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Dedicated to Professor Wolfgang Schmidt on his 75th birthday

1. Introduction. Our objective in this note is to prove that if A is
a set of non-zero algebraic numbers, any t of which are multiplicatively
dependent, then, provided that the cardinality of A is large enough, two of
the algebraic numbers will have a quotient of small height. As a consequence
of our result we are able to give an upper bound for the number of powers
of rational numbers of small height in short intervals. A second application
may be found in [9].

Let K be a finite extension of Q of degree d. Let MK be the set of places
on K. In each place v of MK we choose a valuation | |v on K in the following
way. If v is a finite place, so v only contains non-Archimedean valuations,
then v restricted to Q belongs to a prime p. We put dv = [Kv : Qp], where
Kv and Qp denote the completions of K at v and Q at p, respectively. We
choose v so that

|α|v = |α|dv/d
p for α in Q,

where | |p denotes the usual p-adic valuation on Q normalized so that |p|p
= p−1. If v is an infinite place we choose v so that

|α|v = |α|dv/d for α in Q,

where | | denotes the ordinary absolute value on Q and where dv = [Kv : R]
so that dv is 1 if K is contained in R and 2 otherwise.

For any α in K we define the height of α, denoted by H(α), by

H(α) =
∏

v∈MK

max(1, |α|v).
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Notice that the height of α does not depend on the field K. Further, for any
non-zero integer k,

(1) H(αk) = (H(α))|k|

for any α. In addition, H(α) = 1 if and only if α is a root of unity or α = 0.
Furthermore, if α1, . . . , αr are in K then

H(α1 · · ·αr) ≤ H(α1) · · ·H(αr),(2)
H(α1 + · · ·+ αr) ≤ rH(α1) · · ·H(αr).(3)

For any real number x let dxe denote the smallest integer greater than
or equal to x.

Theorem 1. Let ε be a real number with 0 < ε < 1 and let t be an
integer with t ≥ 2. Let α1, . . . , αk be non-zero algebraic numbers with the
property that any t of them are multiplicatively dependent. Suppose that

(4) k ≥ t
(

1 +
⌈

1
ε

⌉t−1)
.

Then there exist distinct integers i0, . . . , it for which

H

(
αi0
αi1

)
≤ (H(αi2) · · ·H(αit))

ε.

Theorem 1 may be contrasted with the results of van der Poorten and
Loxton [7], Matveev [6], and Loher and Masser [4], where the authors prove
that if α1, . . . , αt are multiplicatively dependent algebraic numbers then
there is a relation of the form

αl11 · · ·α
lt
t = 1

with l1, . . . , lt integers, not all zero, and with max1≤i≤t |li| explicitly bounded
from above in terms of the heights and degrees of α1, . . . , αt.

2. Proof of Theorem 1. There are
(
k
t

)
t-tuples (i1, . . . , it) with 1 ≤

i1 < i2 < · · · < it ≤ k. Since any t of the αi’s are multiplicatively depen-
dent, αi1 , . . . , αit are multiplicatively dependent and so there are integers
li1 , . . . , lit , not all zero, for which

(5) α
li1
i1
· · ·αlitit = 1.

Associate (li1 , . . . , lit) to (i1, . . . , it) and suppose that ij is an index for which

|lij | ≥ |lin | for 1 ≤ n ≤ t.

We then associate to (i1, . . . , it) the t− 1-tuple (i1, . . . , îj , . . . , it), where the
symbol ̂ indicates that the jth coordinate has been dropped. Put

m =
⌈(

k

t

)/(
k

t− 1

)⌉
=
⌈
k − t+ 1

t

⌉
.
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Since there are
(
k
t−1

)
t− 1-tuples, at least one of them is associated with m

t-tuples.
Pick that t − 1-tuple. By reordering the αi’s we may assume, without

loss of generality, that the t− 1-tuple is (1, . . . , t− 1) and the associated m
t-tuples are (1, . . . , t− 1, t− 1 + j) for j = 1, . . . ,m. Then there are integers
l1,j , . . . , lt−1,j and lj for j = 1, . . . ,m with |li,j | ≤ |lj | and lj > 0 and for
which

(6) α
l1,j

1 · · ·αlt−1,j

t−1 = α
lj
j+t−1.

