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Multiplicity estimates for certain pairs of functions
involving Drinfeld modular forms

by

Vincent Bosser (Caen)

1. Introduction. Zero and multiplicity estimates play a crucial role
in the classical theory of transcendence and algebraic independence. The
use of such estimates is often unavoidable to get quantitative transcendence
(or algebraic independence) results, and they are often essential to prove
qualitative results as well: a striking example is the multiplicity estimate es-
tablished by Nesterenko in [Ne], which was the crucial tool in the proof of his
famous result about the algebraic independence of values of Eisenstein series.

There is also a rich theory of transcendence and algebraic independence
in the framework of function fields in positive characteristic, and multiplic-
ity estimates play an important role here too. But quite curiously, although
most of the classical transcendence and algebraic independence results have
now a known analogue in positive characteristic, no multiplicity estimates
for modular functions are known (in contrast to the classical case, see e.g.
[Ph], [Ne], [Pe]). One reason is possibly that the methods used in character-
istic zero do not apply in characteristic p. In this paper, we will introduce a
new method which works in characteristic p (and, by the way, also in char-
acteristic zero), and using it we will show how one can prove multiplicity
estimates for certain pairs of functions involving Drinfeld modular forms.
The results obtained here can be applied [Bo 2] to get quantitative versions
of known transcendence results.

To state precisely the results, we need some notations which we now
introduce. Let A = Fq[T ] be the polynomial ring in the indeterminate T with
coefficients in the finite field Fq (whose characteristic will be denoted by p),
let K = Fq(T ) be its quotient field, let K∞ = Fq((1/T )) be its completion
for the infinite place, and let C be the completion of an algebraic closure
of K∞. The absolute value of an element z of C will be denoted by |z| and
normalized by the condition |a| = qdeg a for a ∈ A.
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We will denote by τ : C → C the Frobenius map, i.e. τ(z) = zq, and by
% : A → C{τ} the Carlitz module, defined by %(T ) = %T = Tτ0 + τ (here
C{τ} denotes as usual the ring of Ore polynomials). The lattice of periods
of the Carlitz module has the form L = π̃A, where π̃ is an element of C,
defined up to an element of F∗q . We will choose once for all such a π̃. We will
further denote by e : C → C the Carlitz exponential.

Let Ω = C \ K∞ be the Drinfeld upper half-plane. We will denote by
|z|i the imaginary part of z ∈ C, i.e.

|z|i = inf
x∈K∞

|z − x|.

Let t(z) = 1/e(π̃z) be the parameter at infinity. Then every A-periodic
function f : Ω → C (that is, a function f such that f(z + a) = f(z) for
all z ∈ Ω and all a ∈ A) defines a unique function f̂ : t(Ω) → C such
that f(z) = f̂(t(z)) (z ∈ Ω). For instance, every modular function f for the
group GL2(A) defines such a function f̂ .

If F (t) is a non-zero function having in a neighborhood of 0 an expansion
of the form

(1) F (t) =
∑
n≥n0

ant
n,

with n0 ∈ Z, an ∈ C, an0 6= 0, then we define as usual ord0 F (t) := n0. If
F is the zero function, then we put ord0 F (t) := ∞. For example, ord0 f̂ is
well defined for a modular function f .

We will denote by j the Drinfeld modular invariant, and by g, h the usual
Drinfeld modular forms defined in [Ge]. We recall that these functions g, h
generate all the modular forms (with type) for the full group GL2(A) [Ge],
exactly as the Eisenstein series E4, E6 do in the classical case (that is, every
modular form of weight k and type m for GL2(A) is an isobaric polynomial
in g and h, the weights of g and h being q − 1 and q + 1, respectively).

Finally, if P ∈ C[X,Y ] is a polynomial, we denote for convenience (but
in a quite unusual way) deg+

X P := max{degX P, 1}, where degX P is the
degree of P with respect to X, and we define similarly deg+

Y P .
The two main theorems which we will prove in this paper are the follow-

ing.

Theorem 1. Let P ∈ C[X,Y ] be a non-zero polynomial. Then

ord0 P (t, ̂(t)) ≤ c1 degX P deg+
Y P,

where c1 = c1(q) is a positive real number depending only on q.

Here we can take for instance c1 = 2q(q + 1), as follows from the proof
below (but we did not try to find the best constant). This theorem is an
analogue of Philibert’s multiplicity estimate [Ph] and is used in [Bo 2] to get
a quantitative version of the transcendence result of [ADR].
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Theorem 2. Let P ∈ C[X,Y ] be a non-zero polynomial , and let ϕ :
Ω → C be the function defined by ϕ(z) = h(Tz)/h(z). Then

ord0 P (ĥ(t), ϕ̂(t)) ≤ c2 deg+
X P (degX P + degY P ),

where c2 = c2(q) > 0 depends only on q.

Here we can take c2 = 2q2(q2 + q) (see Section 4 below).
It is not difficult to deduce from Theorem 2 the following corollary (see

Section 5).

Corollary 3. Let P ∈ C[X,Y ] be a non-zero polynomial. Then

ord0 P (ĥ(t), ̂(t)) ≤ c3 degX P (degX P + degY P ),

where c3 = c3(q) > 0 depends only on q.

Because of the formula [Ge] ∆ = −hq−1, where ∆ is the Drinfeld discrim-
inant function, it is straightforward to derive from Corollary 3 a multiplicity
estimate for the two functions ∆ and j. This estimate can be used [Bo 2] to
get a quantitative version of the transcendence result of [Di].

We can deduce from Corollary 3 the following two corollaries.

Corollary 4. Let f : Ω → C be a non-constant modular form for
GL2(A). There exists a real number c4 > 0 (depending on q and f) such
that for every non-zero polynomial P ∈ C[X,Y ],

ord0 P (f̂(t), ̂(t)) ≤ c4 degX P (degX P + degY P ).

Corollary 5. Let f1 : Ω → C and f2 : Ω → C be two algebraically
independent modular forms for GL2(A). There exists a real number c5 > 0
(depending on q, f1 and f2) such that for every non-zero polynomial P ∈
C[X,Y ],

ord0 P (f̂1(t), f̂2(t)) ≤ c5(degX P + degY P )2.

The paper is organized as follows. In Section 2, we explain the idea of
proofs of Theorems 1 and 2. In Section 3, we prove Theorem 1. In Sec-
tion 4, we prove Theorem 2. Finally, we give the proofs of the corollaries in
Section 5.

2. Idea of the proofs. A quite general method for proving multiplic-
ity estimates, which is frequently used in the literature and on which our
method is also based, is the following one. Suppose that you are given two
C-algebraically independent functions F1, F2 : U → C having a t-expansion
(1) in a neighborhood U of zero, and suppose that you want to prove a
multiplicity estimate of the form

ord0 P (F1(t), F2(t)) ≤ cdeg+
X P deg+

Y P
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(where c > 0 depends only on q, F1 and F2). For simplicity we will assume
that F1, F2 are analytic on U , but the same kind of arguments can be used
even if F1 or F2 has a pole at zero (as in Theorem 1).

First note that without loss of generality we may assume that the poly-
nomial P is irreducible, and that degX P ≥ 1, degY P ≥ 1. The main idea is
then to construct from P a polynomial Q ∈ C[X,Y ] satisfying the following
three conditions (C1, C2, C3 and C4 denote here real numbers depending
on q, F1 and F2):

(a) degX Q ≤ C1 degX P and degY Q ≤ C1 degY P , where C1 > 0.
(b) ord0Q(F1(t), F2(t)) ≥ C2 ord0 P (F1(t), F2(t)) − C3 degX P degY P ,

where C2 > 0 and C3 ≥ 0.
(c) P - Q.

