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1. Introduction. In the last several years there has been much inves-
tigation of what happens when an algebraic variety in an algebraic group is
intersected with the union of all algebraic subgroups of a given dimension.
We confine ourselves here to the multiplicative case; that is, the algebraic
group is Gn

m. There are several different forms of the main conjecture in
the subject, and they are most naturally formulated over the complex num-
bers C. However, the proofs up to now have always started with an algebraic
variety defined over the algebraic numbers Q. In this note we present a gen-
eral principle that enables the results over C to be deduced from the results
over Q. This yields new results for curves and varieties of dimension n − 2
(see Corollaries 1 and 2 below).

To classify the progress so far achieved over Q, we introduce integers
r ≥ 0, s ≥ 1 and we consider varieties X of dimension r in Gr+s

m ; thus
s is the codimension. We intersect with the union Hs−1 of all algebraic
subgroups of dimension s − 1. For greater generality we shall henceforth
work over an arbitrary field K of zero characteristic with algebraic clo-
sure K.

Regarding the exact form of the results, there are now several versions in
the literature. For the moment we restrict ourselves to the following, which
involves no preliminary definitions.

Conjecture. For every variety X of dimension r in Gr+s
m defined

over K and irreducible over K, there is a finite union U = U(X ) of proper
algebraic subgroups of Gr+s

m such that X ∩Hs−1 is contained in U .

2000 Mathematics Subject Classification: 11G35, 11G50, 14G25, 14J20.
Key words and phrases: intersections of algebraic varieties with algebraic subgroups,

specialization.

[309] c© Instytut Matematyczny PAN, 2008



310 E. Bombieri et al.

When s = 2, this corresponds to Theorem 1.6 of [BMZ3, p. 6]. Its form
is modelled on results and conjectures first due to Schinzel, and it indicates
how these sorts of considerations can be extended to arbitrary dimension
and codimension.

We postpone to an Appendix a detailed discussion of the other versions
in the literature. The first to appear is due to Zilber [Z], also in the context
of semiabelian varieties. Then Pink [P] suggested a version which could be
interpreted also in the context of Shimura varieties. And the present authors
in [BMZ3] gave versions in the context of Gn

m.
To state our main result in a simple way, we may think of a picture with

horizontal r-axis and vertical s-axis. Then the horizontal axis s = 0 is mean-
ingless for our problem, and the vertical axis r = 0 represents only trivial
results about single points. The horizontal line s = 1 is the case of hyper-
surfaces, and the vertical line r = 1 represents the case of curves. Similarly
s = 2 gives the case of codimension 2, and r = 2 the case of surfaces. And
so on. Now for integers R ≥ 0, S ≥ 1 we say that the Conjecture for K holds
on the (R,S)-rectangle if, for all integers r, s with 0 ≤ r ≤ R, 1 ≤ s ≤ S,
it holds for every variety X of dimension r in Gr+s

m defined over K and
irreducible over K.

Theorem. Suppose that for some R,S the Conjecture holds for Q on the
(R,S)-rectangle. Then the Conjecture holds for C on the (R,S)-rectangle.

Analogous results are true for the versions due to Zilber and to the
present authors. In fact, we will show in the Appendix that these versions
and the Conjecture, when restricted to any fixed K and any fixed (R,S)-
rectangle, are all equivalent.

For Zilber’s version, Theorem 1 of [Z, p. 29] is similar to our Theorem
but with unrestricted dimension and codimension; this can be regarded as
the limiting case of our result with R = S = ∞, so that in the picture the
whole quadrant is involved.

Here are some consequences of our result.
First, the horizontal line s = 1 is the case of torsion points in hypersur-

faces. This is known classically over Q. Taking S = 1 yields the extension
to C; also probably known, and anyway easy to deduce just by ordinary
specialization arguments.

Next, the vertical line r = 1 is the case of curves. This was recently
proved over Q by Maurin [M]. Taking R = 1 yields the extension to C,
which is new. We state this explicitly as follows.

Corollary 1. For n ≥ 2 let C be a complex curve in Gn
m. Then the

points of C∩Hn−2 lie in a finite union of proper algebraic subgroups of Gn
m.



Intersections of complex varieties with tori 311

An example is the following, which can already be deduced from our
Theorem for S = 4 and the Corollary of [BMZ2, p. 2248]: there are only
finitely many complex numbers x 6= 0, 1, π such that there are two indepen-
dent multiplicative relations between

2, π, x, x− 1, x− π
(x = π/2 is one of them).