Put bi,j = li,j/lj for i = 1, . . . , t − 1 and j = 1, . . . ,m and put Bj =
(b1,j , . . . , bt−1,j) for j = 1, . . . ,m. Notice that Bj is in [0, 1]t−1. Thus, by the
box principle, for

(7) m >

⌈
1
ε

⌉t−1

,

there exist two vectors Bu and Bs with 1 ≤ u < s ≤ m for which

(8) |bi,u − bi,s| ≤ ε for i = 1, . . . , t− 1.

We have

(9) α
lsl1,u−lul1,s

1 · · ·αlslt−1,u−lult−1,s

t−1 =
(
αu+t−1

αs+t−1

)luls
.

Therefore,

H

(
αu+t−1

αs+t−1

)luls
≤ H(α1)|lsl1,u−lul1,s| · · ·H(αt−1)|lslt−1,u−lult−1,s|

and so, by (8),

H

(
αu+t−1

αs+t−1

)
≤ (H(α1) · · ·H(αt−1))ε,

provided (7) holds. But since m ≥ (k − t + 1)/t, condition (4) shows that
(7) holds and the result follows.

3. Some corollaries of Theorem 1

Corollary 1. Let δ and ε be real numbers with 0 < ε < 1 and 0 ≤ δ.
Let t be an integer with t ≥ 2 and let T be a real number with T ≥ 1. Let
α1, . . . , αk be distinct non-zero algebraic numbers with the property that any
t of them are multiplicatively dependent. Suppose that

(10) k ≥ t
⌈
t− 1
ε

⌉t−1

+ t

and that

(11) T 1−δ ≤ H(αi) ≤ 2T for i = 1, . . . , k.
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Then there exist i0 and i1, with 1 ≤ i0 < i1 ≤ k, for which

H(αi0 − αi1) ≥ 1
4
T 1−δ−ε.

Proof. On replacing ε by ε/(t−1) in the statement of Theorem 1 we find
that, provided (10) holds, there exist distinct integers i0, . . . , it for which

H

(
αi0
αi1

)
≤ ((H(αi2) · · ·H(αit))

1/(t−1))ε

and so, by (11),

H

(
αi0
αi1

)
≤ (2T )ε.

But

αi0 = (αi0 − αi1)
(

1− αi1
αi0

)−1

so, by (1) with k = −1 and (2),

H(αi0) ≤ H
(

1− αi1
αi0

)
H(αi0 − αi1) ≤ 2H

(
αi0
αi1

)
H(αi0 − αi1)

and therefore, by (11),

H(αi0 − αi1) ≥ (2(2T )ε)−1T 1−δ ≥ 1
4
T 1−δ−ε,

as required.

Corollary 2. Let ε be a real number with 0 < ε < 1 and let t and N
be positive integers. Let a1, . . . , ak be distinct positive integers with

N ≤ ai ≤ 2N for i = 1, . . . , k.

Suppose that any t integers from {a1, . . . , ak} are multiplicatively dependent.
Suppose also that

k ≥ t
⌈
t− 1
ε

⌉t−1

+ t.

Then there exist i0, i1 with 1 ≤ i0 < i1 ≤ k for which

|ai0 − ai1 | ≥
1
4
N1−ε.

Proof. We apply Corollary 1 with δ = 0 and αi = ai for i = 1, . . . , k. Our
result follows on noting that if a is a non-zero integer then H(a) = |a|.

Corollary 3. Let ε be a real number with 0 < ε < 1. Let N be a
positive integer and let a1, . . . , ak be distinct integers with

(12) N ≤ ai < N +
1
4
N1−ε
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for i = 1, . . . , k. If t is a positive integer and

k ≥ t
⌈
t− 1
ε

⌉t−1

+ t

then there are at least t integers from {a1, . . . , ak} which are multiplicatively
independent.

Proof. If every set of t integers chosen from {a1, . . . , ak} is multiplica-
tively dependent then by Corollary 2 there exist two of the ai’s which differ
by at least (1/4)N1−ε, which is impossible by (12).

