,2, \ldots$, and at $s=1$ if $m_{F} \neq 0$.

Theorem 1 immediately yields the analytic properties of $H_{F}(s, m)$.

Corollary 1. Let $F \in \mathcal{S}$ and $m \in \mathbb{Z} \backslash\{0\}$. Then $H_{F}(s, m)$ is meromorphic on \mathbb{C}. Moreover, $H_{F}(s, m)$ has simple poles at the points $s=$ $-\left(\mu_{j}+k\right) / \lambda_{j}, j=1, \ldots, r$ and $k=0,1, \ldots$, for $\sigma<1$, while for $\sigma \geq 1$ it has simple poles at $s=\varrho+k$, where ϱ runs over the non-trivial zeros of $F(s)$ and $k=1,2, \ldots$, and at $s=1$ if $m_{F} \neq 0$.

Note that the polar structure of $H_{F}(s, m)$ does not depend on m; this is already clear for $\sigma>3 / 2$ from the convergence properties of the series for $H_{F}(s, \alpha)$. Note also that the poles of $H_{F}(s, m)$ in the half-plane $\sigma<1$ almost coincide with the trivial zeros of $F(s)$, the only difference occurring at $s=0$ if $m_{F} \neq 0$; moreover, such poles lie in the half-plane $\sigma \leq 0$.

Let now $\chi(\bmod q), q \geq 2$, be a primitive Dirichlet character and write

$$
l^{*}(s, \chi)=2 \chi(-1) \omega_{\chi} q^{s-1 / 2} l(s, \bar{\chi}) \cos \left(\frac{\pi(s+a(\chi))}{2}\right)
$$

where

$$
l(s, \chi)=\sum_{0<a<q / 2} \frac{\chi(a)}{a^{s}}, \quad a(\chi)=\left\{\begin{array}{ll}
0 & \text { if } \chi(-1)=1, \\
1 & \text { if } \chi(-1)=-1,
\end{array} \quad \omega_{\chi}=\frac{\tau(\chi)}{i^{a(\chi)} \sqrt{q}}\right.
$$

and $\tau(\chi)$ is the Gauss sum. Moreover, let

$$
F(s, \chi)=\sum_{n=1}^{\infty} \frac{a(n) \chi(n)}{n^{s}}
$$

be the twist of $F(s)$ by χ, and write

$$
\begin{aligned}
& H_{F}(s, \chi)=\sum_{\varrho} \Gamma(\varrho-s)(2 \pi)^{s-\varrho} l^{*}(\varrho-s, \chi) \\
& G_{F}(s, \chi)=H_{F}(s, \chi)-\frac{F^{\prime}}{F}(s, \chi)
\end{aligned}
$$

where again the summation is over the non-trivial zeros of $F(s)$. The function $H_{F}(s, \chi)$ is a kind of twist of $H_{F}(s, \alpha)$ (see Lemma 4 below), and its convergence properties are similar to those of $H_{F}(s, \alpha)$ (i.e. convergence for $\sigma>3 / 2$ with $s \neq \varrho+l$, and for $\sigma>1$ under GRH). We have

Theorem 2. Let $F \in \mathcal{S}$ and $\chi(\bmod q), q \geq 2$, be a primitive Dirichlet character. Then $G_{F}(s, \chi)$ is meromorphic on \mathbb{C}. Moreover, $G_{F}(s, \chi)$ is holomorphic for $\sigma<1$, while for $\sigma \geq 1$ it has simple poles at $s=\varrho+k$, where ϱ runs over the non-trivial zeros of $F(s)$ and $k=1,2, \ldots$, provided $l^{*}(-k, \bar{\chi}) \neq 0$, and at $s=1$ if $m_{F} \neq 0$ and $l^{*}(-1, \bar{\chi}) \neq 0$.

We briefly discuss the meaning of Theorem 2 after Corollary 2 below. Note that the zeros of $l^{*}(-k, \bar{\chi})$ come from those of $l(-k, \bar{\chi})$ and of $\cos (\pi(-k+a(\chi)) / 2)$, and the zeros of the latter are easily described; in
particular, the cosine factor cancels the poles of $G_{F}(s, \chi)$ in infinitely many strips of type $k \leq \sigma \leq k+1$.

Given $F \in \mathcal{S}$, it is expected that the conductor $q_{F}=(2 \pi)^{d_{F}} Q^{2} \prod_{j=1}^{r} \lambda_{j}^{2 \lambda_{j}}$ is an integer (where $d_{F}=2 \sum_{j=1}^{r} \lambda_{j}$ is the degree and Q, λ_{j} are given by (1)), and that the twists $F(s, \chi)$ belong to the class \mathcal{S} for every primitive character $\chi(\bmod q)$ with $\left(q, q_{F}\right)=1$; see [7]. However, at present nothing is known in general about the analytic properties of $F(s, \chi)$ outside the halfplane $\sigma>1$ of absolute convergence, although the above twist conjecture is known to hold for most classical L-functions. Theorem 2 shows that the continuation properties of $F(s, \chi)$ and of $H_{F}(s, \chi)$ are closely related; in particular, the meromorphic continuation to the whole complex plane of $F(s, \chi)$ is equivalent to that of $H_{F}(s, \chi)$, and more precise information can be obtained assuming the twist conjecture. Therefore, in this case we cannot switch from $G_{F}(s, \chi)$ to the more interesting function $H_{F}(s, \chi)$ for $\sigma \leq 1$. We can, however, immediately deduce the meromorphic continuation of $H_{F}(s, \chi)$ to $\sigma>1$ without assuming GRH.