Note that for curves X = C not lying in arbitrary translates of proper
algebraic subgroups we already proved the Conjecture for C in our paper
[BMZ1] using specialization arguments of a more elaborate nature; and the
methods of the present article can be used to provide an alternative more
natural proof.

Then the line s = 2 is the case of varieties of codimension 2. Over Q this
was done recently in [BMZ3]; so taking S = 2 gives once more the extension
to C, also new.

Corollary 2. For n ≥ 2 let D be a complex variety of dimension n−2
in Gn

m. Then the points of D ∩ H1 lie in a finite union of proper algebraic
subgroups of Gn

m.

Here is an example for threefolds R = 3. Consider the set X in C5 of all
(x1, x2, x3, x4, x5) satisfying

x1 + x2 + x3 + x4 + x5 = 5π, x1x2x3x4x5 = π5

such that there are four independent multiplicative relations between
x1, x2, x3, x4, x5. Then X lies in a finite union of proper algebraic subgroups
of G5

m. In fact, these can be analyzed further to prove that X is finite (it
contains (π, π, π, π, π) of course).

The line r = 2 is the case of surfaces, about which not so much is known.
In our paper [BMZ4] we proved some things about planes over Q. With the
help of Maurin’s result, these can be sharpened to fill in the line r = 2 for
non-degenerate planes over Q. So it seems likely that the arguments of the
present note will lead to the extension to non-degenerate planes over C.

Some words about the proof of our Theorem. A variety X defined over C
is of course defined over some field finitely generated over Q, say Q(t1, . . . , te).
By thinking of the complex numbers t1, . . . , te as extra variables, we can re-
gard the defining equations as corresponding to a variety X̃ defined over Q.
This sort of thing is also done by Zilber [Z]. A point P in X ∩ Hs−1 corre-
sponds to a subvariety YP of X̃ which is anomalous in the sense of [BMZ3],
at least if X is not defined over Q. In fact, it may well be “over-anomalous”
in a more general sense. The main geometric result of [BMZ3] gives a struc-
ture theorem for anomalous subvarieties which can easily be generalized, and
applying this to YP yields after a few calculations the desired conclusions
for P .
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2. Preliminaries. The following technical observation prevents the
points of X acquiring extra multiplicative relations when regarded as points
of X̃ .

Lemma 1. Given a positive integer n and a finitely generated field ex-
tension K/k in zero characteristic of transcendence degree d ≥ 1, there is a
finite collection T of sets of generators for K/k with the following property.
Let x1, . . . , xn be non-zero elements of any extension of K. Then there is
a set {t1, . . . , te} from T whose elements are non-zero and multiplicatively
independent of x1, . . . , xn modulo k∗.

Proof. We start by noting that if u1, . . . , uN are any non-zero elements
of K multiplicatively independent modulo k

∗, and v in K is transcenden-
tal over k, then we can find an integer j with 0 ≤ j ≤ N such that
u1, . . . , uN , v + j are multiplicatively independent modulo k

∗. This is an
easy argument based on the trivial fact that v, v + 1, . . . , v + N are multi-
plicatively independent modulo k∗.

Select a transcendence basis (u1, . . . , ud) of K/k. It is an equally trivial
fact that the D = (n+ 1)d elements

u1, . . . , ud, u1 + 1, . . . , ud + 1, . . . , u1 + n, . . . , ud + n

are multiplicatively independent modulo k∗. Take any v transcendental over
k with K = k(u1, . . . , ud, v). There is j0 with 0 ≤ j0 ≤ D such that

u1, . . . , ud, u1 + 1, . . . , ud + 1, . . . , u1 + n, . . . , ud + n, v + j0

are multiplicatively independent modulo k∗. Then there is j1 with 0 ≤ j1 ≤
D + 1 such that

u1, . . . , ud, u1 + 1, . . . , ud + 1, . . . , u1 + n, . . . , ud + n, v + j0, v + j1

are multiplicatively independent modulo k
∗. And so on, until jn with 0 ≤

jn ≤ D + n such that

(1) u1, . . . , ud, u1 +1, . . . , ud +1, . . . , u1 +n, . . . , ud +n, v+ j0, . . . , v+ jn

are multiplicatively independent modulo k
∗. Take T as the set of {u1 + i,

. . . , ud + i, v + ji} (i = 0, . . . , n) and correspondingly ti = (u1 + i, . . . ,
ud + i, v+ ji) (i = 0, . . . , n) in Gd+1

m . If the assertion of the lemma is false for
some x = (x1, . . . , xn) in Gn

m, then for each i there is pi in Zn and non-zero
qi in Zd+1 such that xpitqi

i , in the usual vector exponential notation, lies
in k. Now the xpi (i = 0, . . . , n) are certainly multiplicatively dependent,
and it would follow that the quantities (1) are multiplicatively dependent
modulo k

∗; a contradiction. Here we get the value e = d + 1, clearly best
possible.