If (a), (b) and (c) are satisfied, one easily derives the multiplicity esti-
mate as follows. Consider the resultant with respect to Y (say) R(X) =
resY (P,Q). Because of (c) we have R(X) 6= 0, and thus (1) ord0R(F1(t))�
degR (here and in the following the symbol� means that the upper bound
involves a constant depending on q, F1 and F2). Using (a) we derive

ord0R(F1(t))� degR� degX P degY Q+ degY P degX Q(2)
� degX P degY P.

Since now there exist polynomials U and V satisfying UP + V Q = R, we
see, using (b), that

ord0R(F1(t)) ≥ min{ord0 P (F1(t), F2(t)), ord0Q(F1(t), F2(t))}(3)
≥ C4 ord0 P (F1(t), F2(t))− C3 degX P degY P.

Combining (2) and (3) gives the desired estimate (naturally, the same method
works even if we cannot separate the partial degrees, but it leads to a less
precise result, as for instance in Theorem 2).

When the method described above applies, we usually find quite easily
a natural candidate for Q which satisfies almost immediately the conditions
(a) and (b), and the difficult part is to verify (c). This was for instance the
case in the proof of Philibert’s multiplicity estimate [Ph], and it will also be
the case for us.

In order to explain the idea of the proof of Theorem 1, let us briefly
sketch Philibert’s proof of the complex analogue. So in this paragraph j(z) =
J(q) denotes the usual elliptic modular invariant, and q = e2πiz. Using the
modular equation of level 2 for j, Philibert takes forQ the unique polynomial
of C[X,Y ] such that

(4) Q(X, j(z)) = P (X2, j(2z))P (X2, j(z/2))P (X2, j((z + 1)/2)).

(1) To see this it suffices to decompose R as a product of linear factors.
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It is not difficult to show that this polynomial satisfies conditions (a) and (b).
Thus, it remains to verify (c). To do this, denote by K the algebraic closure
of the field C((q)) of Laurent series in q, and suppose that P divides Q. Phili-
bert’s idea consists in showing that in this case there exist infinitely many
roots in K of the non-zero polynomial f(X) = P (X, J(q)) ∈ C((q))[X],
which is a contradiction. The argument is as follows. Since the field K is
here the field

⋃
e≥1 C((q1/e)) of Puiseux series, we can find a first root x0 =

x0(q) ∈ K of the polynomial f . Since P |Q, we also have Q(x0(q), J(q)) = 0.
Thus, the right-hand side of (4) vanishes when we substitute x0(q) to X, and
it is easily seen that it leads to a new equality of the form P (x1(q), J(q)) = 0.
Repeating the argument, we get a sequence x0, x1, x2, . . . of elements of
K which are roots of the polynomial f . Since it can be shown that these
elements are pairwise distinct by a careful study of their q-expansion, we
get the desired contradiction.

Let us now return to the Drinfeld case. One can define an analogue of the
polynomial Q above (which would be the polynomial given by the formula
(8) for r = 0 below). As in the complex case, only condition (c) is not trivial.
However, we cannot mimic Philibert’s proof here, because in characteristic p
the existence of a Puiseux series x0(t) satisfying P (x0(t), ̂(t)) = 0 as above
is not guaranteed.

To overcome this problem, the basic remark is that we can still construct
such a root x0(t), which lies even in C[[t]], if Newton’s method to approxi-
mate the roots of a polynomial in non-archimedean, complete fields (Hensel
lemma) is convergent. More precisely, set f(X) = P (X, ̂(t)) ∈ C((t))[X],
and consider as starting point (first approximation of the root of f) a0 = t.
If Newton’s method is convergent (first case to consider), we will find a root
x0 ∈ C[[t]] and we will be able to apply Philibert’s method sketched above.
The standard sufficient condition to ensure convergence reads here (2)

(5) 2 ord0
∂P

∂X
(t, ̂(t)) < ord0 P (t, ̂(t))− (q − 1) degY P.

However, it can happen that (5) does not hold. But then it turns out that the
condition obtained is exactly of the form (b) in the general method described
above with now Q = ∂P/∂X. Since in this case (a) is trivial, we see that
we will be able to apply the general method with Q = ∂P/∂X provided
(c) holds, i.e. if ∂P/∂X 6= 0 (second case). It still remains to treat the case
∂P/∂X = 0 (last case). In this case, we can write P (X,Y ) = S(Xpf , Y )
with f ≥ 1, ∂S/∂X 6= 0, and degX S < degX P . The idea is now to argue
by induction on the partial degree degX P . However, since ord0 P (t, ̂(t)) =
ord0 S(tp

f
, ̂(t)), we see that in order to apply the induction hypothesis to S

(2) In fact, for technical (computational) reasons (see §3.2), we will be able to apply
Philibert’s method only under a stronger condition than this standard one.
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we now need a multiplicity estimate for the two functions tp
f

and ̂(t), and
not only for t and ̂(t). Fortunately, all the arguments just described above
also work mutatis mutandis with tp

f
instead of t, and therefore an inductive

argument is possible.
Summing up, what we will prove is in fact the following apparently more

general result: For every irreducible polynomial P ∈ C[X,Y ] and every in-
teger r ≥ 0,

ord0 P (tp
r
, ̂(t)) ≤ c1(q)pr degX P deg+

Y P.

This will be proved in the next section by induction on degX P , by distin-
guishing the three cases above. Theorem 2 will then be proved in Section 4
by the same method. Let us also mention that in the proof of Theorem 1,
even in the case when Philibert’s method applies, the problem of proving
that the roots x0, x1, . . . are all distinct is, contrary to the complex case,
not at all an easy one, and it requires quite involved computations (see
Section 3.2).

3. Proof of Theorem 1. As already mentioned, it suffices to prove
Theorem 1 when the polynomial P is irreducible. Indeed, the multiplicity
estimate is plainly true if P is constant, and if it is true for two polynomials
P1 and P2, then it is true for their product P1P2 by simply adding the
inequalities.

As explained in the previous section, we will prove the following lemma,
from which Theorem 1 will immediately follow by putting r = 0.

Lemma 6. For every irreducible polynomial P ∈ C[X,Y ] and every in-
teger r ≥ 0,

ord0 P (tp
r
, ̂(t)) ≤ c1pr degX P deg+

Y P,

where c1 = c1(q) > 0 depends only on q.

Here the constant c1 is the same as in Theorem 1. We can take for
instance c1 = 2q(q + 1).

The proof of Lemma 6 will occupy the whole Section 3. It is divided into
two parts. In the first one (Section 3.1), we prove the lemma, assuming that
a certain resultant is not zero. In the second (technical) part (Section 3.2),
we prove that this resultant is indeed not zero.

3.1. Proof of Lemma 6, assuming the non-vanishing of a resultant. Let
P be an irreducible polynomial in C[X,Y ]. If degX P = 0 Lemma 6 is true
because in this case the inequality ord0 P (tp

r
, ̂(t)) ≤ 0 trivially holds for

every r. Arguing by induction on degX P , we now suppose that degX P ≥ 1
and that Lemma 6 is true for all polynomials whose partial degree with
respect to X is strictly less than degX P . Let r ≥ 0 be an integer. Since
Lemma 6 is clear if degY P = 0 or if ord0 P (tp

r
, ̂(t)) < 0, we may assume
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in what follows that degY P ≥ 1 and that ord0 P (tp
r
, ̂(t)) ≥ 0. We now

distinguish three cases.

