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On the abc conjecture in algebraic number fields
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To Professor W. M. Schmidt on his 75th birthday

In our paper we obtain new, effective results (cf. Theorems 1 and 2
in Section 3) towards the truth of the uniform abc conjecture in number
fields. Our theorems improve upon the earlier estimates established in this
direction. Our Theorems 1 and 2 are deduced from some recent explicit
results of Yu and the author [24] (cf. Theorem A in Section 2) concerning
S-unit equations. Our proofs (cf. Section 4) depend ultimately on the best
known estimates for linear forms in logarithms of algebraic numbers.

1. The abc conjecture in Z. For positive integers a, b and c, we define
the radical N(a, b, c) of a, b and c by

N(a, b, c) =
∏
p|abc

p a prime

p.

Thus N(a, b, c) is the greatest square-free factor of abc.

The abc conjecture. For any ε > 0, there is a constant Cε, which
depends only on ε, such that for every triple of positive integers a, b, c
satisfying

(1.1) a+ b = c and gcd(a, b) = 1

we have

(1.2) c < Cε(N(a, b, c))1+ε.

This conjecture was first formulated by Oesterlé [36] and Masser [31] in
1985. The conjecture has a very extensive literature. It was pointed out that
the exponent 1 + ε is best possible in (1.2). Further, some refinements and
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more explicit versions were formulated; see [1], [2] and [17]. The conjecture
has many profound consequences; cf. [1], [6], [9], [13], [16], [19], [28], [29],
[34], [35], [37], [43], [47], [48] and the references given there.

Although the conjecture seems completely out of reach, there are some
effective results towards its truth. By means of the theory of logarithmic
forms Stewart and Tijdeman [43] and Stewart and Yu [44], [45] obtained
upper bounds for c as a function of N(a, b, c). The best known upper bounds
are due to Stewart and Yu [45].

Let P (n) denote the greatest prime factor of a positive integer n with
the convention that P (1) = 1. Further, denote by logi the ith iterate of the
logarithmic function with log1 = log. In [45] Stewart and Yu proved that if
a, b, c are positive integers which satisfy (1.1) then

(1.3) log c < p′N c1 log3N
∗/log2N

∗

and

(1.4) log c < c2N
1/3(logN)3,

where p′ = min(P (a), P (b), P (c)), N = N(a, b, c), N∗ = max(N, 16) and
c1, c2 are effectively computable positive absolute constants. Furthermore,
Chim Kwok Chi [12], following the proof of (1.3), has proved (1.3) with
c1 = 710.

2. S-unit equations in number fields. Let K be an algebraic number
field of degree d with class number h and regulator R. Let MK denote the
set of places on K, S∞ the set of infinite places, and S a finite subset of MK

which contains S∞. Let s be the cardinality of S, p1, . . . , pt the prime ideals
corresponding to the finite places in S, N(pi) the norm of pi, i = 1, . . . , t,

P = max
i
N(pi),

and RS the S-regulator of K (see e.g. [11]). Then we have (cf. [11, (18)])

(2.1) RS = iSR
t∏
i=1

logN(pi),

where iS is a positive divisor of h. As usual, OS and O∗S will denote the ring
of S-integers and the group of S-units of K, respectively. If in particular
S = S∞, OS is just the ring of integers OK and O∗S the unit group O∗K in K.

For any γ ∈ Q∗, we denote by h(γ) the absolute logarithmic height of γ.
For brevity, we write log∗ a for max(log a, 1) if a > 0.

Let α, β ∈ K∗ with H := max(h(α), h(β), 1), and consider the S-unit
equation

(2.2) αx+ βy = 1 in x, y ∈ O∗S.
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Equations of this type have a great number of applications; cf. [14], [22],
[23], [24], [41] and the references therein.

Equation (2.2) has only finitely many solutions. The first explicit upper
bounds for the heights of the solutions of (2.2) were given by the author
[20], [21] by means of the theory of logarithmic forms. Later several authors,
including Kotov and Trelina [27], Schmidt [40], Sprindžuk [42], Bugeaud and
Győry [11], Haristoy [25] and Győry and Yu [24] derived effective bounds
for the solutions by using logarithmic form estimates.