In [BMZ3] we made repeated use of the Fibre Dimension Theorem. The
following gives a slightly more precise conclusion.
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Lemma 2. Let ϕ be a morphism from the irreducible variety V to the
irreducible variety W. For an integer m, let Vm be the set of all v in V such
that ϕ−1(ϕ(v)) has dimension at least m at v. Then the Zariski closure of
ϕ(Vm) has dimension at most dimV −m.

Proof. The idea is simply to consider the restriction of ϕ from ϕ−1(ϕ(Vm))
to ϕ(Vm), but with minor technical adjustments because these sets might
not be irreducible or even closed.

From the standard Fibre Dimension Theorem (see for example FDT(c)
of [BMZ3, p. 9], which does not require ϕ to be dominant; or also the
Semicontinuity Theorem of [D, p. 228]) we know that Vm is closed in V.
Accordingly, let V0 be any component of Vm. It suffices to show that the
Zariski closure W̃ of ϕ(V0) has dim W̃ ≤ dimV −m.

Now ϕ(V0) contains a non-empty Zariski open set U0. For each u in U0

we have u = ϕ(v) for some v in V0 ⊆ Vm and so ϕ−1(u) = ϕ−1(ϕ(v)) has
a component Vv through v with dimVv ≥ m. This Vv lies in ϕ−1(U0) and
therefore in one of the components of the Zariski closure of ϕ−1(U0) in V.
Thus we can find one of these components, say Ṽ, such that Vv lies in Ṽ
for a dense subset S of u = ϕ(v) in U0. Now consider the restriction ϕ̃

of ϕ from Ṽ to W̃; both sets here are irreducible and the map is dominant
because ϕ̃(Ṽ) contains S. So by the standard Fibre Dimension Theorem (see
for example FDT(b) of [BMZ3, p. 9]; or also part (b) of the first Theorem
of [D, p. 228]) there is a non-empty Zariski open subset U00 of U0 such that
dim ϕ̃−1(u) = dim Ṽ − dim W̃ for all u in U00. Now U00 meets the dense set
S and so at a common point we have dim ϕ̃−1(u) ≥ dimVv ≥ m. It follows
that

dim W̃ ≤ dim Ṽ −m ≤ dimV −m
as required.

We next record a simple remark about fields of definition.

Lemma 3. Let V be an absolutely irreducible variety not defined over a
field k. Then the points of V defined over k are not Zariski dense in V.

Proof. Consider the set S of points of V defined over k. Then the Zariski
closure Z of S is also defined over k. So Z cannot be V. Thus it is a proper
subvariety of V.

The following lemma gives a mild strengthening of another result
in [BMZ3]. As there, the degree is taken with respect to the natural em-
bedding of Gn

m in projective Pn. And as usual we use the word coset to
mean a translate of an algebraic group.

Lemma 4. There is a constant C = C(n), depending only on n, with
the following property. Suppose 1 ≤ h ≤ n and the absolutely irreducible
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variety X in Gn
m lies in a coset of dimension n− h. Then there are linearly

independent a1, . . . ,ah in Zn with xa1 , . . . ,xah constant on X and

max{|a1|, . . . , |ah|} ≤ C(degX )n−1.

Proof. We use induction on n. The case n = 1 is trivial. So suppose
n ≥ 2. By Lemma 3.2 of [BMZ3, p. 14], there is a non-zero ah in Zn satisfying
the required bound, with xah constant on X . We can suppose that the last
coordinate of ah is non-zero. The projection π(X ) down to Gn−1

m lies in a
coset of dimension (n−1)−(h−1) in Gn−1

m . So by induction there are linearly
independent a1, . . . ,ah−1 in Zn−1 = Zn−1×{0} inside Zn−1×Z = Zn, with
xa1 , . . . ,xah−1 constant on π(X ) (or X ) and

max{|a1|, . . . , |ah−1|} ≤ C(n− 1)(deg π(X ))n−2.

Now deg π(X ) ≤ degX ; see for example the Proposition of [D, p. 254] for
X not a cone over the centre (0, . . . , 0) of projection (in the case of a cone
we have equality), and the result follows, because ah not in Zn−1 must be
independent of a1, . . . ,ah−1 in Zn−1.

