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1. Introduction. In a remarkable paper [3], H. Davenport and
W. M. Schmidt showed that, for any integer n ≥ 2 and for any real number
ξ which is not algebraic over Q of degree at most n−1, there exist infinitely
many algebraic integers α of degree at most n satisfying

|ξ − α| ≤ cH(α)−τ(n),

where c = c(n, ξ) > 0 is an appropriate constant depending only on n and ξ,
and where τ(2) = 2, τ(3) = (3 +

√
5)/2, τ(4) = 3 and τ(n) = b(n+ 1)/2c if

n ≥ 5. For n = 2, 3, this value of τ(n) cannot be improved (see [3] for the
case n = 2 and [7] for the case n = 3). For n ≥ 4, M. Laurent showed in [4]
that τ(n) can be taken to be d(n + 1)/2e. However, at present, no optimal
value for τ(n) is known for any single value of n ≥ 4. Furthermore, we
possess no non-trivial upper bound for τ(n) for n ≥ 4, besides the estimate
τ(n) ≤ n coming from metrical considerations (by an application of the
Borel–Cantelli lemma as in the proof of [1, Thm. 3.3]). Although we shall
not go into this, let us simply mention that the situation is similar in the
case of approximation by algebraic numbers of degree at most n. In this
case, it is only for n ≤ 2 that the optimal exponents are known, the case
n = 2 being due once again to Davenport and Schmidt [2].

Several years ago, I started working on finding an optimal value for τ(4)
(in the above notation) and, in spite of much effort, I was not successful.
My hopes were that this would lead to a new class of extremal numbers,
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similar to that of [5] or [6, §6], and that such a construction could be gen-
eralized to larger values of n to provide a non-trivial upper bound for the
corresponding values of τ(n), and maybe settle the question as to whether
lim supn→∞ τ(n)/n is equal to 1 or strictly smaller than 1. These problems
remain open.

The method initiated by Davenport and Schmidt in [3] for estimating
τ(n) is based on geometry of numbers and requires an upper bound on the
uniform exponent of simultaneous approximation to the first n− 1 consecu-
tive powers of a real number ξ by rational numbers with the same denomi-
nator. By [3, §2, Lemma 1], our main result below implies that τ(4) can be
taken to be λ−1

3 + 1 ∼= 3.3556, where

λ3 =
1
2

(
2 +
√

5−
√

7 + 2
√

5
)
∼= 0.4245.

Theorem. Let ξ ∈ R with [Q(ξ) : Q] > 3, and let c and λ be positive real
numbers. Suppose that for any sufficiently large value of X, the inequalities

|x0| ≤ X, |x0ξ−x1| ≤ cX−λ, |x0ξ
2−x2| ≤ cX−λ, |x0ξ

3−x3| ≤ cX−λ

admit a non-zero solution x = (x0, x1, x2, x3) ∈ Z4. Then λ ≤ λ3. Moreover ,
if λ = λ3, then c is bounded below by a positive constant depending only on ξ.

The rest of the paper is devoted to the proof of this result, which, through
its weaker hypothesis on ξ, complements [3, Theorem 4a]. The tools that
we use for the proof are the same as those of [3] together with results on
heights of subspaces of Rn defined over Q that were developed around the
same period of time by W. M. Schmidt in [8]. Using other tools, similar to
the bracket [x,y, z] in [6, §2], I discovered recently that the exponent λ3 in
the above theorem is not optimal. Since the argument is quite involved and
does not seem to lead to a significant improvement in λ3, I decided not to
include this here.

2. First considerations. Throughout this paper, we fix a real number
ξ with [Q(ξ) : Q] > 3 and positive constants λ, c satisfying the hypotheses of
the Theorem. In all statements below, the implied constants in the symbols
�, � and � (the conjunction of � and �) depend only on ξ and λ (not
on c). In particular, we may assume that c � 1. Our goal is to show that
λ ≤ λ3 and that c � 1 in case of equality. By [3, Theorem 4a], we already
have λ ≤ 1/2.