Bugeaud and Győry [11] derived the bound

(2.3) max(h(x), h(y)) ≤ C1PRS(log∗RS)2H

for the solutions of (2.2) with C1 = c3(c4ds)c5s, where c3, c4 and c5 are
explicitly given positive absolute constants. Győry and Yu [24] improved
this to

(2.4) max(h(x), h(y)) ≤ C2PRS(log∗RS)H,

where C2 is of the same form as C1 but with smaller absolute constants c3,
c4 and c5.

Bombieri [3] and Bombieri and Cohen [4], [5] have developed another
effective method in Diophantine approximation, based on an extended ver-
sion of the Thue–Siegel principle, the Dyson lemma and some geometry of
numbers. Bugeaud [10], following their approach and combining it with es-
timates for linear forms in two and three logarithms, derived the following
bound for the solutions of (2.2):

(2.5) max(h(x), h(y)) ≤ C3P (log∗ P )RS max(C4P (log∗ P )RS, H),

where C3 and C4 are of the same form as C1 and C2, but the absolute
constants in C3 and C4 are larger than the corresponding ones in C2.

In some applications, the parameters depending on S play a crucial role.
The bounds occurring in (2.3)–(2.5) contain the factor ss, and this is the
dominating factor in terms of S whenever t > logP .

The following theorem provides a bound for the solutions which does
not contain any factor of the form ss or tt. This fact will enable us to
improve upon the earlier effective results obtained in the direction of the
abc conjecture.

Let r denote the unit rank of OK , and let

c6 =


0 if r = 0,
1/d if r = 1,
29er!r

√
r − 1 log d if r ≥ 2.

Further, let
R = max(h, c6dR).
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Theorem A (Győry and Yu). If t > 0, then all solutions x, y of (2.2)
satisfy

(2.6) max(h(x), h(y)) ≤ c7hR(log∗R)Rt+1(log∗R)(P/log∗ P )RSH,

where
c7 = (213.32d)t(r + 1)4r+13.5210r+64dr+5(log∗(2d))6.

If in particular t > 0 and r = 0, the bound in (2.6) can be replaced by

(2.7) c8h
t+2(log∗ h)(P/log∗ P )

{ t∏
i=1

logN(pi)
}
H

with
c8 = 210t+22t3.5dt+2(log∗(2d))3.

Further , if t = 0, one can replace the bound in (2.6) by

(2.8) c9R(log∗R)H,

where
c9 = (r + 1)2r+923.2(r+2) log(2r + 2)(d log∗(2d))3.

In Section 4 we shall deduce Theorem A from Theorems 1 and 2 of Győry
and Yu [24].

In the special case K = Q, Theorem A implies the following. Let A, B,
C and a, b, c be non-zero rational integers such that

(2.9) Aa+Bb+ Cc = 0

and max(|A|, |B|, |C|) = H, |abc| > 1, where both A, B, C and a, b, c are
relatively prime.

Corollary. We have

(2.10) log max(|a|, |b|, |c|) ≤ 210t+22t4(P/log∗ P )
(∏
p|abc

log p
)

log∗H,

where P = P (abc) and t denotes the number of distinct prime factors of abc.

3. The abc conjecture in number fields. Keeping the notation of
Section 2, let again K be an algebraic number field of degree d with ring
of integers OK and unit rank r. Let ∆K be the absolute value of the dis-
criminant of K, and let MK denote the set of places on K. For v ∈ MK ,
we choose an absolute value | |v in the following way: if v is infinite and
corresponds to σ : K → C, then we put |α|v = |σ(α)|dv for α ∈ K, where
dv = 1 or 2 according as σ(K) is contained in R or not; if v is a finite place
corresponding to a prime ideal p of OK , then we put |α|v = N(p)− ordp α for
α ∈ K \ {0} and |0|v = 0. Here, for α 6= 0, ordp α denotes the exponent of p
in the prime ideal factorization of the principal fractional ideal (α).
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We define the height of (a, b, c) ∈ (K∗)3 as

(3.1) HK(a, b, c) =
∏

v∈MK

max(|a|v, |b|v, |c|v).

Further, the radical of (a, b, c) ∈ (K∗)3 is defined as

(3.2) NK(a, b, c) =
∏
v

N(p)ordpp,

where p is a rational prime with pZ = p∩Z, and the product is over all finite
v such that |a|v, |b|v, |c|v are not all equal. Finally, we denote by PK(a, b, c)
the greatest factor N(p) in (3.2).