Let X be an irreducible variety in Gn
m, and let b ≥ 1 be an integer. We

say that an irreducible subvariety Y of X is b-anomalous if it has positive
dimension and lies in some coset of dimension n − (b + dimX ) + dimY.
The case b = 1 corresponds to Definition 1.1 of [BMZ3, p. 3] of anomalous,
the case b = 2 could be termed superanomalous, the case b = 3 would
be superduperanomalous, and so on. We also say that Y is maximal b-
anomalous if it is not contained in another b-anomalous subvariety of X of
strictly bigger dimension. The following is a mild strengthening of the main
geometric result of [BMZ3].

Lemma 5. Given ∆ ≥ 1 there is a constant D = D(n,∆), depending
only on n and ∆, with the following property. Suppose X is a variety in
Gn

m of degree ∆ defined over K and irreducible over K. Then any maximal
b-anomalous subvariety Y of X lies in a coset gH(0) satisfying

dimH(0) = n− (b+ dimX ) + dimY, degH(0) ≤ D

with g in Gn
m(K).

Proof. We use double induction on n and the difference

c = dimX − dimY.

This notation means that on a b-anomalous subvariety Y of X there are b+c
independent relations xa = α.

If c = 0 then Y = X and so the assertion to be proved is an immediate
consequence of Lemma 4 above, because the degree of H(0) defined by xa1 =
· · · = xah = 1 is at most C0|a1| · · · |ah| for some C0 depending only on n.
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If c ≥ 1 then take Y in X as in the present lemma. It is certainly
anomalous in X , so by Proposition 3.1 of [BMZ3, p. 13] there is a relation
xa = α on Y with a 6= 0 bounded only in terms of n and ∆. After adjusting
with an automorphism if necessary, we can suppose that this relation is
xn = α on Y.

Suppose first that xn 6= α on X . Then Y lies in some component X ′ of
the intersection of X with xn = α, and dimX ′ = dimX − 1. We may now
consider Y as (b + 1)-anomalous in X ′. This is because Y lies in a coset of
dimension

n− (b+ dimX ) + dimY = n− (b′ + dimX ′) + dimY

if we define b′ = b+ 1.
We claim that Y is maximal (b+1)-anomalous in X ′. For a strictly larger

b′-anomalous subvariety Z in X ′ would lie in a coset of dimension

n− (b′ + dimX ′) + dimZ = n− (b+ dimX ) + dimZ.

As Z lies in X this would contradict the maximality of Y as a b-anomalous
subvariety of X .

Thus indeed Y is maximal (b+ 1)-anomalous in X ′. And the new value
c′ is

c′ = dimX ′ − dimY = dimX − 1− dimY = c− 1.

Thus by c-induction there are b′+ c′ = b+ c bounded independent relations
on Y, which is what we need. Here we have to note that the bound depends
only on the degree of X ′, which by Bézout is in turn bounded in terms of n
and ∆.

What if xn = α on X ? Then both X and Y are essentially in Gn−1
m

because the last coordinates are constant. We note that b 6= 1, as otherwise
X would itself be b-anomalous in X , contradicting the maximality of Y in
view of c ≥ 1. We may now consider π(Y) as (b − 1)-anomalous in π(X )
in Gn−1

m . To see this, note as above that Y lies in a coset J of dimension
n − (b + dimX ) + dimY ≤ n − 1. After exchanging xn = α for one of
the equations of J , we can assume that xn = α on J without altering the
dimension. This secures dimπ(J) = dim J , and then π(Y) lies in π(J) of
dimension

n− (b+ dimX ) + dimY = (n− 1)− (b′ + dimπ(X )) + dimπ(Y)

if we define this time b′ = b− 1.
We claim that π(Y) is maximal (b−1)-anomalous in π(X ). For a strictly

larger (b − 1)-anomalous Z in π(X ) would lie in a coset J ′ in Gn−1
m of

dimension

(n− 1)− (b′ + dimπ(X )) + dimZ = n− (b+ dimX ) + dim(Z × {α}).
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Then Y would lie strictly within Z × {α} and also within J ′ × {α} of the
same dimension as the above, again contradicting the maximality of Y as a
b-anomalous subvariety of X .

Thus indeed π(Y) is maximal (b − 1)-anomalous in π(X ). Now the c
has not decreased, but the ambient dimension has, and so this time it is
n-induction that provides b′ + c = b+ c− 1 bounded independent relations
on π(Y) and so on Y. We get an extra one via xn = α, of course. This
completes the proof.

