
ACTA ARITHMETICA

133.3 (2008)

Some remarks on Diophantine approximation
by the Jacobi–Perron algorithm
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Fritz Schweiger (Salzburg)

Dedicated to Wolfgang Schmidt on the occasion of his 75th birthday

1. Introduction. In an attempt to generalize Lagrange’s theorem to
cubic numbers Jacobi [2] in a classical paper proposed a new algorithm.
Perron [5] extended this algorithm to arbitrary dimension d. An easy way
to describe the algorithm is as follows:

Let d ≥ 2 and Ed = {x = (x1, . . . , xd) : 0 ≤ xi < 1, i = 1, . . . , d}. If
x1 = 0 then the map T is not defined (the algorithm stops). If x1 6= 0 we
define the map T : Ed → Ed as

Tx =
(
x2

x1
− a1,

x3

x1
− a2, . . . ,

1
x1
− ad

)
,

a1 := [x2/x1], a2 := [x3/x1], . . . , ad := [1/x1],

and then we iterate. We define

a = a(x) = (a1, . . . , ad).

The sequence of integral vectors a(n) = a(Tn−1x) satisfies the so-called Per-
ron conditions (Schweiger [8]):

(i) 0 ≤ a(t)
s ≤ a(t)

d , 1 ≤ s ≤ d− 1; a(t)
d ≥ 1.

(ii) The relations (0 ≤ R ≤ s− 1)

a(t)
s = a

(t)
d , . . . , a

(t+R)
s−R = a

(t+R)
d−R

imply
a

(t+R+1)
s−R−1 ≤ a

(t+R+1)
d−R−1 .

For s = R+ 1 we define formally a(t+R+1)
0 = 0.
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If the algorithm does not stop we write the expansion of the point x in
the form

x =


a

(1)
1 a

(2)
1 a

(3)
1 . . .

a
(1)
2 a

(2)
2 a

(3)
2 . . .

. . . . . . . . . . . . . . . . . . . . .

a
(1)
d a

(2)
d a

(3)
d . . .

 .

As usual a periodic algorithm will be indicated by a horizontal bar over the
matrix. Further an infinite sequence of matrices

β(a(n)) =


a

(n)
d 0 . . . 0 1
1 0 . . . 0 0

a
(n)
1 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . .

a
(n)
d−1 0 . . . 1 0

 , n = 1, 2, . . . ,

is produced.
We introduce the matrices β(a(1), . . . , a(n)) = β(a(1)) ◦ · · · ◦ β(a(n)) and

we define numbers A(j)
i by the equation

β(a(1), . . . , a(n)) =


A

(d+n+1)
0 A

(n+1)
0 . . . A

(n+d)
0

A
(d+n+1)
1 A

(n+1)
1 . . . A

(n+d)
1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A
(d+n+1)
d A

(n+1)
d . . . A

(n+d)
d

 .

It is convenient to add the unit matrix as

1 =


A

(d+1)
0 A

(1)
0 . . . A

(d)
0

A
(d+1)
1 A

(1)
1 . . . A

(d)
1

. . . . . . . . . . . . . . . . . . . . . . . . .

A
(d+1)
d A

(1)
d . . . A

(d)
d

 .

Then we have the recursion relations

A
(n+d+1)
i = A

(n)
i + a

(n)
1 A

(n+1)
i + · · ·+ a

(n)
d A

(d+n)
i , i = 0, 1, . . . , d.

It is easy to see (Schweiger [8]) that if y = Tnx then

xi =
A

(n+d+1)
i +A

(n+1)
i y1 + · · ·+A

(n+d)
i yd

A
(n+d+1)
0 +A

(n+1)
0 y1 + · · ·+A

(n+d)
0 yd

, 1 ≤ i ≤ d.