4. Powers in short intervals. We are able to deduce from Theorem 1
an estimate for the number of perfect powers of integers in a short interval. In
1986 Loxton [5] asserted that if N exceeds 16 then the interval [N,N+N1/2]
contains at most

exp(40(log logN · log log logN)1/2)

perfect powers. His result improved on that of Turk [11], who proved in 1980
that there exists a positive number c for which such an interval contains at
most c(logN)1/2 perfect powers. Loxton deduced his result from a lower
bound he had established for simultaneous linear forms in the logarithms
of algebraic numbers. However, his argument is not complete in the case
that the integers he considers are multiplicatively dependent. In particular,
Loxton reduces the set of multiplicatively dependent integers to a subset of
the powers which are multiplicatively independent. It may be, though, that
the rank of the matrix of coefficients associated with the linear forms Λi after
the reduction is not full. This difficulty is overcome in a paper of Bernstein
[2] from 1998 by means of an ingenious argument which Bernstein attributes
to Loxton. One purpose of this section is to give a simple alternative proof
of Loxton’s result by means of Theorem 1. Another purpose is to extend the
result to include rational numbers which are powers.

It is an easy consequence of the abc conjecture (see e.g. [10]) that if there
are arbitrarily large integers N for which the interval [N,N+N1/2] contains
distinct ath and bth powers then 1/a+1/b ≥ 1/2. If a and b are both bigger
than 2 then (a, b) is one of (3, 4), (3, 5) or (3, 6). Certainly (3, 6) is not a
possibility since two distinct cubes do not lie in an interval [N,N + N1/2].
Also, two distinct squares do not lie in such an interval. Accordingly, we
conjecture that there are infinitely many integers N for which [N,N+N1/2]
contains three distinct integers one of which is a square, one a cube and one
a fifth power. Further, we conjecture that there exists a positive number C
such that if N exceeds C then the interval [N,N + N1/2] does not contain
four distinct powers and if it contains three distinct powers then one is a
square, one is a cube and the third is a fifth power.
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The reason that Turk and Loxton considered the interval [N,N +N1/2]
and not a larger one is that for any ε > 0 the interval [N,N + N1/2+ε]
contains at least (1/2)N ε(1 + o(1)) squares. If we exclude the squares then
it is reasonable to consider an interval of length N2/3 starting at N and,
more generally, if we exclude the rth powers for r less than k then we should
focus our attention on intervals of the form [N,N + N1−1/k]. We may also
study perfect powers of rational numbers in short intervals. If we consider
intervals of the form [N,N +N θ] with θ strictly less than 1− 1/k then we
may estimate the number of rational numbers which are perfect rth powers
with r ≥ k in the interval provided that the heights of the rational numbers,
which are at least N in size, are not too large. Note that if there is no
restriction placed on the heights, one can find infinitely many kth powers
of rationals in any interval of the form [N,N + 1]. The natural restriction
on the height to require is one which ensures that there are not two kth
powers in the interval. In particular, it suffices to consider rational numbers
of heights at most 2N1+γ where γ = (k − 1 − kθ)/2 (see Lemma 2). With
this in mind we shall prove the following result.

Theorem 2. Let k be an integer with k ≥ 2 and let θ be a real number
with 0 ≤ θ ≤ (k − 1)/k. There is a positive number c1, which is effectively
computable in terms of k, such that if N exceeds c1 then the number of
rational numbers which are perfect rth powers with r ≥ k of height at most
2N1+(k−1−kθ)/2 in the interval [N,N +N θ] is at most

exp(30(log logN · log log logN)1/2).

On taking θ = (k − 1)/k and noting that all of the integers in [N,N +
N1−1/k] have height at most 2N we see that the number of perfect rth
powers of integers with r ≥ k in [N,N+N1−1/k] is at most exp(30(log logN ·
log log logN)1/2) provided that N is sufficiently large.