Corollary 2. Let $F \in \mathcal{S}$ and $\chi(\bmod q), q \geq 2$, be a primitive Dirichlet character. Then $H_{F}(s, \chi)$ is meromorphic for $\sigma>1$ with simple poles at $s=\varrho+k$, where ϱ runs over the non-trivial zeros of $F(s)$ and $k=1,2, \ldots$, provided $l^{*}(-k, \bar{\chi}) \neq 0$, and at $s=1$ if $m_{F} \neq 0$ and $l^{*}(-1, \bar{\chi}) \neq 0$.

In the spirit of the Linnik-Sprindžuk theorem, we now assume the twist conjecture and observe the behaviour of the poles when switching from $H_{F}(s, \alpha)$ to $H_{F}(s, \chi)$. We first note from Corollary 1 that $H_{F}(s, m)$ has poles at (essentially) the trivial zeros of $F(s)$, is holomorphic for $0<\sigma<1$ and has poles at the shifted non-trivial zeros of $F(s)$ in each strip $k \leq \sigma \leq k+1$ with integer $k \geq 1$. Then, if we "twist" $H(s, \alpha)$ to get $H_{F}(s, \chi)$, by Theorem 2 the poles in the strips $k \leq \sigma \leq k+1$ remain unchanged (if $l^{*}(-k, \bar{\chi}) \neq 0$) or disappear (if $l^{*}(-k, \bar{\chi})=0$), but for $\sigma<1$ simple poles at the zeros of $F(s, \chi)$ pop up. In particular, $H_{F}(s, \chi)$ is defined by means of the non-trivial zeros of $F(s)$, and its poles keep track of the non-trivial zeros of both $F(s)$ and $F(s, \chi)$.

We finally remark that suitable variants of Theorem 2 can be obtained by the arguments in this paper. For example, in the prototypical case of $\zeta(s)$ we may consider functions of type

$$
K(s, \chi)=\sum_{\gamma>0} \frac{g^{*}(\varrho-s, \bar{\chi})}{(\varrho / i)^{s+1 / 2-\varrho}},
$$

where $\varrho=\beta+i \gamma$ runs over the non-trivial zeros of $\zeta(s)$ and

$$
g^{*}(s, \chi)=\left(\frac{q}{2 \pi}\right)^{s} g(s, \chi), \quad g(s, \chi)=\sum_{a=1}^{q} \frac{\chi(a)}{a^{s}} .
$$

Then $K(s, \chi)$ is convergent for $\sigma>3 / 2$ (for $\sigma>1$ under RH), has meromorphic continuation to the whole complex plane, and its poles are located at the points $s=\varrho_{\chi}-k$, with integer $k \geq 0$ and ϱ_{χ} running over the non-trivial zeros of $L(s, \chi)$, and at $s=k$ with integer $k \leq 1$.

Acknowledgments. This research was partially supported by a MUR grant Cofin2006 and by the KBN grant N N201 148233.
2. Proofs. Let $\alpha \in \mathbb{R} \backslash\{0\}, X>0, z_{X}(\alpha)=1 / X+2 \pi i \alpha, e(x)=e^{2 \pi i x}$ and for $\sigma>1$

$$
-\frac{F^{\prime}}{F}(s)=\sum_{n=1}^{\infty} \frac{b(n) \log n}{n^{s}}=\sum_{n=1}^{\infty} \frac{\Lambda_{F}(n)}{n^{s}}
$$

say. By Mellin's transform and then shifting the line of integration to $-\infty$ we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{\Lambda_{F}(n)}{n^{s}} e(-n \alpha) e^{-n / X} \tag{2}\\
= & \frac{1}{2 \pi i} \int_{(2)}\left\{-\frac{F^{\prime}}{F}(s+w)\right\} \Gamma(w) z_{X}(\alpha)^{-w} d w \\
= & m_{F} \Gamma(1-s) z_{X}(\alpha)^{s-1}+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\left\{-\frac{F^{\prime}}{F}(s-k)\right\} z_{X}(\alpha)^{k} \\
& -\sum_{\varrho} \Gamma(\varrho-s) z_{X}(\alpha)^{s-\varrho}-\sum_{j=1}^{r} \sum_{l=0}^{\infty} \Gamma\left(-s-\frac{l+\mu_{j}}{\lambda_{j}}\right) z_{X}(\alpha)^{s+\left(l+\mu_{j}\right) / \lambda_{j}}
\end{align*}
$$

for s different from the poles of the Γ-functions involved and of $-\frac{F^{\prime}}{F}(s-k)$. In fact, the series on the right hand side of (2) are convergent and

$$
\int_{(-K)}\left\{-\frac{F^{\prime}}{F}(s+w)\right\} \Gamma(w) z_{X}(\alpha)^{-w} d w \rightarrow 0
$$

as $K \rightarrow \infty$ over a suitable sequence such that the lines $\sigma=K$ are free from the poles of the integrand.