One of the ideas of considering a multidimensional continued fraction is the
expectation that the sequence of rational points(

A
(n+d+1)
1

A
(n+d+1)
0

,
A

(n+d+1)
2

A
(n+d+1)
0

, . . . ,
A

(n+d+1)
d

A
(n+d+1)
0

)
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should provide “good” Diophantine approximations for x = (x1, . . . , xd). In
fact, only for d = 2 is the approximation result∣∣∣∣xi − A

(n+3)
i

A
(n+3)
0

∣∣∣∣ < 1

A
(n+3)
0

, i = 1, 2,

true generally (see Schweiger [8]). Perron [5] and Paley & Ursell [3] have
shown that this result is best possible in the following sense. For every δ > 0
there are points x ∈ E2 such that

max
i=1,2

|xiA(n+3)
0 −A(n+3)

i | > (A(n+3)
0 )−δ.

For dimension d ≥ 4 it has long been known that even

lim sup
n
|xiA(n+3)

0 −A(n+3)
i | =∞

is possible. Paley & Ursell say that this is also true for d = 3 but they do not
give an example. They state that for d ≥ 3 there is a constant ω = ω(d) > 1
such that |A(N)

00 xi −A(N)
i0 | � ωN .

The present paper discusses Diophantine properties of simultaneous ap-
proximation. Another measure of approximation has been discussed in
Schmidt [6] and Schweiger [7]. In Section 2 we first give a new short proof of
convergence in dimension d = 2 and discuss the relation of the eigenvalues
of the periodicity matrix to Diophantine properties. In Section 3 we con-
centrate on d = 3. It is shown that there exist periodic expansions of period
length p such that the second eigenvalue %1 is (−1)p. A family of examples is
given with period length p = 6 such that all three cases %1 < −1, %1 = −1,
%1 > 1 appear. In Section 4 we give an upper bound for the Paley–Ursell
constant ω = ω(3).

2. The rate of convergence and eigenvalues

Theorem 1. The Jacobi–Perron algorithm is convergent for d = 2.

Proof. The proof is a combination of two identities. Let

DN = A
(N)
00 xi −A(N)

i0 , i = 1, 2.

Then the usual recursion relation gives

DN+3 = a
(N)
2 DN+2 + a

(N)
1 DN+1 +DN .

If y = TNx then we have the equation (a special case of Perron’s relations;
see Schweiger [8])

DN+3 = −y1DN+1 − y2DN+2.

Let us assume thatDN+3 > 0. IfDN+2 < 0 andDN+1 < 0 then the recursion
relation implies DN+3 < DN . If DN+2DN+1 < 0 Perron’s relation shows
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DN+3 ≤ max(y1|DN+1|, y2|DN+2|) ≤ max(|DN+1|, |DN+2|). Therefore in
all cases DN+3 ≤ max(|DN+1|, |DN+2|, |DN |).

Next we consider periodic algorithms. If the algorithm is eventually pe-
riodic, i.e. T p+mx = Tmx for some p ≥ 1,m ≥ 0, then x1, . . . , xd belong to a
number field of degree ≤ d+ 1. It is sufficient to consider the case of purely
periodic expansions, i.e. m = 0. Then the periodicity matrix

B := β(a(1), . . . , a(p))

is attached to the algorithm. Its characteristic polynomial

f(%) = det(%1−B)

has the following property (see Schweiger [8]). There is a real simple root
%0 > 1 such that %0 > |%1| ≥ |%2| ≥ · · · ≥ |%d| for all other roots %1, . . . , %d.
Perron [5] proved that there is an index i, 1 ≤ i ≤ d, such that

lim sup
n→∞

|xiA(pn+d+1)
0 −A(pn+d+1)

i | � |%1|n.

Therefore if we find a periodic algorithm with |%1| > 1 then the approxima-
tion ∣∣∣∣xi − A

(n+d+1)
i

A
(n+d+1)
0

∣∣∣∣� 1

A
(n+d+1)
0

, i = 1, . . . , d,

cannot be true. Now this is easy and well known for d ≥ 4. For period length
p = 1 we obtain

f(%) = %d+1 − ad%d − · · · − a1%− 1.

