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The Galois group of Xp + aXs + a

by

B. Bensebaa, A. Movahhedi and A. Salinier (Limoges)

1. Introduction. Let p be an odd prime number and s < p a positive
integer. In this paper we study the absolute Galois group G of a trinomial
ϕ(X) = Xp + aXs + a, a ∈ Z, supposed to be irreducible over the field Q
of rational numbers. This Galois group was previously studied in [8, 9, 11]
when s = 1 and the p-adic valuation vp(a) of the integer a is ≤ 1. When
s = vp(a) = 1, the Galois group G is isomorphic either to the symmetric
group Sp or to the affine group Aff(Fp). When s = 1 and vp(a) = 0, then
G ' Sp if the discriminant D of ϕ(X) is not a square; otherwise, G is
isomorphic either to the alternating group Ap or to the projective special
linear group PSL2(2e). The latter is, of course, only possible when p − 1 is
a power of 2.

Here we deal with the Galois group of ϕ(X) under very general circum-
stances. In fact, the only case we do not cover is where we simultaneously
have

p | a, p - vp(a), svp(a) < p, gcd(p− 1, svp(a)) > 1.

With a few minor exceptions, we prove that if the Galois group is not solvable
then it is simply Sp or Ap.

Let N be the splitting field of ϕ(X) over Q. By using Newton polygons,
we determine the inertia groups of ramified primes in N/Q. For a prime
` 6= p which ramifies in N , the inertia group is cyclic of order p. For p > 3,
the prime p ramifies in N precisely when p divides a. To determine the
inertia group of p, we argue according to whether p divides vp(a) or not.
The ramification of p in N is wild if p does not divide vp(a) (Lemma 2.1)
where the approach is similar to that of the cases already treated in the
literature.

2000 Mathematics Subject Classification: Primary 11R32, 12F10; Secondary 11S15,
12E10.

Key words and phrases: trinomials, inertia groups, Newton polygons, classification of
finite simple groups, Galois group.

[55] c© Instytut Matematyczny PAN, 2008



56 B. Bensebaa et al.

Assume now that vp(a) = kp with an integer k ≥ 1. Then the ramification
of p in N can be tame or wild. We manage to compute the corresponding
inertia group in each case (Proposition 2.5) using the results of a previous
paper on the factorization of a polynomial over a local field [4].

Once we know the different inertia groups in N/Q, we determine G using
the list of possible Galois groups over Q of prime degree trinomials given by
Feit [7].

Acknowledgements. It is a pleasure to thank Alain Kraus for corre-
spondence concerning the elliptic curve occurring in Section 3.

2. Inertia groups. Let p be an odd prime number and ϕ(X) = Xp +
aXs + a be a trinomial with 0 6= a ∈ Z, 1 ≤ s ≤ p − 1, supposed to be
irreducible over Q. We denote by α := α1, α2, . . . , αp the different roots
of ϕ in an algebraic closure of Q. Let K := Q(α) be the field obtained
by adjoining the root α to the field Q, and N := Q(α, α2, . . . , αp) be the
normal closure of K over Q. We consider the Galois group G of N over Q
as a transitive group of permutations of the roots of ϕ. The discriminant D
of ϕ is [15, Theorem 2]

D = (−1)(p−1)/2ap−1[pp + (p− s)p−sssas].
We set δ := min(p, svp(a)) and b := a/pvp(a), so that

(1) D = (−1)(p−1)/2bp−1p(p−1)vp(a)+δD0,

where

(2) D0 = pp−δ + (p− s)p−sssbspsvp(a)−δ .

2.1. Inertia above p. Here we will determine the inertia group of a p-adic
place ℘ of N . From the expression of D, we deduce that if p does not divide a,
then the place ℘ is unramified over p. For the rest of this section, we suppose
that p divides a and we argue according to whether p divides vp(a) or not.

First suppose that p does not divide vp(a):

Lemma 2.1. If p | a and p does not divide vp(a), then the prime number
p is totally ramified in K = Q(α).

Proof. The (Qp, X)-polygon [4] of ϕ(X) has a unique side S joining the
point (0, 0) to (p, vp(a)). As vp(a) and p are coprime, we see by [4, Theorem
1.5] that the ramification index of the local extension Qp(α)/Qp is equal
to p.