The estimate of Loxton [5] for simultaneous linear forms in the loga-
rithms of algebraic numbers is the following. Let n and t be integers with
n ≥ 2 and t ≥ 1 and let α1, . . . , αn be non-zero multiplicatively independent
algebraic numbers. Let bi,j for i = 1, . . . , t and j = 1, . . . , n be algebraic
numbers and suppose that the matrix (bi,j) formed by the bi,j ’s has rank t.
Put

Λi = bi,1 logα1 + · · ·+ bi,n logαn for i = 1, . . . , t,

where the logarithms are principal. For any algebraic number α, let H ′(α)
denote the maximum of the absolute values of the relatively prime integer
coefficients in the minimal defining polynomial for α. If α is of degree m
then the two heights H(α) and H ′(α) satisfy the inequalities

21−mH ′(α) ≤ H(α)m ≤
√
m+ 1H ′(α)

(see Chapter 3, Theorem 2.8 of Lang [3]).
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We shall suppose that H ′(αj) ≤ Aj with Aj ≥ 4 for j = 1, . . . , n and
that H ′(bi,j) ≤ B with B ≥ 4 for i = 1, . . . , t and j = 1, . . . , n. Let d be the
degree of the field generated by the αj ’s and the bi,j ’s over the rationals.
Put Ω = logA1 · · · logAn. Building on an estimate of Baker [1] for the case
t = 1, Loxton [5] proved the following result.

Lemma 1.

max
1≤i≤t

|Λi| > exp(−C(Ω logΩ)1/t log(BΩ))

where C = (16nd)200n.

Improvements of Lemma 1 should be possible given the developments
associated with the case t = 1 since 1977.

For the proof of Theorem 2 we also require an estimate for the length
of an interval which ensures that the interval does not contain two rational
numbers of small height which are kth powers of rational numbers.

Lemma 2. Let k and N be positive integers with k ≥ 2. Let θ be a real
number with 0 ≤ θ ≤ (k − 1)/k. There is at most one positive rational
number α from the interval [N,N +N θ] which is the kth power of a rational
number and for which

(13) H(α) ≤ 2N1+(k−1−kθ)/2.

Proof. Suppose that α1 and α2 are distinct rational numbers from the
interval [N,N + N θ] and that they have height at most 2N1+(k−1−kθ)/2.
Suppose also that they are perfect kth powers so that

H(αi) = (ai/bi)k for i = 1, 2,

where a1, a2, b1, b2 are positive integers with a1 and b1 coprime and with
a2 and b2 coprime.

Observe that xk − yk = (x− y)(xk−1 + kxk−2y + · · ·+ yk−1) and so

N θ ≥ |α1 − α2| ≥
|(a1b2)k − (a2b1)k|

(b1b2)k
>
k|a1b2 − a2b1|(min(a1b2, a2b1))k−1

(b1b2)k
.

Since (ai/bi)k ≥ N it follows that

(14) ai ≥ biN1/k for i = 1, 2.

Therefore min(a1b2, a2b1) ≥ b1b2N
1/k and so, since α1 and α2 are distinct

whence |a1b2 − a2b1| ≥ 1,

(15) b1b2 > kN (k−1)/k−θ.

But, by (13),

H(αi) = H

(
ai
bi

)k
= aki ≤ 2N1+(k−1−kθ)/2 for i = 1, 2
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and so, by (14),

bi ≤ 21/kN (k−1−kθ)/2k for i = 1, 2.

In particular,
b1b2 ≤ 22/kN (k−1)/k−θ,

which contradicts (15). The result now follows.

We shall also need the following simple proposition.

Lemma 3. Let N be a positive integer and let θ be a real number with
0 ≤ θ ≤ 1. Suppose that α1 and α2 are distinct rational numbers in the
interval [N,N +N θ]. Then

H

(
α1

α2

)
≥ N1−θ.

Proof. Let αi = ai/bi for i = 1, 2, where a1, a2, b1 and b2 are positive
integers with a1 and b1 coprime and a2 and b2 coprime. Then

(16) H

(
α1

α2

)
= H

(
a1b2
a2b1

)
=

max{a1b2, a2b1}
gcd(a1b2, a2b1)

.

But

gcd(a1b2, a2b1) ≤ |a1b1 − a2b1| = b1b2

∣∣∣∣a1

b1
− a2

b2

∣∣∣∣ ≤ b1b2N θ.(17)

Since a1/b1 is in the interval [N,N+N θ] we see that a1 ≥ b1N. Therefore,
by (16) and (17),

H

(
α1

α2

)
≥ b1b2N

b1b2N θ
= N1−θ,

as required.