There have been several proposals for generalizing the abc conjecture to
algebraic number fields. In 1987, Vojta [47] proposed a very general conjec-
ture and, as a consequence, suggested the first number field version of (1.2).
Later, Vojta’s version was refined by Elkies [13], Broberg [7], Granville and
Stark [18], Browkin [8] and Masser [32]. The following version is due to
Masser [32].

Uniform abc conjecture in number fields. Let K be an algebraic
number field of degree d, and ∆K the absolute value of its discriminant.
Then for every ε > 0 there exists Cε, depending only on ε, such that

(3.3) HK(a, b, c) < Cdε (∆KNK(a, b, c))1+ε

for all a, b, c ∈ K∗ which satisfy a+ b+ c = 0.

We note that (3.3) is best possible in terms of ε. Further, the upper bound
is uniform in the sense that it has good behaviour under field extensions.
In particular, for K = Q this general conjecture reduces to the classical abc
conjecture formulated in Section 1.

The effective results concerning S-unit equations can be used to obtain
weaker but unconditional and effective bounds for HK(a, b, c). Let

(3.4) a+ b+ c = 0, where a, b, c ∈ K∗.
Further, let S be the smallest subset of MK containing S∞, such that v ∈ S
for every finite place v for which |a|v, |b|v, |c|v are not all equal. Then

x = −a/c, y = −b/c
is a solution of the S-unit equation

(3.5) x+ y = 1 in x, y ∈ O∗S.
Now having a bound for h(x) and h(y), we can derive a bound forHK(a, b, c).

Surroca [46], using the bound (2.3) due to Bugeaud and Győry [11],
derived from (3.4) the estimate

(3.6) logHK(a, b, c) < ((c10d∆K)c11NK(a, b, c)c12)d,
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where c10, c11 and c12 denote effectively computable positive absolute con-
stants.

The inequality (3.6) could be derived with smaller absolute constants
from the explicit version of (2.4), established by Győry and Yu [24]. From
our Theorem A we can, however, deduce better bounds for HK(a, b, c) in
terms of NK(a, b, c).

For later applications, we prove Theorem 1 below in a completely explicit
form, with as good constants c13, c14 as possible.

Theorem 1. If a, b, c ∈ K∗ satisfy (3.4), then

(3.7) logHK(a, b, c)

< c13∆
3/2
K (log∗∆K)3d−1(P/log∗ P )Nd(c14 log∗∆K+19.2 log3N

∗)/log2N
∗

where

P = PK(a, b, c), N = NK(a, b, c), N∗ = max(N, 16),

c13 =


223 if d = 1,
227 if d = 2 and r = 0,
298d8(log∗ d)6 if r = 1,
(r + 1)5r+14210r+74dr+8(log 2d)8 if r ≥ 2,

and

c14 =


12.4 if d = 1,
14.7 if d = 2 and r = 0,
7.4d if r = 1,
2.9d log d if r ≥ 2.

If in particular S = S∞ (i.e. if a/c, b/c ∈ O∗K), then

(3.8) logHK(a, b, c) < c15∆
1/2
K (log∗∆K)d,

where
c15 = (r + 1)2r+924(r+2)(d log∗(2d))4.

Our Theorem 1 can be compared with Corollary 2 of Győry and Yu
[24], where it is additionally assumed that a, b, c are S-units for some finite
subset S of MK . Further, instead of NK(a, b, c), the product, N0, of the
distinct prime factors of N(p1 · · · pt) is considered in [24], where p1, . . . , pt
are the prime ideals corresponding to the finite places in S. However, N0

can be arbitrarily large relative to NK(a, b, c). Finally, apart from a common
proportional factor of a, b, c, in [24] max(h(a), h(b), h(c)) and not HK(a, b, c)
is estimated from above. On the other hand, we note that a weaker version
of our Theorem 1 can be deduced from Corollary 2 of [24].

The following theorem is a consequence of Theorem 1. It provides a
considerable improvement of (3.6) in terms of NK(a, b, c).
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Theorem 2. Let a, b, c ∈ K∗ with a + b + c = 0, and N = NK(a, b, c).
Then for every ε > 0, we have

(3.9) logHK(a, b, c) < c16N
1+ε,

where c16 = c16(d,∆K , ε) is an effectively computable positive constant which
depends only on d, ∆K and ε. Further , if

N > max(exp exp(max(∆K , e)), ∆
2/ε
K ),

then

(3.10) logHK(a, b, c) < c17(∆KN)1+ε

with an effectively computable positive constant c17 = c17(d, ε) depending
only on d and ε.