As we already remarked in the Introduction, the series

$$
H_{F}(s, \alpha)=\sum_{\varrho} \Gamma(\varrho-s) z_{\infty}(\alpha)^{s-\varrho}
$$

converges absolutely and uniformly on compact sets for $\sigma>3 / 2$ and $s \neq \varrho+l$ with $l=1,2, \ldots$ (for $\sigma>1$ under GRH). Indeed,

$$
\Gamma(\varrho-s) \ll e^{-\pi|\gamma| / 2}|\gamma|^{1 / 2-\sigma} \quad \text { and } \quad z_{\infty}^{s-\varrho} \ll e^{\pi|\gamma| / 2},
$$

hence for $\varrho-s \notin \mathbb{Z}$,

$$
H_{F}(s, \alpha) \ll \sum_{\varrho}(1+|\gamma|)^{1 / 2-\sigma}
$$

which is convergent for $\sigma>3 / 2$ thanks to the Riemann-von Mangoldt formula for the number of zeros in the critical strip (similarly under GRH). Therefore, letting $X \rightarrow \infty$ in (2), for $\sigma>3 / 2$ and s different from the poles of the Γ-functions involved and of $-\frac{F^{\prime}}{F}(s-k)$ we get

$$
\begin{align*}
H_{F}(s, \alpha)= & -\sum_{n=1}^{\infty} \frac{\Lambda_{F}(n)}{n^{s}} e(-n \alpha)+m_{F} \Gamma(1-s) z_{\infty}(\alpha)^{s-1} \tag{3}\\
& +\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\left\{-\frac{F^{\prime}}{F}(s-k)\right\} z_{\infty}(\alpha)^{k} \\
& -\sum_{j=1}^{r} \sum_{l=0}^{\infty} \Gamma\left(-s-\frac{l+\mu_{j}}{\lambda_{j}}\right) z_{\infty}(\alpha)^{s+\left(l+\mu_{j}\right) / \lambda_{j}}
\end{align*}
$$

We have $z_{\infty}(\alpha)=2 \pi i \alpha$ and, by the functional equation,
$-\frac{F^{\prime}}{F}(s)=2 \log Q+\sum_{j=1}^{r} \lambda_{j} \psi\left(\lambda_{j} s+\mu_{j}\right)+\sum_{j=1}^{r} \lambda_{j} \psi\left(\lambda_{j}(1-s)+\bar{\mu}_{j}\right)+\frac{\bar{F}^{\prime}}{\bar{F}}(1-s)$,
hence (3) becomes, for the same values of s,

$$
\begin{aligned}
H_{F}(s, \alpha)= & -\sum_{n=1}^{\infty} \frac{\Lambda_{F}(n)}{n^{s}} e(-n \alpha)+\sum_{n=1}^{\infty} \frac{\Lambda_{F}(n)}{n^{s}}+m_{F} \Gamma(1-s)(2 \pi i \alpha)^{s-1} \\
& +\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!}\left\{2 \log Q+\sum_{j=1}^{r} \lambda_{j} \psi\left(\lambda_{j}(s-k)+\mu_{j}\right)\right. \\
& \left.+\sum_{j=1}^{r} \lambda_{j} \psi\left(\lambda_{j}(1-s+k)+\bar{\mu}_{j}\right)+\frac{\bar{F}^{\prime}}{\bar{F}}(1-s+k)\right\}(2 \pi i \alpha)^{k} \\
& -\sum_{j=1}^{r} \sum_{l=0}^{\infty} \Gamma\left(-s-\frac{l+\mu_{j}}{\lambda_{j}}\right)(2 \pi i \alpha)^{s+\left(l+\mu_{j}\right) / \lambda_{j}} \\
= & \sum_{n=1}^{\infty} \frac{\Lambda_{F}(n)(1-e(-n \alpha))}{n^{s}}+m_{F} \Gamma(1-s)(2 \pi i \alpha)^{s-1} \\
& +2 e(-\alpha) \log Q-\sum_{j=1}^{r} \lambda_{j} \psi\left(\lambda_{j} s+\mu_{j}\right) \\
& +\sum_{j=1}^{r}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \lambda_{j} \psi\left(\lambda_{j}(s-k)+\mu_{j}\right)(2 \pi i \alpha)^{k}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\sum_{l=0}^{\infty} \Gamma\left(-s-\frac{l+\mu_{j}}{\lambda_{j}}\right)(2 \pi i \alpha)^{s+\left(l+\mu_{j}\right) / \lambda_{j}}\right) \\
& +\sum_{j=1}^{r} \lambda_{j} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!} \psi\left(\lambda_{j}(1-s+k)+\bar{\mu}_{j}\right)(2 \pi i \alpha)^{k} \\
& +\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!} \frac{\bar{F}^{\prime}}{\bar{F}}(1-s+k)(2 \pi i \alpha)^{k} \\
= & \sum_{n=1}^{\infty} \frac{\Lambda_{F}(n)(1-e(-n \alpha))}{n^{s}}+m_{F} \Gamma(1-s)(2 \pi i \alpha)^{s-1}+2 e(-\alpha) \log Q \\
& -\sum_{j=1}^{r} \lambda_{j} \psi\left(\lambda_{j} s+\mu_{j}\right)+A(s, \alpha)+B(s, \alpha)+C(s, \alpha)
\end{aligned}
$$