First case: ∂P/∂X = 0. In this case we write P (X,Y ) = S(Xpf , Y ),
with S ∈ C[X,Y ] and f ≥ 1 maximal (it is possible because degX P ≥ 1).
Then degX P = pf degX S and degY P = degY S. We have in particular
degX S < degX P and thus we can apply the induction hypothesis to S
(which is also irreducible), which gives

ord0 P (tp
r
, ̂(t)) = ord0 S(tp

r+f
, ̂(t))

≤ c1pr+f degX S degY S = c1p
r degX P degY P

as desired.
Second case: ∂P/∂X 6= 0 and the following condition holds:

2 ord0
∂P

∂X
(tp

r
, ̂(t)) ≥ ord0 P (tp

r
, ̂(t))− (q − 1) degY P − 2pr.

In this case, we introduce the resultant R = R(Y ) = resX(P, ∂P/∂X) ∈
C[Y ]. Since P - ∂P

∂X we have R 6= 0. Moreover, by a well-known property of
the resultant there exist two polynomials U, V ∈ C[X,Y ] such that

R = UP + V
∂P

∂X
,

and whose degrees in Y satisfy

degY U ≤ degX

(
∂P

∂X

)
degY P + degX P degY

(
∂P

∂X

)
≤ 2 degX P degY P

and analogously

degY V ≤ 2 degX P degY P.

Now, recall that the function ̂(t) has an expansion for |t| small of the form

̂(t) = − 1
tq−1

+ T q − T + higher order terms.

Hence, since ̂(t) has a pole of order q − 1 at zero, we deduce

ord0 U(tp
r
, ̂(t)) ≥ −(q − 1) degY U ≥ −2(q − 1) degX P degY P

and

ord0 V (tp
r
, ̂(t)) ≥ −(q − 1) degY V ≥ −2(q − 1) degX P degY P.

From this we derive on one hand

ord0(UP )(tp
r
, ̂(t)) ≥ ord0 P (tp

r
, ̂(t))− 2(q − 1) degX P degY P,
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and on the other hand

ord0

(
V
∂P

∂X

)
(tp

r
, ̂(t)) ≥ 1

2
ord0 P (tp

r
, ̂(t))− 1

2
(q − 1) degY P − pr

− 2(q − 1) degX P degY P

≥ 1
2

ord0 P (tp
r
, ̂(t))− 5

2
prq degX P degY P.

Thus, we obtain

ord0R(̂(t)) ≥ min
{

ord0(UP )(tp
r
, ̂(t)); ord0

(
V
∂P

∂X

)
(tp

r
, ̂(t))

}
≥ 1

2
ord0 P (tp

r
, ̂(t))− 5

2
prq degX P degY P.

Since now R 6= 0 we have the trivial estimate ord0R(̂(t)) ≤ 0, from which
the conclusion of Lemma 6 follows (it suffices to take c1 ≥ 5q).

Third case: ∂P/∂X 6= 0 and the following condition holds:

2 ord0
∂P

∂X
(tp

r
, ̂(t)) < ord0 P (tp

r
, ̂(t))− (q − 1) degY P − 2pr.

In this case, we will construct a polynomial Q analogous to that constructed
by Philibert and then apply the method using Newton approximations
sketched in the previous section.

Denote by M the set of matrices γ of GL2(A) of the form γ =
(
a b
0 d

)
,

where a, b, d are coprime, a is monic, ad = T and deg b < deg a. We have
explicitly

M =

{(
T 0
0 1

)}
∪

{(
1 λ

0 T

) ∣∣∣∣λ ∈ Fq

}
.

As in the classical case, there exists a modular polynomial ΦT ∈ A[X,Y ]
which satisfies

ΦT (X, j(z)) =
∏
γ∈M

(X − j(γz)) (z ∈ Ω)

(the notation γz means of course (az + b)/d). It follows in particular that
every symmetrical polynomial in the functions j(γz) is in fact a polynomial
in the function j.

Next, we note that

t(Tz) =
1

e(π̃T z)
=

1
Te(π̃z) + e(π̃z)q

=
t(z)q

1 + Tt(z)q−1
·

Thus, if we denote by s and sr the rational functions defined by

(6) s(X) =
Xq

1 + TXq−1
and sr(X) =

Xq

1 + T prXq−1
,
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we have the identities

(7) t(Tz) = s(t(z)) and t(Tz)p
r

= sr(t(z)p
r
).

Following the idea of Philibert, we now define the polynomial Q as the
unique polynomial in C[X,Y ] satisfying the equality (z ∈ Ω)

(8) Q(X, j(z)) =
∏
γ∈M

[P (sr(X), j(γz))(1 + T p
r
Xq−1)degX P ].

Such a polynomial exists since the right hand side of (8) is a polynomial
in X whose coefficients are symmetrical polynomials in the functions j(γz)
(and it is plainly unique).

The next step consists now in estimating from above the partial degrees
degX Q and degY Q in terms of degX P and degY P . It is easy to see that
each factor of the product (8) is a polynomial in X with coefficients in the
field of meromorphic functions in Ω of degree at most q degX P , so that

(9) degX Q ≤ q(q + 1) degX P.

To find an upper bound for degY Q, we will estimate the order of the pole
at infinity of each coefficient of the polynomial Q(X, j(γz)). We will adopt
the following convenient notation: If Π is any non-zero polynomial in X
whose coefficients are meromorphic functions in Ω having a t-expansion at
infinity, we will denote by ord0Π the minimum of the orders at t = 0 of
each coefficient of Π. With this notation we thus have ord0Q(X, j(z)) =
−(q − 1) degY Q. Now, since the individual factors of the product (8) do
not necessarily have a t-expansion (although the product has one), we will
merely consider the polynomial Q(X, j(Tz)), whose factors now have an
expansion in t(z). More precisely, if γ =

(
1 λ
0 T

)
(λ ∈ Fq), then (for |z|i large)

j(γ(Tz)) = j(z + λ/T ) = − 1
t(z + λ/T )q−1

+ · · · = − 1
tq−1

+ · · · ,

where we have set t = t(z) (we have also used the fact that t(z + λ/T )
= t/(1 + te(π̃λ/T ))). Thus ord0 P (sr(X), j(γ(Tz)))(1 + T p

r
Xq−1)degX P =

−(q − 1) degY P in this case. Similarly, if γ =
(
T 0
0 1

)
, then

j(γ(Tz)) = j(T 2z) = − 1
t(T 2z)q−1

+ · · · = − 1
tq2(q−1)

+ · · · ,

since t(T 2z) = tq
2

+ · · · by (6) and (7). We have therefore

ord0 P (sr(X), j(γ(tz)))(1 + T p
r
Xq−1)degX P = −q2(q − 1) degY P.

It follows from these considerations and the formula (8) that

ord0Q(X, j(Tz)) = −(q3 − q) degY P,
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and thus, since t(Tz) = tq + · · · ,

ord0Q(X, j(z)) =
1
q

ord0Q(X, j(Tz)) = −(q2 − 1) degY P.

Hence we have obtained

(10) degY Q = (q + 1) degY P.

We now estimate ord0Q(tp
r
, ̂(t)) from below. Using (8) and (7), we first

have

(11) Q(t(z)p
r
, j(z))

= (1 + T p
r
t(z)p

r(q−1))degX PP (t(Tz)p
r
, j(Tz))·

∏
λ∈Fq

fλ(z),

where

fλ(z) = (1 + T p
r
t(z)p

r(q−1))degX PP

(
sr(t(z)p

r
), j
(
z + λ

T

))
.