A comparison of the special case K = Q of Theorems 1 and 2 with
(1.3) and (1.4) is in order. Theorem 2 implies that if a, b and c are coprime
positive integers such that a+ b = c, then, for every ε > 0, we have

(3.11) log c < c16N
1+ε,

where N denotes the product of the distinct prime factors of abc, and c16

is now an effectively computable number which depends only on ε. This
estimate is slightly weaker than (1.4). One of the reasons of this difference
is that we obtained (3.11) as a special case of (3.9), while in [45] the authors
gave a direct proof for (1.4) and (1.3) and utilized some specific properties
of Z, e.g. that a+ b = c and b > a imply 2b > c > b.

In this special situation Theorem 1 gives

log c < 223(P/log∗ P )N653 log3N
∗/log2N

∗
,

where P = P (abc) and N∗ = max(N, 16). This is comparable with (1.3).
The abc conjecture presented in Section 1 requires an upper bound for c

in terms of ε and N only. Baker [1], [2] and Granville [17] formulated such
refinements which involve also the number, t, of distinct prime factors of
abc. The Corollary in Section 2 implies in this direction that if a, b, c are
coprime positive integers with a+ b = c then

(3.12) log c < 210t+22t4(P/log∗ P )
∏
p|abc

log p,

whence, using P ≤ N and
∏
p|abc log p ≤ (logN/t)t,

(3.13) log c < (210t+22/tt−4)N(logN)t

follows.
In general (3.12) gives a better upper bound for c than (1.3) with c1 =

710. For example, if a = 112, b = 325273, c = 22123 then a+b = c (de Weger)
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and the bound in (1.3) is > 24950, while the bound in (3.12) is < 2100. In
this example 210t+22t4 > 293 is the dominating factor.

4. Proofs. Before proving our Theorems 1 and 2, we deduce Theorem A
from Theorems 1 and 2 of Győry and Yu [24]. We note that the proofs of
Theorems 1 and 2 in [24] depend on the logarithmic form estimates due to
Matveev [33] and Yu [49].

Proof of Theorem A. First suppose that t > 0. We apply Theorem 2 of
[24] to our equation (2.2). Let x, y be a solution of (2.2). Then, using the
notation of Theorem 2 in [24], there are σ, %1, %2, %3 in O∗S such that

(4.1) x = σ%1, y = σ%2, −1 = σ%3

and

(4.2) max
i
h(%i) ≤ E/2.

Here E denotes the bound occurring in (2.6) resp. (2.7) in our Theorem A.
In fact, in [24], (4.2) is proved with a slightly smaller bound. However, using
(2.1), we can choose here E as an upper bound. It follows now from (4.1)
and (4.2) that

h(σ) ≤ E/2,
whence, by (4.2), we get max(h(x), h(y)) ≤ E.

For t = 0, Theorem 1 of [24] gives (2.8) immediately.

Proof of the Corollary. Denote by S the set of places on Q which consists
of the infinite place and the finite ones corresponding to the prime factors of
abc. Then (2.9) implies that x = −a/c, y = −b/c is a solution of the S-unit
equation

(A/C)x+ (B/C)y = 1.

Here max(h(A/C), h(B/C)) ≤ log∗H. Further,

log max(|a|, |b|, |c|) ≤ max(h(a/c), h(b/c)).

On applying now the bound (2.7) in Theorem A to this solution x, y, (2.10)
follows.

Proof of Theorem 1. We shall use, in refined form, some ideas from the
proof of Corollary 2 of Győry and Yu [24].

Consider the relation

(3.4) a+ b+ c = 0 with a, b, c ∈ K∗,
and choose S as in Section 3, i.e. let S be the smallest subset of MK contain-
ing S∞, such that v ∈ S for every finite place v for which |a|v, |b|v, |c|v are
not all equal. Let p1, . . . , pt be the prime ideals corresponding to the finite
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places of S. Then x = −a/c, y = −b/c is a solution of the equation (3.5)
x+ y = 1 in S-units x, y. Then, by our Theorem A, we have

max(h(x), h(y)) ≤ E0,

where E0 denotes the bound with the choice H = 1, which occurs in (2.6),
(2.7) or (2.8), according as t > 0, r ≥ 1 or t > 0, r = 0 or t = 0, respectively.

Using the product formula, we infer that

HK(a, b, c) =
∏

v∈MK

max(|a/c|v, |b/c|v, 1)

≤
∏

v∈MK

max(|a/c|v, 1)
∏

v∈MK

max(|b/c|v, 1).