Therefore if we choose a1, . . . , ad such that f(−1) < 0 for d ≡ 1 mod 2 and
f(−1) > 0 for d ≡ 0 mod 2 then f(%) has a root %1 < −1. Clearly, one has
to control Perron’s conditions. For d = 4 this leads to

a3 + a1 > 2 + a4 + a2,

which is satisfied for a4 = 5, a3 = a1 = 4, a2 = 0, say. For d = 5 this leads to

a5 + a3 + a1 < a4 + a2,

which is satisfied for a5 = 3, a3 = a1 = 0, a4 = a2 = 2, say.
For d = 2 one can show that the polynomial f(%) is irreducible and

furthermore that |%2| ≤ |%1| < 1 (see Schweiger [8] and the references given
there). However, the root %1 can be arbitrarily close to −1.

Proposition. For every ε > 0 there is a periodic algorithm such that
−1 < %1 < −1 + ε.

Proof. We consider the periodic algorithm (with period length p = 2)

x =

(
0 1
1 b

)
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where b ≥ 4 is sufficiently large. Then

B =

 b+ 1 1 1
b 0 1
1 0 0


and

f(%) = %3 − %2(1 + b)− %(1 + b)− 1.

Then for fixed N ≥ 2 we calculate

f

(
−1 +

1
N

)
> −2 +

4 + b

N
− 4 + b

N2
.

If b = 2N then

f

(
−1 +

1
N

)
=

2N − 4
N2

≥ 0.

Therefore −1 < %1 < −1 + 1/N .

Remarks. (1) Paley & Ursell [3] have shown that for periodic Jacobi
algorithms in dimension d = 2 one obtains∣∣∣∣xi − A

(pg)
i

A
(pg)
0

∣∣∣∣� 1

(A(pg)
0 )1+δ

, i = 1, 2,

for some δ = δ(x) > 0 and for all integers g ≥ 1 (see also Schweiger [8]).
Here p denotes the length of the period. Since A(2n)

0 ∼ %n0 this result shows
that the exponent of approximation cannot be uniformly of order 1 + δ with
δ > 0.

(2) Another important connection between eigenvalues and periodicity
has been established by Paysant-Le Roux & Dubois [4].

3. Remarks on the case d = 3. Now the interesting question remains
what happens in dimension d = 3. If we choose a3 = a2 ≥ 1 and a1 = 0 then
the characteristic equation

f(%) = %4 − a3%
3 − a2%

2 − 1

has the root %1 = −1. Therefore nothing better than∣∣∣∣xi − A
(n+4)
i

A
(n+4)
0

∣∣∣∣� 1

A
(n+4)
0

, i = 1, 2, 3,

can be expected. This result can be generalized as follows.
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Theorem 2. Let

x =

 0 0 . . . 0

a
(1)
2 a

(2)
2 . . . a

(p)
2

a
(1)
3 a

(2)
3 . . . a

(p)
3

 with a(i)
2 = a

(i)
3 , 1 ≤ i ≤ p,

be a periodic Jacobi–Perron algorithm. Then the second characteristic root
is

%1 = (−1)p.

Proof. It is easy to see that the row (1,−1, 1,−1) is an eigenvector of
the periodicity matrix B. For p = 1 we put

a
(i)
2 = a

(i)
3 = c

and remark that

(1,−1, 1,−1)


c 0 0 1
1 0 0 0
0 1 0 0
c 0 1 0

 = −(1,−1, 1,−1).

Then the result follows by induction.

Remarks. (1) This theorem can easily be generalized to higher dimen-
sions. If we choose nonnegative integers which satisfy the condition

1− b1 + b2 − · · ·+ (−1)nbn = (−1)n+1

and the so-called Perron conditions, then %1 = −1 is a root of f(z) =
zn+1 − bnz

n − · · · − b1z − 1 = 0. Then in a similar way one can con-
struct periodic expansions of length p with eigenvalue %1 = (−1)p. The
row (1, 1,−1, 1,−1, . . . , 1,−1) is an eigenvector of the periodicity matrix if
d is even, and (1,−1, 1,−1, . . . , 1,−1) is an eigenvector if d is odd.