Now, each function z 7→ fλ(Tz) has an expansion in t(z), and since ̂(t) has
a pole of order q − 1 at t = 0, we find, in a similar way as above,

ord0 fλ(Tz) = ord0 P (sr(t(Tz)p
r
), j(z + λ/T )) ≥ −(q − 1) degY P,

from which we derive

(12) ord0

( ∏
λ∈Fq

fλ(z)
)

=
1
q

ord0

( ∏
λ∈Fq

fλ(Tz)
)
≥ −(q − 1) degY P.

Since ord0 P (t(Tz)p
r
, j(Tz)) = q ord0 P (t(z)p

r
, j(z)), it follows from (11)

and (12) that

(13) ord0Q(tp
r
, ̂(t)) ≥ q ord0 P (tp

r
, ̂(t))− (q − 1) degY P,

which is condition (b) of Section 2.
Consider now the resultant (with respect to Y ) R(X) = resY (P,Q) ∈

C[X]. There exist polynomials U, V ∈ C[X,Y ] satisfying

(14) R(X) = UP + V Q

and such that, by (10),

degY U ≤ degY Q− 1≤ (q + 1) degY P,
degY V ≤ degY P − 1≤ degY P.

It follows that

ord0((UP )(tp
r
, ̂(t))) ≥ ord0 P (tp

r
, ̂(t))− (q − 1) degY U(15)

≥ ord0 P (tp
r
, ̂(t))− (q2 − 1) degY P

and similarly, using (13),

(16) ord0((V Q)(tp
r
, ̂(t))) ≥ q ord0 P (tp

r
, ̂(t))− (q2 − 1) degY P.
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From (14)–(16) we deduce readily

(17) ord0R(tp
r
) ≥ ord0 P (tp

r
, ̂(t))− (q2 − 1) degY P.

Now, suppose that we have shown that R(X) 6= 0. This fact is not trivial
and will be proved in the next section. Assuming this, Lemma 6 becomes
straightforward, because then we have, thanks to (9) and (10),

ord0R(tp
r
) ≤ pr degR ≤ pr(degX P degY Q+ degX QdegY P )

≤ pr(q + 1)2 degX P degY P.

Combining this last inequality with (17) yields the lemma with c1 = 2q(q+1)
(note that the previously required condition c1 ≥ 5q is satisfied).

3.2. Non-vanishing of R(X). To complete the proof of Lemma 6 (and
thus of Theorem 1), it remains to show that the resultant R(X) defined
at the end of the previous section is not zero (which was assumed without
proof). We state the result in the following proposition:

Proposition 7. Let P ∈ C[X,Y ] be an irreducible polynomial such that
degY P ≥ 1, ∂P/∂X 6= 0 and

(18) 2 ord0
∂P

∂X
(tp

r
, ̂(t)) < ord0 P (tp

r
, ̂(t))− (q − 1) degY P − 2pr.

Let Q ∈ C[X,Y ] be the polynomial defined by the identity (8), and set
R(X) = resY (P,Q) ∈ C[X]. Then R(X) 6= 0.

To prove the proposition it will be useful to introduce, for every α ∈ C,
the formal series σα ∈ C[[t]] defined by

(19) σα(t) =
t

1 + αt
·

If α has the form α = e(π̃γ) with γ ∈ K∞, then a straightforward compu-
tation shows that for all z ∈ Ω we have

(20) t(z + γ) = σα(t(z)).

We will also need the formal series s, sr ∈ C[[t]] defined in the previous
section by (see (6))

(21) s = s(t) =
tq

1 + Ttq−1
, sr = sr(t) =

tq

1 + T pr tq−1
·

If f and g are elements of C((t)) such that ord0 g ≥ 1, then the com-
position f ◦ g is well defined and will often be denoted just by fg in what
follows. Thus, sn stands for instance for s ◦ · · · ◦ s (n times). We also note
that σασβ = σα+β and that σα is invertible for the composition, with inverse
σ−1
α = σ−α. Finally, we observe that we may cancel from the right in C((t))

(but not from the left), that is: If f , g, h are elements in C((t)) with h 6= 0
and ord0 h ≥ 1, then the equality f ◦ h = g ◦ h implies f = g. This property
will often be used in what follows.
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We first prove the following lemma involving the formal series σα and s:

Lemma 8. Let a ∈ K∞, m ∈ Z and α := e(π̃a/Tm).

(i) For every n ≥ 0 we have σαsn = snσβ, where β = e(π̃a/Tn+m).
(ii) If a ∈ A and n is an integer with n ≥ m, then snσα = sn.

Proof. Let us first prove (i). For every z ∈ Ω we have, by (20) and (7),

σαs
n(t(z)) = σα(t(Tnz)) = t(Tnz + a/Tm) = t(Tn(z + a/Tm+n))

= sn(t(z + a/Tm+n)) = snσβ(t(z)).

This being true for all z ∈ Ω, this gives rise to the desired equality in the
field C((t)).

In the case (ii) we have similarly, for all z ∈ Ω (note that we have here
aTn−m ∈ A),

snσα(t(z)) = t(Tn(z + a/Tm)) = t(Tnz + aTn−m) = t(Tnz) = sn(t(z)).

This being true for all z ∈ Ω, we get the identity (ii).

We now want to argue as sketched in Section 2, using Newton approxi-
mations in complete, non-archimedean fields. For convenience for the reader,
we recall below the “Hensel lemma” that we will use, which is taken from
[La, Chapter XII, Proposition 7.6].

Lemma 9. Let K be a complete field under a non-archimedean absolute
value | |. Let O be the valuation ring and let f ∈ O[X] be a polynomial. Let
a0 ∈ O be such that

(22) |f(a0)| < |f ′(a0)|2.
Then the sequence (an)n≥0 defined by an+1 = an − f(an)/f ′(an) converges
to a root a ∈ O of f , and moreover we have

(23) |a− a0| ≤
∣∣∣∣ f(a0)
f ′(a0)2

∣∣∣∣.
With the help of this lemma, we prove:

Lemma 10. Let P ∈ C[X,Y ] be a polynomial satisfying the conditions
of Proposition 7. There exists a power series x = x(t) ∈ C[[t]] such that
P (x(t), ̂(t)) = 0 identically and

(24) x(t) = tp
r

+ amt
m + · · · ,

where am 6= 0, m > 2pr, and where the dots stand for the terms of order
> m.

Proof. Let K = C((t)). The field K is complete with respect to the non-
archimedean absolute value given by |x| = q− ord0 x, and its valuation ring
is O = C[[t]]. Set f(X) := t(q−1) degY PP (X, ̂(t)) ∈ O[X] and a0 := tp

r
.

We have f ′(a0) = t(q−1) degY P ∂P
∂X (tp

r
, ̂(t)), and the hypothesis (18) easily



Multiplicity estimates for pairs of functions 43

implies that condition (22) is satisfied. Thus, there exists a formal power
series x ∈ C[[t]] such that P (x(t), ̂(t)) = 0 identically. Moreover, (23) gives
the following error estimate:

ord0(x(t)− tpr) ≥ ord0 P (tp
r
, ̂(t))− 2 ord0

∂P

∂X
(tp

r
, ̂(t))

− (q − 1) degY P > 2pr.