For each integer n ≥ 1 and each point x = (x0, x1, . . . , xn) ∈ Rn+1, we
define points x− and x+ of Rn by

x− = (x0, . . . , xn−1) and x+ = (x1, . . . , xn).
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We also put

‖x‖ = max
0≤i≤n

|xi| and L(x) = max
1≤i≤n

|x0ξ
i − xi|.

Finally, we say that a point x ∈ Zn+1 is primitive if it is non-zero and if
the gcd of its coordinates is 1. Then the hypothesis implies that, for any
sufficiently large X, there exists a primitive point x ∈ Z4 with

(1) ‖x‖ ≤ X and L(x) ≤ cc1X−λ,
where c1 = 2 max{1, |ξ|}3λ. The following lemmas extend results of Daven-
port and Schmidt in [3, §4].

Lemma 2.1. Let C ∈ Z2 and x ∈ Zn+1 with n ∈ {1, 2, 3}. Then the point
y = C+x− − C−x+ satisfies

(2) ‖y‖ ≤ ‖x‖L(C) + c2‖C‖L(x) and L(y) ≤ c2‖C‖L(x)

for some constant c2 = c2(ξ). Moreover , if y = 0 and if C and x are
non-zero and primitive, then

‖x‖ = ‖C‖n and L(x) � ‖C‖n−1L(C).

Proof. Write C = (a, b). Then the estimates in (2) follow respectively
from the formulas y = (b− aξ)x−+ a(ξx−−x+) and y = bx−− ax+, upon
choosing c2 so that ‖ξx− − x+‖ ≤ c2L(x) and L(x−) + L(x+) ≤ c2L(x). If
y = 0 and C 6= 0, then x is a rational multiple of the geometric progression
(an, an−1b, . . . , bn). If furthermore C and x are primitive, this progression is
a primitive point of Zn+1 and so it coincides with ±x. This gives ‖x‖ = ‖C‖n
and L(x) � ‖x+ − ξx−‖ = ‖C‖n−1L(C).

Lemma 2.2. Suppose that λ > 1/3. Then for any non-zero point C ∈ Z2

we have L(C)� ‖C‖−1/λ.

Proof. Since ξ /∈ Q, we have L(C) 6= 0 for any non-zero point C ∈ Z2.
So, it suffices to prove that L(C) � ‖C‖−1/λ for primitive points C ∈ Z2

of sufficiently large norm. Let C be a primitive point of Z2, and let x ∈ Z4

be a primitive solution of (1) for the choice of X = (2cc1c2‖C‖)1/λ, where
c2 is the constant introduced in Lemma 2.1. Since λ > 1/3, we have X <
‖C‖3 if ‖C‖ � 1, and then the second part of Lemma 2.1 shows that
y = C+x− −C−x+ is a non-zero point of Z3. Applying the first part of the
same lemma, we deduce that

1 ≤ ‖y‖ ≤ XL(C) + cc1c2‖C‖X−λ ≤ XL(C) + 1/2,

and so L(C) ≥ (2X)−1 � ‖C‖−1/λ.

Lemma 2.3. Suppose that λ > 1/3. Then there exist at most finitely
many points x ∈ Z4 with L(x) ≤ cc1‖x‖−λ such that x− and x+ are linearly
dependent over Q.
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Proof. Suppose on the contrary that the conclusion is false. Then there
exist infinitely many primitive points x of Z4 with L(x) ≤ cc1‖x‖−λ for
which x− and x+ are linearly dependent. For each of them, there exists a
primitive point C ∈ Z2 such that C+x−−C−x+ = 0. By Lemma 2.1, we have
‖x‖ = ‖C‖3 and L(x) � ‖C‖2L(C). Thus ‖C‖ tends to infinity with ‖x‖,
and the condition L(x) ≤ cc1‖x‖−λ translates into L(C)� ‖C‖−2−3λ. Since
−2− 3λ < −3 < −1/λ, this contradicts Lemma 2.2.

Lemma 2.4. Let n ∈ {1, 2, 3} and let U be a proper subspace of Rn+1

defined over Q. Then the function L(x) is bounded from below by a positive
constant on the set of all non-zero points x of U ∩ Zn+1.