say. With this notation, we have proved the following
Lemma 1. Let $F \in \mathcal{S}$ and $\alpha \in \mathbb{R} \backslash\{0\}$. Then $H_{F}(s, \alpha)$ is meromorphic for $\sigma>3 / 2$, and

$$
\begin{aligned}
H_{F}(s, \alpha)+\sum_{j=1}^{r} \lambda_{j} & \psi\left(\lambda_{j} s+\mu_{j}\right) \\
= & \sum_{n=1}^{\infty} \frac{\Lambda_{F}(n)(1-e(-n \alpha))}{n^{s}}+m_{F} \Gamma(1-s)(2 \pi i \alpha)^{s-1} \\
& +2 e(-\alpha) \log Q+A(s, \alpha)+B(s, \alpha)+C(s, \alpha)
\end{aligned}
$$

The functions $B(s, \alpha)$ and $C(s, \alpha)$ are easy to deal with. Indeed, for $\sigma<2$ and $k \geq 1$ we have $\Re\left(\lambda_{j}(1-s+k)+\bar{\mu}_{j}\right) \geq \lambda_{j}(2-\sigma)>0$, therefore

$$
\psi\left(\lambda_{j}(1-s+k)+\bar{\mu}_{j}\right) \ll_{s} \log k
$$

and hence the series in $B(s, \alpha)$ is absolutely convergent. Thus

$$
\begin{equation*}
B(s, \alpha) \text { is holomorphic for } \sigma<2 \tag{4}
\end{equation*}
$$

Moreover, for $\sigma<2$ and $k \geq 2$ we have $\Re(1-s+k) \geq 3-\sigma>1$, hence

$$
\begin{equation*}
C(s, \alpha)=-2 \pi i \alpha \frac{\bar{F}^{\prime}}{\bar{F}}(2-s)+O_{s}\left(\sum_{k=2}^{\infty} \frac{(2 \pi|\alpha|)^{k}}{k!}\right) \tag{5}
\end{equation*}
$$

Therefore the O-term in (5) is holomorphic for $\sigma<2$, and in particular
(6) $C(s, \alpha)$ is meromorphic for $\sigma<2$ and holomorphic for $\sigma<1$.

In order to study $A(s, \alpha)$ we write

$$
\begin{equation*}
A(s, \alpha)=\sum_{j=1}^{r} A\left(s ; \lambda_{j}, \mu_{j}, \alpha\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
A(s ; \lambda, \mu, \alpha)= & \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \lambda \psi(\lambda(s-k)+\mu)(2 \pi i \alpha)^{k} \tag{8}\\
& -\sum_{l=0}^{\infty} \Gamma\left(-s-\frac{l+\mu}{\lambda}\right)(2 \pi i \alpha)^{s+(l+\mu) / \lambda}
\end{align*}
$$

and prove the following
Lemma 2. For $\lambda>0, \mu \in \mathbb{C}$ and $\alpha \in \mathbb{R}$ the function $A(s ; \lambda, \mu, \alpha)$ is entire.

Proof. We write (8) as

$$
\begin{equation*}
A(s ; \lambda, \mu, \alpha)=A_{1}(s ; \lambda, \mu, \alpha)-A_{2}(s ; \lambda, \mu, \alpha) \tag{9}
\end{equation*}
$$

and investigate first $A_{2}(s ; \lambda, \mu, \alpha)$. For $\sigma>0$ and $\xi>0$ we have

$$
\begin{aligned}
\Gamma(s) & =\int_{0}^{\infty} e^{-x} x^{s-1} d x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \int_{0}^{\xi} x^{s+k-1} d x+\int_{\xi}^{\infty} e^{-x} x^{s-1} d x \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \frac{\xi^{s+k}}{s+k}+\int_{\xi}^{\infty} e^{-x} x^{s-1} d x
\end{aligned}
$$