Hence it follows that

logHK(a, b, c) ≤
∑
v∈MK

log max(|a/c|v, 1) +
∑
v∈MK

log max(|b/c|v, 1)(4.3)

= d(h(x) + h(y)) ≤ 2dE0.

We shall now give an upper bound for E0 in terms of the parameters
occurring in (3.7) and (3.8), respectively. First consider the case t = 0. The
case d = 1 being trivial, we assume that d > 1. We use the fact that

(4.4) hR ≤ ∆1/2
K (log∗∆K)d−1,

which follows from a result of [30]. For K = Q and K = Q(
√
−3) this is

obviously true, because then h = R = 1. In the remaining cases (4.4) follows
from (2) of [30] and from

(4.5) ωK ≤ 20d log2 d if d ≥ 3,

where ωK denotes the number of roots of unity in K. Since Φ(ωK) divides d,
where Φ denotes Euler’s function, (4.5) immediately follows from Theo-
rem 15 of [39].

We have (logX)B ≤ (B/2ε)BXε if X > 0, B > 0 and ε > 0. Using this
we infer that

(4.6) (log∗∆K)d−1 ≤ (d− 1)d−1∆
1/2
K .

Hence in view of (4.4) and h ≥ 1 we get

R ≤ ∆1/2
K (log∗∆K)d−1 ≤ dd∆K .

Thus we obtain

(4.7) log∗R ≤ d log d+ log∗∆K ≤ 2d(log∗ d) log∗∆K .

Here we utilized the trivial observation that

(4.8) A+B =
(

1
A

+
1
B

)
AB for A,B > 0
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(which will also be needed later) and that ∆K ≥ 3 if d > 1. Now (4.4) and
(4.7) give

(4.9) R(log∗R) ≤ 2d(log∗ d)∆1/2
K (log∗∆K)d.

If we take into consideration that

23.2(r+2)+1 log(2r + 2) < 24(r+2),

(2.8) and (4.9) imply (3.8).
Next consider the case t > 0. First assume that r ≥ 1. It follows from

(2.1) that

(4.10) RS ≤ hR
t∏
i=1

logN(pi).

We have RK ≥ 0.2052; (cf. [15]). Hence we infer from (4.4) that

(4.11) R ≤ c18∆
1/2
K (log∗∆K)d−1,

where c18 = max(c6d, 4.88). Now (4.4) and (4.11) imply that

(4.12) h2R2(log∗R)R(log∗R) ≤ 4d2c18(log c18)∆3/2
K (log∗∆K)3d−1.

Here we have used the fact that

log c18 + 0.5 + (d− 1)/e ≤ 1.32d log c18.

We shall now estimate from above the product
∏t
i=1 logN(pi). Denote

by N0 the product of the distinct prime factors of N = NK(a, b, c), and by
t0 the number of these primes. By assumption t > 0, hence t0 > 0. Further,
it follows that t ≤ dt0 and

(4.13) N0 ≤ N ≤ Nd
0 .

Let
N∗0 = max(N0, 16).

Then obviously N∗0 ≤ N∗. It follows from explicit estimates of [39] and [38]
that

t0 < 1.5 logN0/log2N
∗
0 ,

whence

(4.14) t < 1.5d logN/log2N
∗.

We have
∏t
i=1N(pi) ≤ N∗. Hence it follows that

(4.15)
t∏
i=1

logN(pi) ≤
(

logN
t

)t
.

It is easy to check that

log
(
d logN

t

)(
d logN

t

)−1

≤ 1
e
.
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If now log2N
∗ < 1.5e, then

log2N
∗

log3N
∗ ≤ max

(
log2 16
log3 16

,
1.5e

log(1.5e)

)
≤ 19.16/e,

whence

(4.16) log
(
d logN

t

)(
d logN

t

)−1

≤ 19.16
log3N

∗

log2N
∗ .

Otherwise, if log2N
∗ ≥ 1.5e, then using (4.14) we get

d logN
t

>
log2N

∗

1.5
≥ e,

which implies that

log
(
d logN

t

)(
d logN

t

)−1

≤ log
(

log2N
∗

1.5

)(
log2N

∗

1.5

)−1

≤ 1.5
log3N

∗

log2N
∗ .