Proof. As in the proof of [3, §3, Lemma 5], suppose on the contrary that
there exists a sequence of non-zero integral points (xi)i≥1 in U such that
limi→∞ L(xi) = 0. Then, for any sufficiently large index i, the first coordi-
nate xi,0 of x is non-zero and the product x−1

i,0 xi converges to (1, ξ, . . . , ξn)
as i tends to infinity. Thus, the point (1, ξ, . . . , ξn) belongs to U . This is
impossible since U is a proper subspace of Rn+1 defined over Q while the
coordinates of the point (1, ξ, . . . , ξn) are linearly independent over Q.

Finally, we note that there exists a sequence of non-zero points (xi)i≥1

in Z4 with the following properties:

(a) the positive integers Xi := ‖xi‖ form a strictly increasing sequence,
(b) the positive real numbers Li := L(xi) form a strictly decreasing

sequence,
(c) if some non-zero point x ∈ Z4 satisfies L(x) < Li for some i ≥ 1,

then ‖x‖ ≥ Xi+1.

We fix such a choice of sequence (xi)i≥1 and refer to it as the sequence of
minimal points for ξ although it is not unique and differs from the notion
introduced by Davenport and Schmidt in [3, §4]. We note that, for each
i ≥ 1, xi is a primitive point of Z4 and, since (1) admits a non-zero solution
x ∈ Z4 for each X with Xi ≤ X < Xi+1 when i is sufficiently large, we
deduce from condition (c) that

Li ≤ cc1X−λi+1

for each large enough index i. We will use this property repeatedly in what
follows, either in this form or in the weaker form Li � cX−λi+1 � X−λi+1.

3. A family of planes in R4. For each integer n ≥ 1 and each subspace
S of Rn defined over Q of dimension p > 0, we define the height H(S) of
S by H(S) = ‖y1 ∧ · · · ∧ yp‖, where (y1, . . . ,yp) is a basis of the group

S ∩ Zn of integral points of S (upon identifying
∧p Rn with R(n

p) through
an ordering of the Grassmann coordinates, as in [9, Chap. 1, §5]). We also
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define H(0) = 1. It then follows from [9, Chap. 1, Lemma 8A] that, for any
pair of subspaces S and T of Rn defined over Q, we have

(3) H(S ∩ T )H(S + T ) ≤ c(n)H(S)H(T )

with a constant c(n) > 0 depending only on n. We also recall the duality
formula H(S) = H(S⊥) where S⊥ stands for the orthogonal complement of
S in Rn (see [9, Chap. 1, §8]).

For each i ≥ 2, we denote by Wi the subspace of R4 of dimension 2
generated by xi−1 and xi. We also introduce a new parameter

θ =
1− λ
λ

,

and note that θ ≥ 1 since λ ≤ 1/2.

Lemma 3.1. For each i ≥ 2, the points xi−1 and xi form a basis of
Wi ∩ Z4, and we have H(Wi) � XiLi−1 � X1−λ

i .

This follows by a simple adaptation of the proofs of [2, Lemma 2] and
[6, Lemma 4.1], the difference being that here Xi stands for the norm of
xi instead of the absolute value of its first coordinate. We now look at the
sums Wi +Wi+1.

Lemma 3.2. There exist infinitely many indices i ≥ 2 such that Wi 6=
Wi+1. For each of them, we have

(4) H(Wi +Wi+1)� X−1
i H(Wi)H(Wi+1)� H(Wi)−1/θH(Wi+1).

Proof. If there were only finitely many i ≥ 2 for which Wi 6= Wi+1, then
all points xi with i sufficiently large would lie in a fixed subspace W of R4

defined over Q of dimension 2, contrary to Lemma 2.4. This proves the first
assertion of the present lemma.

Applying (3) with S = Wi and T = Wi+1, we find

H(Wi ∩Wi+1)H(Wi +Wi+1)� H(Wi)H(Wi+1).