3. Proof of Theorem. For fixed r ≥ 0, s ≥ 1 and K we denote the
Conjecture by Conj(r, s;K). It suffices to deduce Conj(r, s; C) from all the
Conj(r′, s′; Q) for r′, s′ satisfying

0 ≤ r′ ≤ r, 1 ≤ s′ ≤ s.

In fact, it suffices to deduce Conj(r, s;K) for any fixed K which is finitely
generated over Q. And then we may even assume the validity of all the
Conj(r′, s′;K) for r′, s′ satisfying

0 ≤ r′ ≤ r, 1 ≤ s′ ≤ s, r′ + s′ < r + s.

Let T = T (K/k) be the collection in Lemma 1 with n = r+s and k = Q.
Take X in Gn

m defined over K and irreducible over K. Let d be the
transcendence degree of K over Q. In proving the Conjecture for X we can
assume not only that d ≥ 1 but also that d is minimal; in particular, X is
not defined over Q.

We have to show that there is a finite union of proper algebraic sub-
groups which contains X ∩Hs−1. So let P be any point of this intersection.
For clarity we shall sometimes indicate the ambient dimension by writing
Hs−1 = H(n)

s−1.
By Lemma 1 applied to the coordinates of P , we can choose a set

{t1, . . . , te} from T whose elements are multiplicatively independent of these
coordinates modulo Q∗. Write t = (t1, . . . , te).

To X with coordinates x = (x1, . . . , xn) in Gn
m we can associate a variety

X̃ with coordinates x̃ = (x, t) = (x1, . . . , xn, t1, . . . , te) in Gen
m = Gn

m × Ge
m

with ñ = n+ e. This can be defined as a variety over Q by stipulating that
if x is a generic point of X over K = Q(t1, . . . , te), then x̃ is a generic point
of X̃ over Q. Because X is irreducible over K, it is easy to see that X̃ is
irreducible over Q. Its dimension is r̃ = r + d; for example we can consider
the tower of fields

Q, Q(t1, . . . , te), Q(x1, . . . , xn, t1, . . . , te)

and note that the successive relative transcendence degrees are d and r.
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Our point P in X ∩Hs−1 lies in some translate zHs−1 by a torsion point
z of a connected algebraic subgroup Hs−1 in Gn

m of dimension s−1. It gives
rise to a variety YP in X̃ the coordinates of whose generic point consist of
the coordinates of P together with t1, . . . , te. This YP lies in z̃Hs−1+e, where
z̃ = (z, {1}e) and Hs−1+e = Hs−1×Ge

m. The independent relations defining
z̃Hs−1+e can be taken as

(2) xa1 = ζ1, . . . , xar+1 = ζr+1

for roots of unity ζ1, . . . , ζr+1. Let d∗ ≥ d be the dimension of YP .
There is a maximal h such that YP is contained in some translate by an

element of Gen
m(Q) of some connected algebraic subgroup in Gen

m of dimension
ñ− h; and clearly ñ− h ≤ s− 1 + e so h ≥ n− s+ 1 = r + 1. On the other
hand, h ≤ n because the relations defining the subgroup cannot involve the
generators, and so there are at most n of them.

Now a simple calculation shows that YP is b-anomalous in X̃ with

b = h− r + d∗ − d ≥ 1.

Assume for the moment that YP is maximal b-anomalous. Since by
Lemma 1 there are only finitely many possibilities for X̃ , we deduce from
Lemma 5 that YP lies in some translate gH(0)en−h of some bounded connected

algebraic subgroup H
(0)en−h in Gen

m of dimension ñ − h; here g lies in Gen
m(Q).

Intersecting further with z̃Hs−1+e and using the maximality of h we deduce
that

(3) gH(0)en−h ⊆ z̃Hs−1+e.

From the choice of transcendence basis the relations defining gH(0)en−h do not
involve t.

Let us first dispose of the possibility h = n. Then H
(0)en−h = {1}n × Ge

m.
But this would imply that all the coordinates of our point P are algebraic.
And now Lemma 3 (with k = Q) implies that P lies in some fixed proper
subvariety Z of X , because we assumed that d ≥ 1 was minimal and so
X is certainly not defined over Q. Therefore the projection Z ′ of Z down
to any Gn−1

m has dimension at most r − 1. In case the actual dimension is
less than r − 1, we can embed Z ′ in a fixed variety X ′, still in Gn−1

m , of
dimension exactly r′ = r − 1. The projection of P lies in Hs−1 = H(n−1)

s−1 .
So by Conj(r′, s′;K) with s′ = s it must lie in a finite union of fixed proper
algebraic subgroups of Gn−1

m , and thus so does P itself.
Thus we can assume h < n. Now after applying an automorphism of

Gn
m we can take H

(0)en−h = {1}h × Gn−h
m × Ge

m. From (3) we see that the
relations (2) cannot involve xh+1, . . . , xn. Thus the projection of P to Gh

m

lies in Hh−r−1 = H(h)
h−r−1. The projection of X to Gh

m has dimension at
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most r, and as before we can embed it in a fixed variety X ′, still in Gh
m, of

dimension exactly r′ = r and so Conj(r′, s′;K) with s′ = h− r < n− r = s
gives again what we want.