To complete the proof it now remains to note that the series ̂(t) and t
are algebraically independent over C (see [ADR]) and thus we cannot have
x(t) = tp

r
.

We now begin the proof of Proposition 7. Let P be a polynomial satisfy-
ing the conditions of the proposition. Arguing by contradiction, we assume
furthermore that R(X) = 0. Under this assumption we first prove:

Lemma 11. There exists a sequence (xi)i≥0 of elements of C[[t]] satisfy-
ing the following conditions:

(i) x0 = x.
(ii) ord0 xi ≥ 1 for all i ≥ 0.

(iii) For all i ≥ 1, we have either xi = srxi−1 or xi = srxi−1σαs
2, where

α ∈ C is of the form α = e(π̃λ/T i−1) for some λ ∈ Fq.
(iv) For all i ≥ 0, we have P (xi, ̂ ◦ si) = 0.

Proof. We define inductively the sequence (xi)i≥0 as follows. Put x0 := x,
and suppose we have already constructed, for some i ≥ 0, power series
x0, . . . , xi satisfying conditions (i) to (iv) (for i = 0 these conditions follow
from Lemma 10). Since R(X) = 0, we have P |Q and thus (iv) implies
Q(xi, ̂si) = 0. It follows a fortiori that Q(xis, ̂si+1) = 0. Note now that
1+T p

r
(xis)q−1 6= 0 (here (xis)q−1 means xi◦s to the exponent q−1), because

otherwise we would have ord0(xi ◦ s) = 0, which contradicts condition (ii).
Using this remark and the formula (8), we find that either P (srxis, ̂si+2)
= 0 or P (srxis, ̂σα′si) = 0 with α′ = e(π̃λ/T ) for some λ ∈ Fq. In the first
case, putting xi+1 := srxi gives P (xi+1, ̂s

i+1) = 0. Hence conditions (ii),
(iii) and (iv) hold for xi+1 in this case (note that ord0 xi+1 = q ord0 xi ≥ q).
In the second case, we first write, thanks to Lemma 8, σα′si = siσβ with
β = e(π̃λ/T i+1). Composing the relation P (srxis, ̂siσβ) = 0 from the right
with σ−1

β s, we get P (srxisσ−βs, ̂si+1) = 0. Now, Lemma 8 again gives
sσ−β = σαs, where α = e(−π̃λ/T i). It follows that P (srxiσαs2, ̂si+1) = 0,
and thus conditions (ii), (iii) and (iv) are also satisfied in this case by putting
xi+1 = srxiσαs

2.

We now define

n := degX P and yi = xis
n−i, 0 ≤ i ≤ n.
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It follows from the previous lemma that P (yi, ̂ ◦ sn) = 0 for i = 0, . . . , n.
As already explained in Section 2, we now want to prove that these yi’s are
pairwise distinct. We will need three more lemmas.

Lemma 12. Suppose yi = yi+k for some integers i, k with 0 ≤ i ≤ i+ k
≤ n. Then skrxi = xis

k.

Proof. It follows from Lemma 11(iii) that ord0 xj+1 = q ord0 xj if xj+1 =
srxj , and that ord0 xj+1 = q3 ord0 xj in the other case (all j ≥ 0). Thus,
ord0 yj+1 = ord0 yj if xj+1 = srxj and ord0 yj+1 = q2 ord0 yj > ord0 yj
otherwise. We deduce from this that if yi = yi+k, then we must have

ord0 yj+1 = ord0 yj , j = i, . . . , k − 1

and therefore xj+1 = srxj , j = i, . . . , k − 1. Hence we get

yi+k = xi+ks
n−i−k = skrxis

n−i−k = yi = xis
n−i,

and Lemma 12 follows.

Lemma 13. Suppose that yi = yi+k for some indices i, k with 0 ≤ i ≤
i + k ≤ n. Then there exists a ∈ A with deg a < i − 1 such that if we set
α = e(π̃a/T i−1), then

sk+ir x0σα = sirx0σαs
k.

Proof. Let i, k be integers such that 0 ≤ i ≤ i+ k ≤ n and suppose that
yi = yi+k. We will prove by induction that for all l, 0 ≤ l ≤ i, there is al ∈ A
with deg al < i− 1 such that if we set αl = e(π̃al/T i−1), then

(25) sk+lr xi−lσαl = slrxi−lσαls
k.

For l = 0, this assertion is true by Lemma 12 and by choosing a0 := 0.
Suppose now it has been proved for l, where 0 ≤ l ≤ i−1. If xi−l = srxi−l−1

(see Lemma 11(iii)), then (25) immediately gives the corresponding formula
for l + 1 by choosing al+1 = al. If not, we have xi−l = srxi−l−1σαs

2 with
α = e(π̃λ/T i−l−1) and some λ ∈ Fq. Substituting in the formula (25) yields

sk+l+1
r xi−l−1σαs

2σαl = sl+1
r xi−l−1σαs

2σαls
k.

Now, Lemma 8(i) allows us to write σαs2σαl = σαl+1
s2, where

αl+1 = α+ e

(
π̃al
T i−3

)
= e

(
π̃λT l + π̃alT

2

T i−1

)
.

The division of λT l + alT
2 by T i−1 shows that we can even write αl+1 =

e(π̃al+1/T
i−1) with al+1 ∈ A and deg al+1 < i− 1. We thus obtain

sk+l+1
r xi−l−1σαl+1

s2 = sl+1
r xi−l−1σαl+1

sk+2.

Cancelling from the right by s2 leads to the formula (25) for l+ 1, and this
completes the proof of (25) for all l. Choosing now l = i gives the lemma.
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Lemma 14. Let k ≥ 0 and i ≥ 0 be integers, let a be an element of A
such that deg a < i− 1, and set α = e(π̃a/T i−1). Then

(26) sk+ir x0σα(t)− si+kr (σα(t)p
r
) = amT

ipr t2p
rqk(qi−1)+mqk + · · ·

and

(27) sirx0σαs
k(t)− si+kr (σα(t)p

r
) = amT

(k+i)pr t2p
r(qk+i−1)+m + · · · ,

where the dots stand for the terms of higher order.

Proof. It is a simple but busy calculation. Recall that % : A → C{τ}
denotes the Carlitz module. For l ∈ N0, write

%T l = %(T l) =
l∑

j=0

%ljτ
j ,

where %lj ∈ A. We have %ll = 1 and %l0 = T l. Using this notation, we have,
for all z ∈ Ω and by setting t := t(z),

(28) sl(t) = t(T lz) =
tq
l

fT l(t)
,

where fT l(t) := tq
l
%T l(t−1) =

∑l
j=0 %ljt

ql−qj . The formula (28) being true
for all z ∈ Ω, it gives rise to an identity in C[[t]]. Recalling next that
slr(t

pr) = (sl(t))p
r
, we also derive from (28) that

(29) slr(t) =
tq
l

gT l(t)
, where gT l(t) =

l∑
j=0

%p
r

lj t
ql−qj .

In order to prove (27), let us now compute the first non-zero term of
the formal series sirx0σαs

k(t) − si+kr (σα(t)p
r
). From the equation (24) of

Lemma 10 and since σαsk(t) = tq
k

+ · · · , we first have

(30) x0σαs
k(t) = (σα(sk(t)))p

r
+ amt

mqk + · · · .

Next, for each j, 0 ≤ j ≤ i− 1, we have

(x0σαs
k(t))q

i−qj = ((σαsk(t))p
rqj + aq

j

mt
mqk+j + · · · )qi−j−1

= (σαsk(t))p
r(qi−qj) − aqjmtp

rqi+k+(m−2pr)qk+j + · · · .