For each index i ≥ 2 such that Wi 6= Wi+1, we have Wi ∩Wi+1 = 〈xi〉R
and so H(Wi ∩Wi+1) = Xi. This leads to the first estimate in (4). For the
second one, we simply use the lower bound Xi � H(Wi)1/(1−λ) coming from
Lemma 3.1.

Notation. We denote by I the set of indices i ≥ 2 for whichWi 6= Wi+1,
ordered by increasing magnitude.

Thus, for each i ∈ I, the sum Wi + Wi+1 = 〈xi−1,xi,xi+1〉R is a three-
dimensional subspace of R4 defined over Q. By Lemma 2.4 such a subspace
of R4 contains at most finitely many minimal points. This leads to the first
assertion of the next lemma.
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Lemma 3.3. There exist infinitely many pairs of consecutive elements
i, j of I with i < j and Wi + Wi+1 6= Wj + Wj+1. For any such pair of
integers i and j, we have

XiXj � H(Wi)H(Wj)H(Wj+1),(5)

H(Wi)H(Wj)� H(Wj+1)θ and XiXj � Xθ
j+1.(6)

Proof. For consecutive elements i < j of I, we have Wi 6= Wi+1 = Wj 6=
Wj+1. If Wi +Wi+1 and Wj +Wj+1 are distinct subspaces of R4, their sum
is the whole of R4 and their intersection is Wi+1 = Wj . Since H(R4) = 1,
we deduce from (3) that

H(Wi+1)� H(Wi +Wi+1)H(Wj +Wj+1).

Combining this estimate with the upper bounds

H(Wi +Wi+1)� X−1
i H(Wi)H(Wi+1),

H(Wj +Wj+1)� X−1
j H(Wj)H(Wj+1)

provided by Lemma 3.2, we obtain (5). Then combining (5) with the stan-
dard upper bounds H(Wi) � X1−λ

i and H(Wj) � X1−λ
j coming from

Lemma 3.1, we find
Xλ
i X

λ
j � H(Wj+1),

so H(Wi)H(Wj)�(XiXj)1−λ�H(Wj+1)θ�X
θ(1−λ)
j+1 , which proves (6).

4. A family of points in Z2. For each pair of points x and y in Z4,
we define

C(x,y) = (det(x−,x+,y−), det(x−,x+,y+)) ∈ Z2.

To alleviate the notation, we also write

Ci,j = C(xi,xj)

for each pair of integers i, j ≥ 1. These points Ci,j play a crucial role in
the proof of the inequality λ ≤ 1/2 by Davenport and Schmidt in [3, §4].
They also play an important role in the present work. We first prove general
estimates.

Lemma 4.1. For any pair of integers i, j ≥ 1, we have

‖Ci,j‖ � XjL
2
i +XiLiLj and L(Ci,j)� XiLiLj .

Proof. The estimate for ‖Ci,j‖ is standard (see for example the proof of
[3, §4, Lemma 7]). For the other quantity, we find

L(Ci,j) = |det(x−i ,x
+
i ,x

+
j − ξx

−
j )|

= |det(x−i ,x
+
i − ξx

−
i ,x

+
j − ξx

−
j )| � XiLiLj .
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The next lemma provides a sharper upper bound for L(Ci,i+1) when
i ∈ I.

Lemma 4.2. Let i < j be consecutive elements of the set I. Then Ci,j =
bCi,i+1 for some non-zero integer b with |b| � Xj/Xi+1, and we have

L(Ci,i+1)� XiX
−λ
j X−λj+1.

Proof. Since i and j are consecutive in I, we have Wi+1 = Wj . Moreover,
since xi and xi+1 form a basis of the group of integral points of Wi+1, there
exist integers a and b with b 6= 0 such that xj = axi+bxi+1. IfXj > 3|b|Xi+1,
we deduce that

|a|Xi = ‖xj − bxi+1‖ ≥ Xj − |b|Xi+1 > 2|b|Xi+1,

and so |a| > 2|b|. Then, we find Lj ≥ |a|Li − |b|Li+1 > |b|Li+1 ≥ Li+1,
which is impossible. This contradiction shows that |b| ≥ Xj/(3Xi+1). Since
the point C(x,y) is a linear function of y and since C(x,x) = 0 for any
x ∈ R4, we also have

Ci,j = C(xi, axi + bxi+1) = bCi,i+1

and so, by Lemma 4.1, we obtain (since λ ≤ 1/2 ≤ 1)

L(Ci,i+1) = |b|−1L(Ci,j) ≤ |b|−λL(Ci,j)�
Xλ
i+1

Xλ
j

XiLiLj � XiX
−λ
j X−λj+1.