and by analytic continuation this holds for every $s \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}$. Hence, assuming

$$
\begin{equation*}
\xi>2 \pi|\alpha| \tag{10}
\end{equation*}
$$

we have

$$
\begin{aligned}
A_{2}(s ; \lambda, \mu, \alpha)= & \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \frac{\xi^{-s-(l+\mu) / \lambda+k}}{-s-(l+\mu) / \lambda+k}(2 \pi i \alpha)^{s+(l+\mu) / \lambda} \\
& +\sum_{l=0}^{\infty}(2 \pi i \alpha)^{s+(l+\mu) / \lambda} \int_{\xi}^{\infty} e^{-x} x^{-s-(l+\mu) / \lambda-1} d x \\
= & -\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-\xi)^{k}}{k!}\left(\frac{2 \pi i \alpha}{\xi}\right)^{s+(l+\mu) / \lambda} \frac{1}{s+(l+\mu) / \lambda-k} \\
& +(2 \pi i \alpha)^{s+\mu / \lambda} \int_{\xi}^{\infty} e^{-x} x^{-s-\mu / \lambda-1} \sum_{l=0}^{\infty}\left(\frac{2 \pi i \alpha}{x}\right)^{l / \lambda} d x \\
= & -\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-\xi)^{k}}{k!}\left(\frac{2 \pi i \alpha}{\xi}\right)^{s+(l+\mu) / \lambda} \frac{1}{s+(l+\mu) / \lambda-k} \\
& +(2 \pi i \alpha)^{s+\mu / \lambda} \int_{\xi}^{\infty} e^{-x} x^{-s-\mu / \lambda-1} \frac{1}{1-(2 \pi i \alpha / x)^{1 / \lambda}} d x .
\end{aligned}
$$

Since the last summand is an entire function of s we get

$$
\begin{align*}
& A_{2}(s ; \lambda, \mu, \alpha) \tag{11}\\
& \quad=-\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-\xi)^{k}}{k!}\left(\frac{2 \pi i \alpha}{\xi}\right)^{s+(l+\mu) / \lambda} \frac{1}{s+(l+\mu) / \lambda-k}+E_{1}(s, \xi)
\end{align*}
$$

where $E_{1}(s, \xi)$ is an entire function.
In order to deal with $A_{1}(s ; \lambda, \mu, \alpha)$ we recall (see eq. (3) on p. 15 of [1]) that for $s \neq 0,-1, \ldots$,

$$
\psi(s)=-\gamma+\sum_{l=0}^{\infty} \frac{s-1}{(l+1)(s+l)}
$$

where γ is Euler's constant. Hence

$$
\begin{align*}
& A_{1}(s ; \lambda, \mu, \alpha) \tag{12}\\
& \quad=-\gamma \lambda e(-\alpha)+\lambda \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(-1)^{k}}{k!} \frac{\lambda(s-k)+\mu-1}{(l+1)(\lambda(s-k)+\mu+l)}(2 \pi i \alpha)^{k} \\
& \quad=-\gamma \lambda e(-\alpha)+\lambda \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(-2 \pi i \alpha)^{k}}{k!} \frac{s+(\mu-1) / \lambda-k}{(l+1)(s+(l+\mu) / \lambda-k)} .
\end{align*}
$$

Thus from (9), (11) and (12) we obtain
(13) $A(s ; \lambda, \mu, \alpha)$

$$
\begin{aligned}
= & \lambda \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(-2 \pi i \alpha)^{k}}{k!} \frac{s+(\mu-1) / \lambda-k}{(l+1)(s+(l+\mu) / \lambda-k)} \\
& +\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-\xi)^{k}}{k!}\left(\frac{2 \pi i \alpha}{\xi}\right)^{s+(l+\mu) / \lambda} \frac{1}{s+(l+\mu) / \lambda-k}+E_{2}(s, \xi) \\
= & \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(-2 \pi i \alpha)^{k}}{k!}\left(\frac{\lambda s+\mu-1-k \lambda}{l+1}+\left(\frac{2 \pi i \alpha}{\xi}\right)^{s+(l+\mu) / \lambda-k}\right)
\end{aligned}
$$

$$
\times \frac{1}{s+(l+\mu) / \lambda-k}+E_{2}(s, \xi)
$$

$$
=\sum_{\substack{k, l \geq 0 \\|s+(l+\mu) / \lambda-k|<1}} \frac{(-2 \pi i \alpha)^{k}}{k!}\left(\frac{\lambda s+\mu-1-k \lambda}{l+1}+\left(\frac{2 \pi i \alpha}{\xi}\right)^{s+(l+\mu) / \lambda-k}\right)
$$