But what if YP was not maximal b-anomalous? Then it is contained in
a maximal b-anomalous subvariety ZP in X̃ , and the dimension of ZP can
be written as ñ− l for some l satisfying n− r + e− d ≤ l ≤ n− 1 + e− d∗
(the possibility l = n+ e− d∗ has in effect just been treated above). Write

p = h− n+ l + d∗ − e ≥ h− n+ (n− r) = h− r ≥ 1,

so that also p ≤ h − 1 < n. Then Lemma 5 shows that ZP lies in some
translate gH(0)en−p of some bounded connected algebraic subgroup H

(0)en−p in
Gen

m of dimension ñ − p. As above, using the property in Lemma 1 we can
suppose after applying an automorphism of Gen

m that gH(0)en−p is defined by

(4) x1 = γ1, . . . , xp = γp

with γ1, . . . , γp algebraic.
These relations (4) then hold on YP . And so do (2). Together they give

p + r + 1 ≥ h + 1 relations. But we know that there are no more than h
relations on YP . Therefore there are at least

q = p+ r + 1− h = l + r + 1− n+ d∗ − e ≥ 1

relations

(5) bi1a1 + · · ·+ bi,r+1ar+1 = (ai1, . . . , aip, 0, . . . , 0) (i = 1, . . . , q)

in Zn, independent in the sense that the integer vectors (bi1, . . . , bi,r+1,
ai1, . . . , aip) (i = 1, . . . , q) are linearly independent, together with relations

(6) γai1
1 · · · γ

aip
p = ηi (i = 1, . . . , q)

for roots of unity

(7) ηi = ζbi1
1 · · · ζ

bi,r+1

r+1 (i = 1, . . . , q).

In fact, the vectors (ai1, . . . , aip) (i = 1, . . . , q) are linearly independent.
For a non-trivial relation

(8)
q∑

i=1

gi(ai1, . . . , aip) = 0

would lead via (5) to a relation
∑r+1

j=1 wjaj = 0 with wj =
∑q

i=1 gibij (j =
1, . . . , r+1). Then the independence of the aj in (2) would imply the vanish-
ing of all the wj ; that is, the equations

∑q
i=1 gi(bi1, . . . , bi,r+1) = 0. This to-

gether with (8) would then contradict the independence of the relations (5).
We are going to examine the point Q = (γ1, . . . , γp) in Gp

m. It actually
lies in some small variety in Gp

m defined over Q. In fact, with V = X̃ and
W = Gp

m consider the map ϕ from V toW defined by ϕ(x, t) = (x1, . . . , xp).
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Above Q we get at least the variety ZP , by (4). Thus Q lies in ϕ(Vm) with
m = dimZP . So it lies in the Zariski closure Z of ϕ(Vm), and by Lemma 2
we have

dimZ ≤ dimV −m = r̃ − (ñ− l) = r − n+ l + d− e ≤ r − n+ l + d∗ − e.
As before it may turn out that this is too small; so we embed Z in a fixed
variety X ′, still in Gp

m and defined over Q, with dimension exactly r′ =
r − n+ l + d∗ − e < r.

What is more, the equations (6) are q independent multiplicative rela-
tions for Q. This means that Q lies in Hp−q = H(p)

p−q. Write s′ = 1 + p− q =
h − r ≤ s; then we are in Gp

m with p = r′ + s′. Thus we can appeal to
Conj(r′, s′; Q) to conclude that Q lies in a bounded proper subgroup of Gp

m.
And so we have an additional relation

(9) γa1
1 · · · γ

ap
p = 1

with bounded integer exponents not all zero.
Finally, (9) and (4) lead to xa1

1 · · ·x
ap
p = 1 on ZP . And lo and behold, we

have our bounded proper subgroup containing P ! The Theorem is therefore
proved.