Hence we find, since m− 2pr > 0,

gT i(x0σαs
k(t)) = (fT i(σαs

k(t)))p
r − amT ip

r
tp
rqi+k+(m−2pr)qk + · · · ,

from which it easily follows that
1

gT i(x0σαsk(t))
− 1

(fT i(σαsk(t)))p
r = amT

ipr tp
rqi+k+(m−2pr)qk + · · · .
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Using now (29), we get

(31) sirx0σαs
k(t)− (x0σαs

k(t))q
i

(fT i(σαsk(t)))p
r = amT

ipr t2p
rqi+k+(m−2pr)qk + · · · .

Now, (30) yields

(x0σαs
k(t))q

i

(fT i(σαsk(t)))p
r =

(
(σαsk(t))q

i

fT i(σαsk(t))

)pr
+ aq

i

mt
mqi+k + · · ·

= (siσαsk(t))p
r

+ aq
i

mt
mqi+k + · · · .

Combining this equality with (31) and since m > 2pr, we get

(32) sirx0σαs
k(t)− (siσαsk(t))p

r
= amT

ipr t2p
rqi+k+(m−2pr)qk + · · · .

Since we have siσαsk = si+k = si+kσα by Lemma 8(ii), (27) is proved.
To prove now (26), we note that the equality (32) above also holds for

k = 0 and i+ k instead of i (same computations). Thus we have

si+kr x0σα − (si+k(σα))p
r

= amT
(i+k)pr t2p

rqi+k+m−2pr + · · · .
The proof of Proposition 7 is now straightforward.

Proof of Proposition 7. Suppose that R(X) = 0. We define n = degX P
and yi, 0 ≤ i ≤ n, as before. If two yi’s were equal, say yi and yi+k with k ≥ 1,
then thanks to Lemma 13 there would exist an a ∈ A with deg a < i − 1
such that if we set α = e(π̃a/T i−1), then

sirx0σαs
k − sk+ir x0σα = 0.

But this would contradict Lemma 14 since am 6= 0 and the exponents of t
on the right-hand sides of (26) and (27) are distinct (because m− 2pr 6= 0).
Thus, the yi’s are pairwise distinct. As they satisfy the equation P (yi, ̂ ◦ sn)
= 0, it follows that the polynomial P (X, ̂ ◦ sn) ∈ C((t))[X] has at least
n + 1 roots. But since this polynomial is non-zero of degree n (the ̂ func-
tion is transcendental over C, hence so is ̂ ◦ sn), this is impossible. Thus,
R(X) 6= 0.

4. Proof of Theorem 2. The proof of Theorem 2 is similar to that of
Theorem 1 (and in fact easier). But instead of arguing with the functions h
and ϕ, it will be more convenient to work with the two functions f(z) :=
h(Tz) and ϕ(z). For these two functions we will prove the following result,
from which Theorem 2 will easily follow:

Proposition 15. For every non-zero polynomial P ∈ C[X,Y ] and every
integer r ≥ 0,

ord0 P (f̂p
r
(t), ϕ̂(t)) ≤ c′2pr deg+

X P (pr degX P + degY P ),

where c′2 = q2(q2 + q).
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Proof. First of all, we note that since ĥ(t) = −t+ · · · , and since (see (6)
and (7))

t(Tz) =
t(z)q

1 + Tt(z)q−1
,

we have f̂(t) = −tq + · · · and ϕ̂(t) = f̂(t)/ĥ(t) = tq−1 + · · · .
Let now P ∈ C[X,Y ] be a non-zero polynomial. As at the beginning of

Section 3, in order to prove the proposition we may (and will) assume that
P is irreducible. If degX P = 0, then P has the form P = a1Y + a0 with
a1 6= 0, whence

ord0 P (f̂p
r
(t), ϕ̂(t)) ≤ q − 1.

Thus, the multiplicity estimate of Proposition 15 is true when degX P = 0
with c′2 ≥ q − 1.

We assume from now on that degX P ≥ 1 and that Proposition 15 is
true for all irreducible polynomials S with degX S < degX P . Let r ≥ 0 be
an integer. If degY P = 0, then we easily see, in the same way as before,
that

ord0 P (f̂p
r
(t), ϕ̂(t)) ≤ qpr,

so the inequality of Proposition 15 is true (with c′2 ≥ q). We will therefore
assume in what follows that degY P ≥ 1. We distinguish three cases.

First case: ∂P/∂X = 0. In this case, we argue exactly as in the first case
of Section 3.1 and we get the estimate of the proposition (recall that it is
here that we need the induction hypothesis).

Second case: ∂P/∂X 6= 0 and the following condition holds:

(33) 2 ord0
∂P

∂X
(f̂p

r
(t), ϕ̂(t)) ≥ ord0 P (f̂p

r
(t), ϕ̂(t))− qpr.

In this case, consider the resultant R = R(Y ) = resX(P, ∂P/∂X) ∈ C[Y ].
As in Section 3.1 we have R 6= 0, and there exist two polynomials U, V ∈
C[X,Y ] such that R = UP + V ∂P/∂X. Now, we trivially have

ord0((UP )(f̂p
r
(t), ϕ̂(t))) ≥ ord0 P (f̂p

r
(t), ϕ̂(t))

and

ord0

((
V
∂P

∂X

)
(f̂p

r
(t), ϕ̂(t))

)
≥ ord0

∂P

∂X
(f̂p

r
(t), ϕ̂(t)).

It follows from this, using the condition (33), that

(34) ord0R(ϕ̂(t)) ≥ 1
2

ord0 P (f̂p
r
(t), ϕ̂(t))− 1

2
qpr.

Now, since R 6= 0 and ord0 ϕ̂(t) = q − 1, it is easily seen that

ord0R(ϕ̂(t)) ≤ (q − 1) degR.
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Combining this with (34) and using the fact that degR ≤ 2 degX P degY P ,
we get the estimate of the proposition (with e.g. c′2 ≥ 4q − 4).

Third case: ∂P/∂X 6= 0 and the following condition holds:

(35) 2 ord0
∂P

∂X
(f̂p

r
(t), ϕ̂(t)) < ord0 P (f̂p

r
(t), ϕ̂(t))− qpr.

In this case, we will use the modular equation connecting the two func-
tions ϕ(z) and ϕ(z/T ). For λ ∈ Fq define ψλ(z) := ϕ((z + λ)/T ). We know
(see e.g. [Bo 1, Lemma 5.1]) that there exists a polynomial Ψ ∈ A[X,Y ] such
that

Ψ(X,ϕ) =
∏
λ∈Fq

(X − ψλ).

It follows in particular that every symmetrical polynomial in the functions
ψλ is a polynomial in ϕ. Hence we can define Q as the polynomial Q ∈
C[X,Y ] such that

(36) Q(X,ϕ) =
∏
λ∈Fq

ϕp
r degX PP

(
X

ϕpr
, ψλ

)
.

We clearly have

(37) degX Q = q degX P.

In order to estimate degY Q, we introduce the elementary symmetrical func-
tions σ1, . . . , σq of the ψλ’s. The right-hand side of (36) shows that each
coefficient of the polynomial Q(X,ϕ) (viewed as a polynomial in X) is a
polynomial in ϕ and the σi’s, of degree at most qpr degX P in ϕ and at most
q degY P in the σi’s (see e.g. [La, proof of Theorem 6.1 in Chapter IV]). But
from [Bo 1, Lemma 5.1] we know that the σi’s are polynomials in ϕ of degree
at most q. It follows that

(38) degY Q ≤ qpr degX P + q2 degY P.