$$
\times \frac{1}{s+(l+\mu) / \lambda-k}
$$

$$
\begin{aligned}
& \quad \sum_{\substack{k, l \geq 0 \\
|s+(l+\mu) / \lambda-k| \geq 1}} \frac{(-2 \pi i \alpha)^{k}}{k!}\left(\frac{\lambda s+\mu-1-k \lambda}{l+1}+\left(\frac{2 \pi i \alpha}{\xi}\right)^{s+(l+\mu) / \lambda-k}\right) \\
& \\
& =S_{1}(s, \xi)+S_{2}(s, \xi)+E_{2}(s, \xi)
\end{aligned}
$$

say, with an entire function $E_{2}(s, \xi)$. In $S_{1}(s, \xi)$ we always have $k \ll l \ll k$ and, recalling (10), also
$\left|\frac{\frac{\lambda s+\mu-1-k \lambda}{l+1}+(2 \pi i \alpha / \xi)^{s+(l+\mu) / \lambda-k}}{s+(l+\mu) / \lambda-k}\right|=\left|\frac{\lambda}{l+1}+\frac{(2 \pi i \alpha / \xi)^{s+(l+\mu) / \lambda-k}-1}{s+(l+\mu) / \lambda-k}\right| \ll 1$,
therefore

$$
S_{1}(s, \xi) \ll \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{k \ll l \ll k} 1
$$

Since the series is convergent, $S_{1}(s, \xi)$ is an entire function. Moreover, again recalling (10) we obtain

$$
\begin{aligned}
S_{2}(s, \xi) \ll & \sum_{\substack{k, l \geq 0 \\
|s+(l+\mu) / \lambda-k| \geq 1}} \frac{|2 \pi \alpha|^{k}}{k!}\left(\frac{k+1}{l+1}+\left|\frac{2 \pi \alpha}{\xi}\right|^{l / \lambda-k}\right) \frac{1}{|s+(l+\mu) / \lambda-k|} \\
\ll & \sum_{k=0}^{\infty} \frac{|2 \pi \alpha|^{k}(k+1)}{k!} \sum_{\substack{l \geq 0 \\
|s+(l+\mu) / \lambda-k| \geq 1}} \frac{1}{(l+1)|s+(l+\mu) / \lambda-k|} \\
& +\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{\xi^{k}}{k!}\left|\frac{2 \pi \alpha}{\xi}\right|^{l / \lambda} .
\end{aligned}
$$

The two series are convergent, and hence $S_{2}(s, \xi)$ is an entire function as well. Lemma 2 then follows from (13).

REMARK. If $\lambda \in \mathbb{Q}^{+}$the proof of Lemma 1 can be simplified: one just has to compute the residue at each suspected pole and to show that it vanishes.

From Lemma 1, (4), (6), (7) and Lemma 2 we immediately deduce the following basic formula.

Lemma 3. Let $F \in \mathcal{S}$ and $\alpha \in \mathbb{R} \backslash\{0\}$. Then

$$
H_{F}(s, \alpha)+\sum_{j=1}^{r} \lambda_{j} \psi\left(\lambda_{j} s+\mu_{j}\right)=\sum_{n=1}^{\infty} \frac{\Lambda_{F}(n)(1-e(-n \alpha))}{n^{s}}+M_{F}(s, \alpha)
$$

where $M_{F}(s, \alpha)$ is meromorphic on \mathbb{C} and holomorphic for $\sigma<1$.

The proof of Theorem 1 is now easy. By Lemma 3, for $\alpha=m \in \mathbb{Z} \backslash\{0\}$ we have

$$
G_{F}(s, m)=H_{F}(s, m)+\sum_{j=1}^{r} \lambda_{j} \psi\left(\lambda_{j} s+\mu_{j}\right)=M_{F}(s, m)
$$

and the first two statements of Theorem 1 follow. To prove the last statement we first note that $H_{F}(s, m), G_{F}(s, m)$ and $M_{F}(s, m)$ have the same poles for $\sigma \geq 1$. Thanks to the convergence properties of the series, for $\sigma>3 / 2$ the function $H_{F}(s, m)$ is holomorphic apart from simple poles at $s=\varrho+k$, where ϱ and k run over the non-trivial zeros of $F(s)$ and over the integers ≥ 2, respectively. Concerning the remaining range $1 \leq \sigma \leq 3 / 2$, from Lemma 1 , (4), (5) and Lemma 2 we have

$$
M_{F}(s, m)=m_{F} \Gamma(1-s)(2 \pi i m)^{s-1}-2 \pi i m \frac{\bar{F}^{\prime}}{\bar{F}}(2-s)+h(s)
$$

where $h(s)$ is holomorphic for $\sigma<2$. Hence in that range the poles of $M_{F}(s, m)$ are a simple pole at $s=1$ (if $\left.m_{F} \neq 0\right)$ and simple poles at $2-s=\bar{\varrho}$, since the zeros of $\bar{F}(s)$ are at $\bar{\varrho}$. Therefore $M_{F}(s, m)$ has simple poles at $s=2-\bar{\varrho}=2-\beta+i \gamma=1+1-\beta+i \gamma=1+\varrho$ by the functional equation. Theorem 1 is thus proved.