Appendix. We rename the Conjecture above as Conjecture 1. We pro-
ceed to list some other Conjectures 2–5 which can be found in the literature.
These various conjectures may well be equivalent; and we even expect them
all to be true. At least we shall establish their equivalence on rectangles.
This then means that our Theorem holds for each of these conjectures.

We start the list. We define a torsion coset as a translate of a connected
algebraic group by a torsion point.

Conjecture 2. For every variety X of dimension r in Gr+s
m defined

over K and irreducible over K, there is a finite union UF =UF (X ) of torsion
cosets T of Gr+s

m with dim(X ∩ T ) ≥ dimT − s + 1 such that X ∩ Hs−1 =
X ∩ UF ∩Hs−1.

This corresponds to Theorem 1.5 of [BMZ3, p. 6] when s = 2.
As in [BMZ3], we say that an irreducible subvariety Y of X is torsion-

anomalous if it is contained in an algebraic subgroup H satisfying

dimY > max{0,dimX + dimH − n} = max{0, dimH − s}.
Conjecture 3. For every variety X of dimension r in Gr+s

m defined
over K and irreducible over K, there is a finite collection Ω = Ω(X ) of
torsion-anomalous subvarieties Y of X such that the intersection of Hs−1

with X deprived of the members of Ω is finite.

For s = 2 this can be found at the beginning of the proof of Theorem 1.7
of [BMZ3, p. 26] (misprinted there as Theorem 5.1).
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As in [BMZ3], we denote by X ta what remains in X after removing all
torsion-anomalous subvarieties Y of X .

Conjecture 4. For every variety X of dimension r in Gr+s
m defined

over K and irreducible over K, the set X ta is open in X and X ta ∩Hs−1 is
finite.

This is the combination of the Torsion Openness Conjecture and the Tor-
sion Finiteness Conjecture of [BMZ3, p. 25], corresponding to Theorem 1.7
there when s = 2.

Finally, when T is a torsion coset we say that a component Y of X ∩ T
is atypical if

dimY > dimX + dimT − n = dimT − s.

Conjecture 5. For every variety X of dimension r in Gr+s
m defined

over K and irreducible over K, there is a finite union UZ = UZ(X ) of
proper algebraic subgroups of Gr+s

m such that for every torsion coset T each
atypical component of X ∩ T is contained in UZ .

This corresponds to Zilber’s Conjecture [Z], the first of its kind to be
published.

As mentioned, we shall shortly prove that these are all equivalent to the
original Conjecture 1 provided we work on rectangles. But for completeness
we state a last variation.

Conjecture 6. For every variety X of dimension r in Gr+s
m defined

over K and irreducible over K not lying in any proper algebraic subgroup
of Gr+s

m , the set X ∩Hs−1 is not Zariski dense in X .

This corresponds to Pink’s Conjecture [P]. We do not know if it is equiv-
alent to the others on rectangles. However, Ullmo has pointed out that it
is equivalent to Conjecture 1 in the limiting situation R = S = ∞ of the
whole quadrant. Thus in this situation all six conjectures are equivalent.

To prove the equivalence of Conjectures 1–5 on rectangles, we argue
cyclically around a pentagon in the natural order. We abbreviate Conjec-
ture i for fixed r, s,K simply to Ci(r, s) (i = 1, 2, 3, 4, 5); here the field K
plays no role. And Ci denotes Ci(r, s) (i = 1, 2, 3, 4, 5) on a rectangle defined
by 0 ≤ r ≤ R, 1 ≤ s ≤ S. We shall be somewhat concise in our proofs, freely
using automorphisms and references to [BMZ3].

C1 ⇒ C2. (Essentially as in the deduction of Theorem 1.4 from The-
orem 1.6 in [BMZ3, p. 23].) Let X of dimension r be in Gn

m for n = r + s,
and let P be any point of X ∩Hs−1. By C1(r, s) there exist rational integers
a1, . . . , an such that P lies in the essentially fixed proper algebraic subgroup
defined by xa1

1 · · ·xan
n = 1. So it lies in some component Tn−1, which after
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the usual automorphism we can assume to be defined by xn = ζn for a fixed
root of unity ζn.

If xn = ζn on X then

dim(X ∩ Tn−1) = r = (n− 1)− (s− 1) = dimTn−1 − s+ 1

and so for this P we will throw this Tn−1 into the collection UF below.
If xn 6= ζn on X then any component X̃ of X ∩ Tn−1 has the form

X̃ = X ′×{ζn} for X ′ in Gn−1
m with dimX ′ ≤ r− 1. But the projection π of

X to the last coordinate is dominant and so the Fibre Dimension Theorem
shows that dim X̃ ≥ r − 1. Thus dim X̃ = dimX ′ = r − 1.