This proves that (4.16) holds in both cases. But we infer from (4.16) that

t log
(
d logN

t

)
≤ 19.16d

logN log3N
∗

log2N
∗ .

Together with (4.15) this gives

(4.17)
t∏
i=1

logN(pi) ≤
1
dt
N19.16d log3N

∗/log2N
∗
.

We recall that c7 denotes the constant occurring in Theorem A. We write
c7 = c′7 · c′′7, where

(4.18) c′7 = (213.32d)t, c′′7 = (r + 1)4r+13.5210r+64dr+5(log 2d)6.

We now distinguish two cases. First let r ≥ 2. Then d ≥ 3 and ∆K ≥ 23
(see e.g. [26]). It is easy to see that log c18 ≤ 1.3d log d and hence

(4.19) 8d3c′′7c18 log c18 ≤ (r + 1)5r+14210r+74dr+9(log 2d)8.

Further, it follows from (4.11), (4.18) and (4.14) that

(c′7R)t ≤ (213.32dc18∆
1/2
K (log∆K)d−1)1.5d logN/log2N

∗
(4.20)

≤ N1.5d log(213.32dc18∆
1/2
K (log∆K)d−1)/log2N

∗
.

Using (4.6), (4.8), d ≥ 3 and ∆K ≥ 23, we infer that

log(213.32dc18∆
1/2
K (log∆K)d−1) ≤ 5.11d log d+ log∆K

≤ 1.9332(d log d) log∆K .
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Hence

(4.21) (c′7R)t ≤ N2.9d2(log d) log∆K/log2N
∗
.

Thus, (2.6), (4.3), (4.12), (4.17), (4.19) and (4.21) imply (3.7) for r ≥ 2 with

c13 = (r + 1)5r+14210r+74dr+8(log 2d)8 and c14 = 2.9d log d.

Next consider the case r = 1. Then 2 ≤ d ≤ 4, ∆K ≥ 5 (cf. [26]),
c6 = 1/d, c18 = 4.88 and c′′7 = 291.5d6(log 2d)6. Hence

8d3c′′7c18 log c18 < 298d9(log 2d)6.

Further, by means of (4.6), (4.8), d ≤ 4 and ∆K ≥ 5 we infer that

log(213.32dc18∆
1/2
K (log∆K)d−1) ≤ 7.11d+ log∆K ≤ 4.92d log∆K .

Thus
(c′7R)t ≤ N7.4d2 log∆K/log2N

∗
.

This implies as in the case r ≥ 2 that (3.7) holds with c13 = 298d8(log d)6

and c14 = 7.4d.
Finally, assume that r = 0 when d = 1 or 2. Then, by Theorem A,

2dE0 = c8h
t+2(log∗ h)(P/log∗ P )

t∏
i=1

logN(pi).

Further, (4.4), (4.6), (4.8) and (4.17) imply (3.7) with c13 = 227, c14 = 14.7
if d = 2 and r = 0, and c13 = 223, c14 = 12.4 if d = 1.

We now deduce Theorem 2 from Theorem 1.

Proof of Theorem 2. We first prove (3.10). By assumption

(4.22) N > max(exp exp(max(∆K , e)), ∆
2/ε
K ).

This implies that
log∗∆K ≤ log3N

∗.

Hence

(4.23) d(c14 log∗∆K + 19.2 log3N
∗) < c19 log3N

∗

with c19 = d(c14+19.2) which depends only on d and can be given explicitly.
Using the fact that r + 1 ≤ d, P ≤ N ,

(log∗∆K)3d−1 ≤ (3d)3d−1∆
1/2
K ,

and, by (4.22), ∆K < N ε/2, we infer from (3.7) and (4.23) that

(4.24) logHK(a, b, c) < c20∆KN
1+ε/2+c19 log3N

∗/log2N
∗

with some effectively computable c20 depending only on d. If now

c19 log3N
∗/log2N

∗ < ε/2,
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then (4.24) implies (3.10). Otherwise, it follows that N ≤ N0(d, ε) with some
effectively computable N0 which depends only on d and ε, and (4.24) gives
again (3.10) with another effectively computable c17.

Finally, if (4.22) holds, (3.9) follows at once from (3.10). Otherwise, if
(4.22) does not hold, (3.9) is an immediate consequence of (3.7).
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composables, Queen’s Papers in Pure and Appl. Math. 56, Kingston, 1980.

[23] —, Some recent applications of S-unit equations, Astérisque 209 (1992), 17–38.
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