Turning to the proof of Theorem 2, the next lemma supports the assertion that $H_{F}(s, \chi)$ is a kind of twist of $H_{F}(s, \alpha)$.

Lemma 4. Let $\chi(\bmod q), q>2$, be a primitive Dirichlet character. Then for $\sigma>3 / 2$ we have

$$
H_{F}(s, \chi)=\frac{\tau(\chi)}{q} \sum_{0<|a|<q / 2} \bar{\chi}(a) H_{F}\left(s, \frac{a}{q}\right)
$$

Proof. Thanks to the convergence properties of $H_{F}(s, \alpha)$, for $\sigma>3 / 2$ we have
(14) $\quad \frac{\tau(\chi)}{q} \sum_{0<|a|<q / 2} \bar{\chi}(a) H_{F}\left(s, \frac{a}{q}\right)$

$$
=\sum_{\varrho} \Gamma(\varrho-s)(2 \pi)^{s-\varrho} \frac{\tau(\chi)}{q} \sum_{0<|a|<q / 2} \bar{\chi}(a)\left(i \frac{a}{q}\right)^{s-\varrho} .
$$

But, writing $w=\varrho-s$,

$$
\begin{aligned}
\frac{\tau(\chi)}{q} \sum_{0<|a|<q / 2} \bar{\chi}(a) & \left(i \frac{a}{q}\right)^{-w} \\
& =\frac{\tau(\chi)}{q} \sum_{0<a<q / 2} \bar{\chi}(a)\left(\frac{a}{q}\right)^{-w}\left(i^{-w}+\chi(-1)(-1)^{-w}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\chi(-1) \frac{\tau(\chi)}{q} q^{w} \sum_{0<a<q / 2} \frac{\bar{\chi}(a)}{a^{w}}\left(\chi(-1) e^{-i \pi w / 2}+e^{i \pi w / 2}\right) \\
& =\chi(-1) \frac{\tau(\chi)}{\sqrt{q}} q^{w-1 / 2} l(w, \bar{\chi}) i^{-a(\chi)}\left(e^{-i \pi(w+a(\chi)) / 2}+e^{i \pi(w+a(\chi)) / 2}\right) \\
& =2 \chi(-1) \frac{\tau(\chi)}{i^{a(\chi)} \sqrt{q}} q^{w-1 / 2} l(w, \bar{\chi}) \cos \left(\frac{\pi(w+a(\chi))}{2}\right)=l^{*}(w, \chi)
\end{aligned}
$$

and the lemma follows from (14).
Theorem 2 now follows from Lemmas 3 and 4. In fact, for a primitive character $\chi(\bmod q)$ we have, since $q>2$ and hence $(q / 2, q)>1$ if $q / 2 \in \mathbb{N}$,

$$
\begin{equation*}
\frac{\tau(\chi)}{q} \sum_{0<|a|<q / 2} \bar{\chi}(a) e\left(-\frac{n a}{q}\right)=\overline{\frac{1}{\tau(\chi)}} \sum_{0<|a|<q / 2} \chi(a) e\left(\frac{n a}{q}\right)=\chi(n) \tag{15}
\end{equation*}
$$

and hence, using the orthogonality of the characters, by Lemmas 4 and 3 for $\sigma>3 / 2$ we obtain

$$
\begin{aligned}
H_{F}(s, \chi)= & \frac{\tau(\chi)}{q} \sum_{0<|a|<q / 2} \bar{\chi}(a)\left(\sum_{n=1}^{\infty} \frac{\Lambda_{F}(n)}{n^{s}}-\sum_{n=1}^{\infty} \frac{\Lambda_{F}(n) e(-n a / q)}{n^{s}}\right. \\
& \left.-\sum_{j=1}^{r} \lambda_{j} \psi\left(\lambda_{j} s+\mu_{j}\right)+M_{F}\left(s, \frac{a}{q}\right)\right) \\
= & \frac{F^{\prime}}{F}(s, \chi)+\frac{\tau(\chi)}{q} \sum_{0<|a|<q / 2} \bar{\chi}(a) M_{F}\left(s, \frac{a}{q}\right) .
\end{aligned}
$$

Hence Lemma 3 implies that $G(s, \chi)$ is meromorphic on \mathbb{C} and holomorphic for $\sigma<1$. As in the proof of Theorem 1, the poles of $G_{F}(s, \chi)$ in the halfplane $\sigma>3 / 2$ are detected by means of the convergence properties of the series defining $H_{F}(s, \chi)$.