(2) Note that this shows that the characteristic polynomial f(%) can be
reducible for d ≥ 3.

(3) By simple calculations one finds another type of equations with %1 =
−1, namely the points with period length p = 2

x =

a
(1)
1 a

(2)
1

0 a
(2)
2

a
(1)
3 a

(2)
3


with the conditions a

(1)
1 = a

(1)
3 , (by Perron’s conditions) a

(2)
2 ≥ 1, and

a
(2)
3 > a

(2)
1 . It is in fact easy to show that for period length p ≤ 2 the case
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|%1| > 1 does not occur at all and |%1| = 1 can only happen in the cases just
described (see e.g. Dubois, Farhane & Paysant-Le Roux [1]).

(4) A mixture of both types does not give an algorithm with similar
properties. Take

x =

1 0 0
0 1 1
1 2 1

 .

Then the periodicity matrix is

B =


4 1 1 3
3 1 1 2
4 0 1 3
1 0 0 0


but f(−1) = 4 > 0 and f(1) = −14 < 0.

Theorem 3.

(i) The periodic expansion

x =

a
(1)
1 a

(2)
1 a

(3)
1 a

(4)
1

0 a
(2)
2 0 a

(4)
2

a
(1)
3 a

(2)
3 a

(3)
3 a

(4)
3


with a(1)

1 = a
(1)
3 , a

(3)
1 = a

(3)
3 , a

(2)
2 ≥ 1, a(4)

2 ≥ 1, a(2)
3 > a

(2)
1 , a

(4)
3 > a

(4)
1

has the eigenvalue %1 = 1.
(ii) For the periodic expansions of type

x =

a
(1)
1 a

(2)
1 a

(3)
1 a

(4)
1 a

(5)
1 a

(6)
1

0 a
(2)
2 0 a

(4)
2 0 a

(6)
2

a
(1)
3 a

(2)
3 a

(3)
3 a

(4)
3 a

(5)
3 a

(6)
3


with a(2k−1)

1 = a
(2k−1)
3 , a

(2k)
2 ≥ 1, a(2k)

3 > a
(2k)
1 , 1 ≤ k ≤ 3, all three

cases %1 < −1, %1 = −1, %1 > 1 can occur.

Proof. (i) With a slightly changed notation we first consider

x =

c1 a2 c3 a4

0 b2 0 b4

c1 c2 c3 c4

 .
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Then a calculation of the product of the matrices shows that the matrix

B =


c1c2 + b2 0 1 c1

c2 0 0 1
c1c2 + 1 0 0 c1

a2 1 0 0



c3c4 + b4 0 1 c3

c4 0 0 1
c3c4 + 1 0 0 c3

a4 1 0 0


has the eigenvalue %1 = 1.

(ii) We consider the family of examples given by

x =

1 0 1 0 2 3
0 1 0 1 0 4
1 3 1 2 2 c6

 .

Then

B =


15 1 4 5
9 1 3 3
12 1 4 4
2 0 0 1




2c6 + 4 0 1 2
c6 0 0 1

2c6 + 1 0 0 2
3 1 0 0

 .

A calculation shows

f(−1) = det(1 +B) = 4(c6 − 15).

If c6 = 15 then f(−1) = 0. If we take 5 ≤ c6 ≤ 14, then f(−1) < 0. If we
choose c6 ≥ 16 then f(−1) > 0.

Remarks. (1) Dubois, Farhane & Paysant-Le Roux [1] give an example
with %1 > 1 for period length p = 3, namely the periodic algorithm

x =

 1 b b

b 1 b

b+ 1 b b


with b ≥ 6.

(2) It is easy to exhibit examples with |%1| > 1 in dimension d = 3 for
the Brun algorithm. The 3-dimensional Brun algorithm is governed by the
matrices

β(t) =


t 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , γ(t) =


t 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 , δ(t) =


t 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .
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They correspond to the branches

T (x1, x2, x3) =
(

1
x1
− t, x2

x1
,
x3

x1

)
,

T (x1, x2, x3) =
(
x2

x1
,

1
x1
− t, x3

x1

)
,

T (x1, x2, x3) =
(
x2

x1
,
x3

x1
,

1
x1
− t
)
,

where t = [1/x1]. Then

β(1)3δ(1)γ(1) =


5 0 5 3
3 0 3 2
1 0 0 0
0 1 0 0


and

f(%) = %4 − 5%3 − 7%2 + %+ 1,

which implies f(−1) = −1 and therefore %1 < −1 (Toussaint [9]).