We take X̃ as the component of X ∩Tn−1 through P , which has the form
P = P ′ × {ζn} for P ′ in Gn−1

m . As P ′ lies in X ′ ∩ Hs−1 we can inductively
use C1(r − 1, s) or C2(r − 1, s) to see that P ′ lies in one of a finite number
of fixed torsion cosets T ′ in Gn−1

m with dim(X ′ ∩ T ′) ≥ dimT ′− s+ 1. Thus
P lies in T = T ′ × {ζn} itself in Tn−1; and now X ∩ T = (X ∩ Tn−1) ∩ T
contains X̃ ∩ T = (X ′ ∩ T ′)× {ζn}. Thus

dim(X ∩ T ) ≥ dim(X ′ ∩ T ′) ≥ dimT ′ − s+ 1 = dimT − s+ 1.

We now see our collection UF , and since P was arbitrary we have shown
that X ∩ Hs−1 lies in the union over UF of the (X ∩ T ) ∩ Hs−1. So clearly
X ∩Hs−1 is this union, and C2(r, s) is proved.

C2 ⇒ C3. (Essentially as in the first part of the proof of Theorem 1.7
of [BMZ3, p. 26], misprinted there as Theorem 5.1.) Let X of dimension r
be in Gn

m for n = r + s. We note in C2(r, s) that

dimT ≤ s− 1 + dim(X ∩ T ) ≤ s− 1 + dimX = n− 1

for each T in UF . Thus by enlarging T if necessary we can assume that it
has dimension n − 1 and that X ∩ Hs−1 is contained in the union of the
(X ∩ T ) ∩Hs−1.

Next, we claim that we can also assume that every component of each
X ∩ T has dimension r− 1. Indeed, after an automorphism we can suppose
that T is defined by xn = ζn for a root of unity ζn. If the projection π of X
to the last coordinate is not dominant, then xn would be constant on X . But
then xn = ζn on X . This would mean that X itself is torsion-anomalous,
and in this case C3(r, s) is trivially true with a single Y = X . So we can
suppose that π is dominant. Then the Fibre Dimension Theorem as above
shows indeed that every component of X ∩ T has dimension r − 1.

Now the projection X ′ of a component of X ∩T to Gn−1
m also has dimen-

sion r − 1, and so C2(r − 1, s) or C3(r − 1, s) gives a finite collection Ω′ of
torsion-anomalous subvarieties Y ′ of X ′ such that the intersection of Hs−1

with X ′ deprived of the members of Ω′ is finite. It is not difficult to see that
each Y ′ × {ζn} here is also torsion-anomalous in X in Gn

m. For dimY ′ ≥ 1
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and Y ′ lies in an algebraic subgroup H of Gn−1
m satisfying

dimY ′ ≥ 1 + dimX ′ + dimH − (n− 1) = r + dimH − n+ 1.

This is

dim(Y ′ × {ζn}) ≥ r + dimH − n+ 1 = 1 + dimX + dim(H × {ζn})− n.
Thus indeed Y ′×{ζn} is torsion-anomalous in X in Gn

m. And so to get Ω(X )
above it suffices to take the union of these after adjusting each one by the
corresponding automorphism. This establishes C3(r, s).

C3 ⇒ C4. (Essentially as in the second part of the proof of Theorem 1.7
of [BMZ3, p. 27].) Let X of dimension r be in Gn

m for n = r+s, and let Y0 be
any torsion-anomalous subvariety of X . We observed just after the statement
of the Torsion Finiteness Conjecture of [BMZ3, p. 25] that Y0∩Hs−1 is dense
in Y0 (this is the argument which shows that every Y0 obstructs the finiteness
of X ∩Hs−1). It follows that Y0 lies in the union of the Y in Ω. Thus if Y0

was maximal torsion-anomalous, then it must be one of these Y. This shows
that there are only finitely many maximal torsion-anomalous subvarieties
of X ; and now the proof of C4(r, s) is easily completed.

C4 ⇒ C5. This can be found literally in [BMZ3, p. 29] just after the
statement of Zilber’s Conjecture.

C5 ⇒ C1. (Suggested by a personal communication of Zilber.) Let X of
dimension r be in Gn

m for n = r+s, and let P be any point of X∩Hs−1. Then
P lies in some component Y of some X ∩ Hs−1 for an algebraic subgroup
Hs−1 of dimension s− 1. By definition Y is atypical. So C5(r, s) shows that
P lies in UZ . Thus we may take this as U in C1(r, s).
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