The remaining range $1 \leq \sigma \leq 3 / 2$ is treated as follows. By the properties of $H_{F}(s, \alpha)$ in Lemma 1, (4), (6) and Lemma 2, for $1<\sigma<2$ we have

$$
\begin{align*}
H_{F}\left(s, \frac{a}{q}\right)= & \frac{F^{\prime}}{F}(s)-\sum_{n=1}^{\infty} \frac{\Lambda_{F}(n) e(-a n / q)}{n^{s}} \tag{16}\\
& +m_{F} \Gamma(1-s)\left(2 \pi i \frac{a}{q}\right)^{s-1}-2 \pi i \frac{a}{q} \frac{\bar{F}^{\prime}}{\bar{F}}(2-s)+k_{1}(s)
\end{align*}
$$

where $k_{1}(s)$ is holomorphic for $1 \leq \sigma<2$. Inserting (16) in Lemma 4, by (15) we get

$$
\begin{align*}
H_{F}(s, \chi)= & \frac{F^{\prime}}{F}(s, \chi)+\frac{m_{F} \tau(\chi)}{q} \Gamma(1-s) \sum_{0<|a|<q / 2} \bar{\chi}(a)\left(2 \pi i \frac{a}{q}\right)^{s-1} \tag{17}\\
& -\frac{2 \pi i \tau(\chi)}{q^{2}} \frac{\bar{F}^{\prime}}{\bar{F}}(2-s) \sum_{0<|a|<q / 2} a \bar{\chi}(a)+k_{2}(s) \\
= & \frac{F^{\prime}}{F}(s, \chi)+\frac{m_{F} \tau(\chi)}{q} \Gamma(1-s) g(1-s, \chi) \\
& -2 \pi \frac{\bar{F}^{\prime}}{\bar{F}}(2-s) l^{*}(-1, \chi)+k_{2}(s)
\end{align*}
$$

say, where $k_{2}(s)$ is holomorphic for $1 \leq \sigma<2$. But, by the orthogonality of characters, $g(0, \chi)=0$ and hence the corresponding term in (17) is also holomorphic for $1 \leq \sigma<2$. Therefore, (17) takes the form

$$
G_{F}(s, \chi)=-2 \pi \frac{\bar{F}^{\prime}}{\bar{F}}(2-s) l^{*}(-1, \chi)+k_{3}(s)
$$

with $k_{3}(s)$ holomorphic for $1 \leq \sigma<2$. This means that $G_{F}(s, \chi)$ has poles at the points $\varrho+1$ if $l^{*}(-1, \chi)=l^{*}(-1, \bar{\chi}) \neq 0$, and also at $s=1$ if $m_{F} \neq 0$ and $l^{*}(-1, \chi) \neq 0$.

References

[1] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill, 1953.
[2] A. Fujii, Zeta zeros and Dirichlet L-functions, Proc. Japan Acad. 64 (1988), 215-218.
[3] -, Zeta zeros and Dirichlet L-functions. II, ibid. 64 (1988), 296-299.
[4] -, Some observations concerning the distribution of the zeros of the zeta function. III, ibid. 68 (1992), 105-110.
[5] J. Kaczorowski, Axiomatic theory of L-functions: the Selberg class, in: Analytic Number Theory (Cetraro, 2002), A. Perelli and C. Viola (eds.), Lecture Notes in Math. 1891, Springer, 2006, 133-209.
[6] J. Kaczorowski and A. Perelli, The Selberg class: a survey, in: Number Theory in Progress, Proc. Conf. in Honor of A. Schinzel, K. Györy et al. (eds.), de Gruyter, 1999, 953-992.
[7] —, 一, On the structure of the Selberg class, II: invariants and conjectures, J. Reine Angew. Math. 524 (2000), 73-96.
[8] Yu. V. Linnik, On the expression of L-series by the ζ-function, Dokl. Akad. Nauk SSSR 57 (1947), 435-437 (in Russian).
[9] A. Perelli, A survey of the Selberg class of L-functions, part I, Milan J. Math. 73 (2005), 19-52.
[10] -, A survey of the Selberg class of L-functions, part II, Riv. Mat. Univ. Parma (7) 3* (2004), 83-118.
[11] V. G. Sprindžuk, Vertical distribution of zeros of the zeta-function and the extended Riemann hypothesis, Acta Arith. 27 (1975), 317-332 (in Russian).
[12] —, On extended Riemann hypothesis, in: Topics in Number Theory, P. Turán (ed.), Colloq. Math. Soc. János Bolyai 13, North-Holland, 1976, 369-372.
[13] M. Suzuki, A relation between the zeros of an L-function belonging to the Selberg class and the zeros of an associated L-function twisted by a Dirichlet character, Arch. Math. (Basel) 83 (2004), 514-527.

Faculty of Mathematics and Computer Science
A. Mickiewicz University

61-614 Poznań, Poland
E-mail: kjerzy@amu.edu.pl

Dipartimento di Matematica
Università di Genova
via Dodecaneso 35
16146 Genova, Italy
E-mail: perelli@dima.unige.it

[^0]: 2000 Mathematics Subject Classification: 11M41, 11M26.
 Key words and phrases: Linnik-Sprindžuk theorem, Riemann Hypothesis, Selberg class.