5. Proof of Theorem 2. Let c1, c2, . . . denote positive numbers which
are effectively computable in terms of k. Put

t =
⌈

1
15

(
log logN

log log logN

)1/2⌉
,(18)

L = t(1 + ((k + 1)2(t− 1))t−1),(19)

M = exp(29(log logN · log log logN)1/2).(20)

We shall suppose that N is sufficiently large that t ≥ 2.
Suppose that there are positive rational numbers x1, . . . , xL and integers

b1, . . . , bL of size at least M such that xb11 , . . . , x
bL
L are distinct and lie in

the interval [N,N + N θ]. Put αi = xbii for i = 1, . . . , L and suppose that
H(αi) ≤ 2N1+(k−1−kθ)/2 for i = 1, . . . , L. Notice that at least t of the
rationals x1, . . . , xL are multiplicatively independent. For otherwise we may
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apply Theorem 1 with ε−1 = (t − 1)(k + 1)2 to conclude that there exist
distinct integers i0, . . . , it for which

H

(
αi0
αi1

)
≤ (H(αi2) · · ·H(αit))

ε ≤ (2N1+(k−1−kθ)/2)1/(k+1)2 ,

hence for which

(21) H

(
αi0
αi1

)
≤ (2N1/2)1/(k+1).

On the other hand, by Lemma 3,

(22) H

(
αi0
αi1

)
≥ N1−θ ≥ N1/k.

Since (21) and (22) are incompatible for N ≥ 4 at least t of the powers are
multiplicatively independent.

By reordering the powers we may assume, without loss of generality,
that xb11 , . . . , x

bt
t are multiplicatively independent and that bi ≤ bt for i =

1, . . . , t− 1.
Put

Λi = bi log xi − bt log xt
for i = 1, . . . , t− 1. Note that

|Λi| =
∣∣∣∣log

(
xbii
xbtt

)∣∣∣∣ ≤ log
(
N +N θ

N

)
≤ N−1/k

for i = 1, . . . , t− 1 and that the (t− 1)× t matrix
b1 0 · · · 0 −bt
0

. . . . . .
...

...
. . . . . . 0

...
0 · · · 0 bt−1 −bt


has rank t− 1. Observe that, for i = 1, . . . , t,

H ′(xbii ) = H(xbii ) ≤ 2N1+(k−1−kθ)/2 ≤ 2N (k+1)/2 < Nk

and so

(23) H ′(xi) < Nk/bi ≤ Nk/M .

For N > c1, by (23),

(24) log max(4, H ′(xi)) ≤
k logN
M

,

for i = 1, . . . , t. Further, by (23), for N > c2,

(25) 4 ≤M ≤ bt ≤
k logN

log 2
.
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Therefore, by Lemma 1,

N−1/k > exp(−(16t)200t(Ω logΩ)1/(t−1) log(btΩ)),

where

Ω =
t∏
i=1

log max(4, H ′(xi)).

Thus, by (24) and (25),

logN
k

< (16t)200t

(
t

(
k logN
M

)t
log
(
k logN
M

))1/(t−1)

× log
(

2k logN
(
k logN
M

)t)
so, for N > c3,

(logN)t−1 < k2t−1(16t)200t(t−1)t

(
logN
M

)t
log logN · ((t+ 2) log logN)t−1.

Thus, for N > c4,

M t < k2t−1(32t)200t(t−1) logN · (log logN)t,

hence
M < k2(32t)200(t−1)(logN)1/t log logN.

But this is impossible by (18) and (20) for N > c5. Therefore there are fewer
than L powers of rationals of height at most 2N1+(k−1−kθ)/2 in the interval
[N,N +N θ] with the power at least M in size.

It follows from Lemma 2 that there is at most one rth power of height
at most 2N1+(k−1−kθ)/2 in the interval for each r with r ≥ k. Thus the total
number of rth powers in the interval with r ≥ k is at most L + M. Our
result now follows from (18), (19) and (20).