Remark. Although we will not use this here, it is interesting to note
that the identity

det(w,x,y)z− det(w,x, z)y + det(w,y, z)x− det(x,y, z)w = 0,

which holds for any quadruple of points (w,x,y, z) in R3, specializes to

C+
i,jx
−
j − C

−
i,jx

+
j = C−j,ix

+
i − C

+
j,ix
−
i

when we apply it to the quadruple (x−i ,x
+
i ,x

−
j ,x

+
j ) for a choice of integers

i, j ≥ 1.

5. A family of planes in R3. From now on, we assume that λ > 1/3.
Then, by Lemma 2.3, there exists an index i0 such that x−i and x+

i are
linearly independent for each i ≥ i0. For those values of i, we denote by Vi
the two-dimensional subspace of R3 spanned by these points:

Vi = 〈x−i ,x
+
i 〉R.

Since max{L(x−j ), L(x+
j )} � Lj tends to 0 as j →∞, it follows from Lemma

2.4 that each Vi contains at most finitely many points of the form x−j or x+
j ,

and so there are infinitely many indices i ≥ i0 such that Vi 6= Vi+1. We also
note that, for i, j ≥ i0, we have

Vi = Vj ⇔ Ci,j = 0 ⇔ Cj,i = 0
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by definition of the points Ci,j (see §4). In [3, §4], Davenport and Schmidt
argue that, for each i ≥ i0 such that Vi 6= Vi+1, we have 1 ≤ ‖Ci,i+1‖ �
Xi+1L

2
i � X1−2λ

i+1 (see Lemma 4.1). Since i can be taken to be arbitrarily
large, this gives 1− 2λ ≥ 0 and so λ ≤ 1/2.

Lemma 5.1. There exist infinitely many integers i > i0 for which Vi−1

6= Vi. For each of them, we have

(7) H(Wi+1)� X1−λ
i+1 � H(Wi)θ � X

θ(1−λ)
i .

In particular, this leads to the symmetric estimates Xi+1 � Xθ
i and

H(Wi+1)� H(Wi)θ.

Proof. The first assertion being already settled, fix an index i > i0 such
that Vi−1 6= Vi. Then the integral point Ci,i−1 is non-zero and so its norm
is bounded below by 1. The absolute values of its coordinates are:

|det(x−i ,x
+
i ,x

−
i−1)| = |det(x−i−1,x

−
i ,x

+
i − ξx

−
i )| � ‖x−i−1 ∧ x−i ‖Li,

|det(x−i ,x
+
i ,x

+
i−1)| = |det(x+

i−1,x
+
i ,x

−
i − ξ

−1x+
i )| � ‖x+

i−1 ∧ x+
i ‖Li.

Since ‖x−i−1 ∧ x−i ‖ and ‖x+
i−1 ∧ x+

i ‖ are bounded above by ‖xi−1 ∧ xi‖ =
H(Wi), this means that ‖Ci,i−1‖ � H(Wi)Li. Thus we obtain

1 ≤ ‖Ci,i−1‖ � H(Wi)Li � H(Wi)X−λi+1,

and so Xi+1 � H(Wi)1/λ. The conclusion follows by combining this result
with the estimates H(Wi) � X1−λ

i and H(Wi+1) � X1−λ
i+1 coming from

Lemma 3.1.

Proposition 5.2. Suppose that there exist infinitely many indices i ≥ i0
such that Vi = Vi+1. Then λ ≤

√
2 − 1 ∼= 0.4142. Moreover , if λ =

√
2 − 1,

then we also have c� 1.