Next, we estimate ord0Q(f̂ q
r
(t), ϕ̂(t)) from below. Evaluating the for-

mula (36) at Tz and then replacing X by f(Tz)p
r
, we get, for |z|i large,

(39) Q(f(Tz)p
r
, ϕ(Tz)) = ϕ(Tz)qp

r degX PP (f(z)p
r
, ϕ(z))

∏
λ∈F∗q

gλ(z),

where
gλ(z) = P (f(z)p

r
, ϕ(z + λ/T )) (λ ∈ F∗q).

Now, each function gλ clearly has a t-expansion ĝλ for |z|i large with
ord0 ĝλ(t) ≥ 0. So (39) implies

ord0(Q(f̂(t(Tz)))p
r
, ϕ̂(t(Tz))) ≥ ord0 P (f̂(t)p

r
, ϕ̂(t)),
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and therefore

(40) ord0(Q(f̂(t))p
r
, ϕ̂(t)) ≥ 1

q
ord0 P (f̂(t)p

r
, ϕ̂(t)).

The end of the proof is now very similar to that of Theorem 1. Define
R(X) = resY (P,Q). There exist U, V ∈ C[X,Y ] such that R = UP + V Q.
From this and (40) we deduce at once

(41) ord0R(f̂(t)p
r
) ≥ 1

q
ord0 P (f̂(t)p

r
, ϕ̂(t)).

Assume for a moment that we have shown that R 6= 0 (this will be done in
Lemma 16 hereafter). Then, since ord0 f̂(t) = q, we have

ord0R(f̂(t)p
r
) ≤ qpr degR ≤ qpr(degX P degY Q+ degX QdegY P ).

This last inequality together with (41), (37) and (38) give again the multi-
plicity estimate, as soon as c′2 ≥ q2(q2 + q). Gathering all the cases, we see
that Proposition 15 is true with c′2 = q2(q2 + q).

It remains to prove that the resultant just introduced above is not zero,
which we state in the following lemma:

Lemma 16. Let P ∈ C[X,Y ] be an irreducible polynomial such that
degY P ≥ 1, ∂P/∂X 6= 0 and the inequality (35) holds. Let Q ∈ C[X,Y ] be
the polynomial defined by (36), and set R(X) = resY (P,Q) ∈ C[X]. Then
R(X) 6= 0.

Proof. Suppose that R(X) = 0. We want to derive a contradiction. We
will argue as in Section 3.2, using Newton’s approximation method (but the
proof will fortunately be much easier). Here again, we will use the formal
series σα ∈ C[[t]] and s ∈ C[[t]] introduced in Section 3.2 (see (19) and (21)).
We will also write K = C((t)).

We first show that there exists a sequence (xi)i≥0 of elements of K sat-
isfying the following three conditions:

(i) x0(t) = f̂p
r
(t) + amt

m + · · · , where am 6= 0 and m > qpr (the dots
stand for terms of degree > m).

(ii) P (xi(t), ϕ̂(t)) = 0 for all i ≥ 0.
(iii) For all i ≥ 1, we have

xi =
xi−1 ◦ s
(ϕ̂ ◦ s)pr

.

We construct the sequence (xi) by induction. For i = 0 we only have to
find x0 satisfying (i) and (ii). To this end, we define f(X) = P (X, ϕ̂(t)) ∈
O[X], where O = C[[t]], and we set a0 := f̂p

r ∈ O. Arguing now as in
the proof of Lemma 10, we apply Lemma 9 (Hensel’s lemma) and we get
the existence of x0 ∈ C[[t]] satisfying P (x0(t), ϕ̂(t)) = 0 and ord0(x0 − f̂p

r
)

> qpr. Now, we claim that x0 6= f̂p
r
. Indeed, otherwise the functions f and
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ϕ would be algebraically dependent over C and thus, since C(ϕ) is a finite
extension of C(j) (see e.g. [Bo 1]), the two functions h = f/ϕ and j would
also be algebraically dependent over C. But this is a contradiction, since
j = −gq+1/hq−1 and the functions g, h are algebraically independent over
C ([Ge]). So, x0 6= f̂p

r
as claimed and thus (i) and (ii) hold.

Suppose now that we have already constructed xi satisfying the condi-
tions (ii) and (iii), where i ≥ 0. Since R(X) = 0 we have P |Q, and thus (ii)
implies

(42) Q(xi ◦ s, ϕ̂ ◦ s) = 0.

Using the formula (36) at the point Tz, and noticing that (for |z|i large)
ϕ(Tz) = ϕ̂(s(t(z))) and, for every λ ∈ Fq,
ψλ(Tz) = ϕ(z+λ/T ) = ϕ̂(t(z+λ/T )) = ϕ̂(σαλ(t(z))) with αλ = e(π̃λ/T ),

we get the following equality (in the ring K[X]):

Q(X, ϕ̂ ◦ s) =
∏
λ∈Fq

(ϕ̂ ◦ s)pr degX PP

(
X

(ϕ̂ ◦ s)pr
, ϕ̂ ◦ σαλ

)
.

It follows from this formula and from (42) that there is λ ∈ Fq such that

P

(
xi ◦ s

(ϕ̂ ◦ s)pr
, ϕ̂ ◦ σαλ

)
= 0.

As σαλ ◦ σ−αλ = t, we see that if xi+1 := (xi ◦ s ◦ σ−αλ)/(ϕ̂ ◦ s ◦ σ−αλ)p
r
,

then P (xi+1, ϕ̂) = 0. Since by Lemma 8(ii) we have s ◦ σ−αλ = s, we have
constructed xi+1 satisfying (ii) and (iii).

We now show that the xi’s are pairwise distinct. First of all, a straight-
forward induction using (iii) and the fact that ϕ̂ ◦ s = (f̂ ◦ s)/f̂ yields, for
all i ≥ 0,

(43) xi =
x0 ◦ si( f̂◦si
f̂

)pr .
Suppose that there exist i ≥ 0 and k ≥ 1 such that xi = xi+k. Then, by
(43), we get (3)

x0 ◦ si+k =
(
f̂ ◦ si+k

f̂ ◦ si

)pr
x0 ◦ si,

that is, cancelling from the right by si,

(44) x0 ◦ sk =
(
f̂ ◦ sk

f̂

)pr
x0.

(3) The right-hand side of this equality is the product of
“
f̂◦si+k

f̂◦si

”pr

and x0 ◦ si, not

the composition.
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Now, by condition (i) we have x0/f̂
pr = 1− amtm−qp

r
+ · · · , so

(45)
(
f̂ ◦ sk

f̂

)pr
x0 = (f̂ ◦ sk)pr + amt

m−qpr+qk+1pr + · · · .

On the other hand, we have, using again (i),

(46) x0 ◦ sk = (f̂ ◦ sk)pr + amt
mqk + · · · .

We see that the exponents of the “am terms” in (45) and (46) are not equal
since m > qpr. It follows that (44) cannot hold, and therefore the xi’s are
pairwise distinct, as announced.

Since the xi’s are distinct and by condition (ii) above they are all roots
of the polynomial P (X, ϕ̂) ∈ K[X], which is non-zero since ϕ̂ is transcenden-
tal over C, we have the desired contradiction. Hence Lemma 16, and thus
Proposition 15, is proved.