4. The Paley–Ursell constant. Paley & Ursell [3] state without proof
that for any dimension d ≥ 3 there is a constant ω = ω(d) such that
|DN | ≤ ωN . In the following theorem we give an estimate for this constant
in dimension d = 3.

Theorem 4. Let ω be the greatest root of ω3 = ω2+1. Then |DN | ≤ ωN .

Remark. If the algorithm is periodic with period length p and if %1 is
the second eigenvalue then |%1| ≤ ωp.

Proof. The starting point is the relation

DN+4 = −y1DN+1 − y2DN+2 − y3DN+3.

Note that 0 ≤ yi ≤ 1, i = 1, 2, 3. Let us assume that DN+4 > 0. Then we
distinguish the following cases.

(1) If DN+3 < 0, DN+2 < 0, DN+1 < 0 then we use additionally the
recursion

DN+4 = a
(N)
3 DN+3 + a

(N)
2 DN+2 + a

(N)
1 DN+1 +DN ,

which immediately shows that DN > 0 and therefore |DN+4| ≤ |DN |.

(2) This case is further subdivided:
(2.1) DN+3 < 0, DN+2 > 0, DN+1 > 0. Here we obtain

DN+4 ≤ y3|DN+3| ≤ |DN+3|.
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(2.2) DN+3 > 0, DN+2 < 0, DN+1 > 0. In this case we get

DN+4 ≤ y2|DN+2| ≤ |DN+2|.

(2.3) DN+3 > 0, DN+2 > 0, DN+1 < 0. In a similar way we get

DN+4 ≤ y1|DN+1| ≤ |DN+1|.

Therefore the quantity |DN | can only grow in one of the remaining cases.

(3) This case is again subdivided:
(3.1) DN+3 > 0, DN+2 < 0, DN+1 < 0. Then we get

DN+4 ≤ |DN+2|+ |DN+1|.

(3.2) DN+3 < 0, DN+2 > 0, DN+1 < 0. This leads to

DN+4 ≤ |DN+3|+ |DN+1|.

(3.3) DN+3 < 0, DN+2 < 0, DN+1 > 0. In this case we obtain

DN+4 ≤ |DN+3|+ |DN+2|.

Note that the results (1) to (3) are also valid if all signs are reversed.
However, the estimates in (3.2) and (3.3) can be ameliorated when we con-
sider the sign of DN .

(3.2.1) Let DN > 0. Then from (3) we get |DN+3| ≤ |DN+2| + DN > 0
and therefore

DN+4 ≤ |DN+2|+ |DN+1|+ |DN |.

(3.2.2) Let DN < 0. Then from (2) we obtain |DN+3| ≤ |DN+2| and
eventually

DN+4 ≤ |DN+2|+ |DN+1|.

(3.3.1) Let DN > 0. Then again by (3) we obtain |DN+3| ≤ |DN+1|+DN

and
DN+4 ≤ |DN+2|+ |DN+1|+ |DN |.

(3.3.2) Let DN < 0. Then by (2), |DN+3| ≤ |DN+1| and

DN+4 ≤ |DN+2|+ |DN+1|.

If we now assume by induction that DN ≤ ωN then the worst cases (3.2.1)
and (3.3.1) lead to

ωN+4 ≤ ωN+2 + ωN+1 + ωN .

Therefore the greatest root of ω4 = ω2 + ω + 1 gives the required estimate,
but note that ω4 − ω2 − ω − 1 = (ω + 1)(ω3 − ω2 − 1).

Remark. We note that 1 < ω ∼ 1.465 < (1 +
√

5)/2.
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