Proof. Since there are infinitely many indices i > i0 for which Vi−1 6= Vi,
the hypothesis of the proposition forces the existence of arbitrarily large
indices i with

Vi−1 6= Vi = Vi+1.

Fix such an i. Let px0 + qx1 + rx2 = 0 be an equation of Vi with relatively
prime coefficients p, q, r ∈ Z, so that by duality H(Vi) = ‖(p, q, r)‖. For any
point x = (x0, x1, x2, x3) of Wi+1, we have

x− = (x0, x1, x2) ∈ 〈x−i ,x
−
i+1〉R and x+ = (x1, x2, x3) ∈ 〈x+

i ,x
+
i+1〉R,

therefore x− and x+ both belong to Vi + Vi+1 = Vi, and so the point x
satisfies

px0 + qx1 + rx2 = 0 and px1 + qx2 + rx3 = 0.

This means that the orthogonal complement of Wi in R4 is the space
〈(p, q, r, 0), (0, p, q, r)〉R and so, applying the duality property of the height
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again, we find

(8) H(Wi+1) = H(〈(p, q, r, 0), (0, p, q, r)〉R) � ‖(p, q, r)‖2 = H(Vi)2

(the relation H(Vi) � H(Wi+1)1/2 also follows from [3, Thm. 3] since the
equality Vi = Vi+1 means that (p, q, r) provides a three-term recurrence
relation satisfied by both xi and xi+1). We now argue as M. Laurent in the
proof of [4, Lemma 5]. Define

P (T ) = p+ qT + rT 2 ∈ Z[T ].

For any point y = (y0, y1, y2) ∈ Z3, we have

(9) |(py0 + qy1 + ry2)− y0P (ξ)| ≤ 2H(Vi)L(y).

Applying this estimate to the point y = x−i+1 ∈ Vi, we get

(10) Xi+1|P (ξ)| � H(Vi)Li+1.

Since Vi−1 6= Vi, at least one of the points x−i−1 or x+
i−1 does not belong

to Vi. If y = (y0, y1, y2) is such a point, then py0 + qy1 + ry2 is a non-zero
integer, and using successively (9), (10) and (8) we obtain

1 ≤ |py0 + qy1 + ry2| � Xi−1|P (ξ)|+H(Vi)Li−1 � H(Vi)Li−1

� cH(Wi+1)1/2X−λi .

Moreover, Lemma 5.1 gives H(Wi+1) � X
θ(1−λ)
i and so the last estimate

leads to
1� cX

(1−λ)2/(2λ)−λ
i = cX

(2−(1+λ)2)/(2λ)
i .

As i can be taken to be arbitrarily large, this implies that 2− (1 + λ)2 ≥ 0,
and so λ ≤

√
2− 1. Moreover, we obtain c� 1 if λ =

√
2− 1.

Corollary 5.3. Suppose that λ >
√

2− 1. Then we have Vi−1 6= Vi for
any sufficiently large integer i, and the estimates (7) of Lemma 5.1 apply to
all integers i ≥ 1. Moreover , for any pair of consecutive integers i < j of I
with Wi +Wi+1 6= Wj +Wj+1, we also have

H(Wi)� X1−λ
i � H(Wj)θ

2−1 � X
(θ2−1)(1−λ)
j ,(11)

H(Wj)� X1−λ
j � H(Wj+1)θ(1−λ) � X

θ(1−λ)2

j+1 .(12)

Proof. The first assertion follows directly from Lemma 5.1 and the above
proposition. To prove the second one, we fix consecutive integers i < j in I
with Wi+Wi+1 6= Wj +Wj+1, and go back to the general estimate (5) from
Lemma 3.3:

(13) XiXj � H(Wi)H(Wj)H(Wj+1).