Proof of Theorem 2. Let P ∈ C[X,Y ] be a non-zero polynomial. Define
Q ∈ C[X,Y ] by

Q(X,Y ) = P (X/Y, Y )Y degX P .

We have Q 6= 0 and Q(f̂(t), ϕ̂(t)) = ϕ̂(t)degX PP (ĥ(t), ϕ̂(t)). Using now
Proposition 15 with r = 0 (and with Q instead of P ), together with the facts
that degX Q = degX P , degY Q ≤ degX P + degY P and ord0 ϕ̂(t) = q − 1,
one readily obtains Theorem 2 with c2 = 2c′2.

5. Proofs of the corollaries. The proof of the corollaries is based
on Lemma 17 below. To state it more easily, we introduce the following
definition. Let K = C((t)). Given α, β ∈ {0, 1}, we will say that a pair
(F,G) of elements of K satisfies a multiplicity hypothesis of type (α, β) if
there exists a real number c = c(F,G) > 0 such that, for every non-zero
polynomial P ∈ C[X,Y ],

(47) ord0 P (F (t), G(t)) ≤ c(deg+
X P + α deg+

Y P )(deg+
Y P + β deg+

X P ).

Thus, for example, by Theorem 1 the pair (t, ̂(t)) satisfies a multiplicity
hypothesis of type (0, 0) (and also of type (α, β) for all α, β ∈ {0, 1}), whereas
in Corollary 5 the pair (f̂1, f̂2) satisfies a multiplicity hypothesis of type
(1, 1). With this terminology we can state:

Lemma 17. Let F0, G ∈ K, and suppose that (F0, G) satisfies a multi-
plicity hypothesis of type (α, β). Let F be a non-constant element of K such
that F0 and F are algebraically dependent over C. Then (F,G) also satisfies
a multiplicity hypothesis of type (α, β).

Proof. In the following proof, the symbol � means that the implied
constant (is positive and) depends only on F0, F and G. Let A ∈ C[X,Y ]
be an irreducible polynomial such that A(F0, F ) = 0. Since (F0, G) satisfies
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a multiplicity hypothesis, F0 is in particular transcendental over C and thus
we have degY A ≥ 1. Let now P ∈ C[X,Y ] be a non-zero polynomial.
We want to prove that (47) holds, so we may clearly assume that P is
irreducible. If degY P = 0, then P has the form P = aX + b with a, b ∈ C,
a 6= 0, and since F is non-constant, we immediately get ord0 P (F (t), G(t))�
degX P as desired. Hence we assume from now on that degY P ≥ 1. We
introduce in this case a new indeterminate Z and consider the resultant
R(X,Z) = resY (P (Y,Z), A(X,Y )). There exist two polynomials U(X,Y, Z)
and V (X,Y, Z) such that R(X,Z)=U(X,Y, Z)P (Y,Z)+V (X,Y, Z)A(X,Y ),
so we have in particular R(F0, G) = U(F0, F,G)P (F,G). We now note that
degX A and degY A depend only on F0 and F , so they are constants. Also,
ord0 F0(t), ord0 F (t) and ord0G(t) are constants. From this we deduce first
that degX U � degX P , degZ U � degY P , degY U � 1, and next that
U(F0, F,G) has a pole at zero of order at most

� degX P + degY P � (deg+
X P + α deg+

Y P )(deg+
Y P + β deg+

X P ).

Hence

ord0 P (F (t), G(t)) ≤ ord0R(F0(t), G(t))

+ c′(deg+
X P + α deg+

Y P )(deg+
Y P + β deg+

X P ),

where c′ is a constant. Now, since degZ P (Y,Z) = degY P ≥ 1 and
degZ A(X,Y ) = 0, we trivially have P (Y,Z) - A(X,Y ). The polynomial
P (Y,Z) being irreducible in C[X,Y, Z], it follows that R(X,Z) 6= 0 and
thus using the hypothesis on (F0, G) we have an inequality of the form
(47) with F and P replaced by F0 and R. Using degX R � degX P and
degZ R� degY P , we finally obtain

ord0 P (F (t), G(t))� (deg+
X P + α deg+

Y P )(deg+
Y P + β deg+

X P )

as required.

Proof of Corollary 3. We know that the field C(ϕ) is a finite extension
of the field C(j) of degree q + 1 (see for instance [Bo 1]), so j ∈ C(ϕ).
Theorem 2 and Lemma 17 then immediately give Corollary 3. If we want now
to compute explicitly a possible constant c3, we can proceed as follows. The
explicit formula relating j and ϕ is computed in [Bo 1] and reads j = B(ϕ)
with

B(X) = −1/X + T q + T q
2
Xq−1 − T q2+qXq.

Let P ∈ C[X,Y ], P 6= 0. Then, by setting Q(X,Y ) = Y degY PP (X,B(Y ))
and noticing that ord0 ϕ̂(t) = q − 1, we obtain, using Theorem 2,

ord0 P (ĥ(t), ̂(t)) = ord0Q(ĥ(t), ϕ̂(t))− (q − 1) degY P

≤ c2 deg+
X Q(degX Q+ degY Q).
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Using now degX Q = degX P and degY Q ≤ (q + 1) degY P we get the
corollary with the explicit constant c3 = (q + 1)c2.

Proof of Corollary 4. Let k be the weight of f . Then f q+1/hk is a mero-
morphic modular function of weight 0 and type 0, so f q+1/hk ∈ C(j). But
since the function f q+1/hk has no poles in Ω (recall that h does not van-
ish on Ω), we have in fact f q+1/hk ∈ C[j]. Thus, we can write f q+1/hk =
B(j) for a certain (non-zero) B ∈ C[X]. Let now P ∈ C[X,Y ] be a non-
zero polynomial. Then P (f̂(t)q+1, ̂(t)) = Q(ĥ(t), ̂(t)), where Q(X,Y ) =
P (XkB(Y ), Y ). Since k and B depend on f only, we have furthermore
degX Q� degX P and degY Q� degX P + degY P , where the constant in-
volved depends on f only. Corollary 3 yields ord0 P (f̂(t)q+1, ̂(t)) �
degX P (degX P + degY P ). Thus, with the above terminology, (f̂ q+1, ̂) sat-
isfies a multiplicity hypothesis of type (0, 1). Applying now Lemma 17 yields
the corollary.

Proof of Corollary 5. The proof is similar to the previous one. Let k1 and
k2 be the weights of f1 and f2, respectively. As in the proof of Corollary 4
there exist polynomials A1, A2 ∈ C[X] such that f q+1

i = hkiAi(j), i =
1, 2. Let P ∈ C[X,Y ] be a non-zero polynomial, and define Q(X,Y ) =
P (Xk1A1(Y ), Xk2A2(Y )). Then P (f̂1(t)q+1, f̂2(t)q+1) = Q(ĥ(t), ̂(t)), Q 6= 0
(because of the latter relation and the fact that f̂ q+1

1 , f̂ q+1
2 are algebraically

independent), degX Q� degX P +degY P and degY Q� degX P +degY P ,
where the implied constants do not depend on P . From this and Corollary 3
we derive that (f̂ q+1

1 , f̂ q+1
2 ) satisfies a multiplicity hypothesis of type (1, 1).

Applying now Lemma 17 twice yields Corollary 5.
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[Pe] F. Pellarin, Les nilradicaux différentiels d’anneaux associés aux groupes triangu-
laires de Riemann–Schwarz, Rend. Sem. Mat. Univ. Padova 114 (2005), 213–239.
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