6. Néron–Tate height. The simple counting argument used to estab-
lish Theorem 1 can be readily applied in other settings where there is a
height function on an abelian group. For instance, let K be a finite exten-
sion of Q and let E be an elliptic curve defined over K. Denote by E(K)
the Mordell–Weil group of points with coordinates in K. The group E(K) is
finitely generated by the Mordell–Weil theorem. We denote the rank of the
group by r. The Néron–Tate or canonical height on E/K is a map ĥ from
E(K) to R where K denotes an algebraic closure of K. For all points P in
E(K),

(26) ĥ(P ) ≥ 0
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and ĥ(P ) is zero if and only if P is a torsion point in E(K). Further, for all
points P in E(K) and integers m,

(27) ĥ(mP ) = m2ĥ(P ),

where mP denotes the sum of m copies of P in the group E(K) when
m > 0, 0P is the zero element and, when m < 0, mP denotes the sum of
−m copies of −P. Further for all P,Q in E(K),

(28) ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q)

(see Theorem 9.3 of [8]).
It follows from (26) and (28) that for all P,Q in E(K),

(29) ĥ(P +Q) ≤ 2ĥ(P ) + 2ĥ(Q).

Further, it follows from repeated application of (29) that for each positive
integer k and any points P1, . . . , P2k in E(K) we have

ĥ(P1 + · · ·+ P2k) ≤ 2ĥ(P1 + · · ·+ P2k−1) + 2ĥ(P2k−1+1 + · · ·+ P2k)(30)

≤ 2k(ĥ(P1) + · · ·+ ĥ(P2k)).

Therefore, by (30), for each positive integer t and any points P1, . . . , Pt in
E(K),

(31) ĥ(P1 + · · ·+ Pt) ≤ 2t(ĥ(P1) + · · ·+ ĥ(Pt)).

We shall make use of (27) and (31) in our proof of the following result.

Theorem 3. Suppose that the rank r of E(K) is positive. Let ε be a real
number with 0 < ε < 1. Let P1, . . . , Pk be distinct points in E(K). If

(32) k > (r + 1)
(

1 +
⌈

1
ε

⌉r)
then there exist distinct points Pi0 , . . . , Pir+1 such that

ĥ(Pi0 − Pi1) < 2rε2(ĥ(Pi2) + · · ·+ ĥ(Pir+1)).

7. Proof of Theorem 3. There are
(
k
r+1

)
r + 1-tuples (i1, . . . , ir+1)

with 1 ≤ i1 < i2 < · · · < ir+1 ≤ k. Since the rank of E(K) is r and since
the torsion subgroup of E(K) is finite, there are integers li1 , . . . , lir+1 , not
all zero, for which

(33) li1Pi1 + · · ·+ lir+1Pir+1 = O,

where O denotes the origin, hence the zero element, of E(K). We now pro-
ceed as in the proof of Theorem 1 with t replaced by r + 1 and the relation
(33) in place of (5). We then obtain

(34) l1,jP1 + · · ·+ l1,jPr = ljPj+r
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in place of (6) for j = 1, . . . ,m with m =
⌈
k−r
r+1

⌉
. Further, on choosing s and

u as in the proof of Theorem 1, we have

(35) (lsl1,u − lul1,s)P1 + · · ·+ (lslr,u − lulr,s)Pr = luls(Pu+r − Ps+r)
in place of (9). Therefore, by (31) and (35),

ĥ(luls(Pu+r − Ps+r)) ≤ 2r(ĥ((lsl1,u − lul1,s)P1) + · · ·+ ĥ((lslr,u − lulr,s)Pr))
and so, by (27),

(luls)2ĥ(Pu+r−Ps+r) ≤ 2r((lsl1,u−lul1,s)2ĥ(P1)+· · ·+(lslr,u−lulr,s)2ĥ(Pr)).

Therefore, by (8),

ĥ(Pu+r − Ps+r) ≤ 2rε2(ĥ(P1) + · · ·+ ĥ(Pr))

provided (7) holds with r in place of t− 1. But this follows from (32) since
m ≥ (k − r)/(r + 1). This completes the proof.
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