On the right hand side of this inequality, we apply the standard estimate
H(Wi)� X1−λ

i from Lemma 3.1 as an upper bound for H(Wi), and the esti-
mate H(Wj+1)� H(Wj)θ coming from (7) as an upper bound for H(Wj+1).
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On the left hand side, we use instead the estimate H(Wj) � X1−λ
j from

Lemma 3.1 as a lower bound for Xj . This gives

Xλ
i � H(Wj)θ+1−1/(1−λ) = H(Wj)θ−1/θ,

and (11) follows. To prove (12), we note instead that, i and j being consec-
utive elements of I, we have Wj = Wi+1 and so (13) combined with Lemma
3.1 gives

XiXj � H(Wi)H(Wi+1)H(Wj+1)� (XiXi+1)1−λH(Wj+1).

Moving all powers of Xi to the left and using the estimate Xi+1 � Xθ
i from

(7) as a lower bound for Xi, we obtain

X
λ/θ
i+1Xj � X1−λ

i+1 H(Wj+1).

Moving all powers of Xi+1 to the right and observing that the exponent
1− λ− λ/θ = 1− 1/θ is ≥ 0 (since θ ≥ 1), we finally obtain

Xj � X
1−1/θ
i+1 H(Wj+1) ≤ X1−1/θ

j H(Wj+1),

which implies (12).

6. The set J . We assume from now on that λ >
√

2−1. Then, for each
sufficiently large index i, the subspace Vi = 〈x−i ,x

+
i 〉R of R3 has dimension 2

and, by Corollary 5.3, we have Vi 6= Vi+1. Consequently, Ci,i+1 is a non-zero
point of Z2 for each i� 1.

Notation. Let J be the set of all elements i of I whose successor j in
I satisfies Wj +Wj+1 6= Wi +Wi+1.

By Lemma 3.3, the set J is infinite. The next result studies a possible
configuration of points.

Lemma 6.1. Suppose that λ >
√

2 − 1, and that h < i < j are three
consecutive elements of I with h ∈ J and i ∈ J . Then we have

L(Ci,i+1)� Xα
j+1 where α =

−λ4 + λ3 + λ2 − 3λ+ 1
λ(λ2 − λ+ 1)

.

Proof. By Lemma 4.2,

(14) L(Ci,i+1)� XiX
−λ
j X−λj+1.

Since i ∈ J , we have Wi + Wi+1 6= Wj + Wj+1, and the second part of (6)
in Lemma 3.3 gives

Xi � X−1
j Xθ

j+1.

Since h ∈ J , we also have Wh +Wh+1 6= Wi +Wi+1, and the estimates (12)
of Corollary 5.3 applied to the pair (h, i) instead of (i, j) lead to

Xi � X
(1−λ)θ
i+1 ≤ X(1−λ)θ

j .
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Put β = (1− λ)/(λ2 − λ+ 1). Since λ ≤ 1/2, we have β ≥ 1− λ ≥ 1/2. We
consider two cases.

(a) If Xj ≥ Xβ
j+1, we substitute into (14) the first of the above two upper

bounds for Xi. This gives

L(Ci,i+1)� X−1−λ
j Xθ−λ

j+1 ≤ X
−(1+λ)β+θ−λ
j+1 = Xα

j+1.

(b) If on the contrary, we have Xj < Xβ
j+1, we substitute instead into

(14) the second upper bound for Xi. Again we find

L(Ci,i+1)� X
(1−λ)θ−λ
j X−λj+1 ≤ X

((1−λ)θ−λ)β−λ
j+1 = Xα

j+1,

upon noting that the exponent (1− λ)θ − λ = (1− 2λ)/λ is ≥ 0.

Proposition 6.2. Suppose that λ > λ2 where λ2
∼= 0.4241 denotes the

positive root of the polynomial P2(T ) = 3T 4 − 4T 3 + 2T 2 + 2T − 1, and let
α be as in Lemma 6.1. Then we have 1− 2λ+ α < 0 and , for any triple of
consecutive elements h < i < j of I contained in J , with i large enough, the
points Ci,i+1 and Cj,j+1 are linearly dependent over Q.

The fact that P2(T ) admits exactly one positive root λ2 follows by ob-
serving that its second derivative P ′′2 (T ) = (6T − 2)2 is non-negative on R
and that P2(0) is negative. Consequently, if λ > λ2, we have P2(λ) > 0.

Proof. For any triple of consecutive elements h < i < j of I contained
in J , Lemma 6.1 gives L(Ci,i+1) � Xα

j+1 and L(Cj,j+1) � Xα
k+1, where

k denotes the successor of j in I. As the general estimates of Lemma 4.1
provide ‖Cl,l+1‖ � X1−2λ

l+1 for each l ≥ 1, we deduce that

|det(Ci,i+1, Cj,j+1)| � ‖Ci,i+1‖L(Cj,j+1) + ‖Cj,j+1‖L(Ci,i+1)

� X1−2λ
i+1 Xα

k+1 +X1−2λ+α
j+1 � X1−2λ+α

k+1 +X1−2λ+α
j+1 .

As a short computation gives 1 − 2λ + α = −P2(λ)/(λ(λ2 − λ + 1)) < 0,
we conclude that the integer det(Ci,i+1, Cj,j+1) vanishes if i is sufficiently
large.

Corollary 6.3. Suppose that λ > λ2. Then the complement of J in I
is infinite.

Proof. If I \J were a finite set, then, by the above proposition, all points
Ci,i+1 with i ∈ I sufficiently large would belong to the same one-dimensional
subspace of R2. By Lemma 2.4, this would imply that L(Ci,i+1)� 1, against
the estimates of Lemma 6.1 since α < 2λ− 1 ≤ 0.

7. Proof of the Theorem. We may assume that λ > λ2
∼= 0.4241 >√

2−1. Then, by Corollary 6.3, there exist infinitely many triples of elements
g < i < j of I with i and j consecutive satisfying
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(15) Wg +Wg+1 = Wi +Wi+1 6= Wj +Wj+1.

Fix such a triple. Since i and j are consecutive elements of I, we have
Wi+1 = Wj and so

Wj = (Wi +Wi+1) ∩ (Wj +Wj+1) = (Wg +Wg+1) ∩ (Wj +Wj+1).

Since the sum of Wg + Wg+1 and Wj + Wj+1 is the whole of R4 and since
H(R4) = 1, an application of (3) gives

(16) H(Wj)� H(Wg +Wg+1)H(Wj +Wj+1).

By Lemma 3.2, we have

H(Wg +Wg+1)� H(Wg)−1/θH(Wg+1),

H(Wj +Wj+1)� H(Wj)−1/θH(Wj+1),

while the estimates (7) of Lemma 5.1 provide

H(Wg+1)� H(Wg)θ and H(Wj+1)� H(Wj)θ.

Using the latter relations respectively as a lower bound for H(Wg) and as an
upper bound for H(Wj+1) and substituting them into the former, we obtain

(17) H(Wg+Wg+1)� H(Wg+1)1−1/θ2 , H(Wj+Wj+1)� H(Wj)θ−1/θ.

Since g < i, we have Xg+1 ≤ Xi and so Lemma 3.1 gives

(18) H(Wg+1)� cX1−λ
g+1 ≤ cX

1−λ
i .

We also have

(19) X1−λ
i � H(Wj)θ

2−1

by the estimates (11) of Corollary 5.3. Combining (16)–(19), we find

(20) H(Wj)� c1−1/θ2H(Wj)(1−1/θ2)(θ2−1)+(θ−1/θ).

Since (19) shows that H(Wj) tends to infinity with i, we conclude that

(θ − 1/θ)2 + (θ − 1/θ) ≥ 1,

and so θ− 1/θ ≥ 1/γ where γ = (1 +
√

5)/2 (because θ− 1/θ is ≥ 0 and we
have 1/γ2 + 1/γ = 1). After simplifications, the latter relation implies

λ2 − (1 + 2γ)λ+ γ ≥ 0.

Since the polynomial T 2 − (1 + 2γ)T + γ admits two positive real roots,
λ3
∼= 0.4245 and γ/λ3

∼= 3.811, it follows that λ ≤ λ3. Moreover, if λ = λ3,
then (20) gives c� 1, as announced.
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