Proposition 2.2. Assume p | a and p does not divide vp(a). Further
assume that gcd(p−1, svp(a)) = 1 if svp(a) < p. Then the inertia group of p
(in fact of a prime of N above p) in N/Q is isomorphic to the affine group
Aff(Fp).
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Proof. Consider the polynomial

ψ(X) =
ϕ(α(X + 1))

αpX
= Xp−1 +

p−1∑
i=1

aiX
p−1−i

in Q(α)[X] where the coefficient ai is given by

ai =


(
p

i

)
if 1 ≤ i ≤ p− s− 1,(

p

i

)
+
(

s

i+ s− p

)
a

αp−s
if p− s ≤ i ≤ p− 1.

Introduce a prime element π of Qp(α). The π-adic valuations vπ(ai) of
the coefficients ai are given by

vπ(ai) =

{
p if 1 ≤ i ≤ p− s− 1,
min(p, svp(a)) if p− s ≤ i ≤ p− 1,

since vπ(α) = vp(a) and vπ(x) = pvp(x) for any rational x by Lemma 2.1.
So the (Qp(α), X)-polygon [4] of ψ(X) has a unique side S joining (0, 0)

to (p−1,min(p, svp(a))). By hypothesis, the integers p−1 and min(p, svp(a))
are coprime. Hence by [4, Theorem 1.5] the ramification index of the local
extension Qp(α, α2)/Qp(α) is equal to p − 1. So the inertia group of p in
N/Qp is a transitive solvable permutation group of prime degree p with
order at least p(p− 1). The proposition follows by [6, Section 3.5].

Assume now that p divides vp(a) > 0: let vp(a) = kp for an integer k ≥ 1
and b := a/pkp. Consider in Q[X] the polynomial

ψ(X) :=
ϕ(pkX)
pkp

= Xp + bpksXs + b.

By the Taylor formula, we can write

(3) ψ(X) = (X + b)p +
p−1∑
i=1

ai(X + b)p−i + ap

where the coefficient ai is given by

ai =



(
p

i

)
(−b)i if 1 ≤ i ≤ p− s− 1,(

p

i

)
(−b)i −

(
s

i+ s− p

)
pks(−b)i+s−p+1 if p− s ≤ i ≤ p− 1,

−bp + (−1)spksbs+1 + b if i = p.

We discuss several cases according to the p-adic valuation of bp−1 −
(−1)spksbs − 1.
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Lemma 2.3. Assume that vp(bp−1−(−1)spksbs−1) = 1. Then p is totally
ramified in K = Q(α).

Proof. As vp
((
p
i

)
(−b)i

)
= 1 for all i = 1, . . . , p − 1, the (Qp, X + b)-

polygon [4] of ψ(X) has a unique side S joining (0, 0) to (p, 1). By [4, The-
orem 1.5] the ramification index of the local extension Qp(α)/Qp is equal
to p.

Lemma 2.4. Assume that vp(bp−1−(−1)spksbs−1) > 1. Then the prime
decomposition of p in K = Q(α) is p = p

p−1
1 p2 in each of the following two

cases:

(i) k = s = 1 and b 6≡ −1 (mod p);
(ii) ks > 1.

If neither of the above two conditions holds, then p = p
p−2
1 a in K, where p1

is a prime ideal of K.

Proof. The coefficient ap−1 of the Taylor expansion (3) is ap−1 =
p(bp−1 − (−1)ssbspks−1). So vp(ap−1) = 1 precisely when (i) or (ii) holds.

Now, in both cases (i) and (ii), the (Qp, X + b)-polygon [4] of ψ(X)
has two sides: S1 joining (0, 0) to (p − 1, 1) and S2 joining (p − 1, 1) to
(p, vp(bp−1 − (−1)sspksbs−1)). The corresponding associated polynomials,
being linear, are irreducible. We conclude by [4, Theorem 1.8].

If neither (i) nor (ii) holds, then k = s = 1 and vp(ap−1) > 1. As s = 1,
we necessarily have vp(ap−2) = 1, so that the (Qp, X + b)-polygon [4] of
ψ(X) has two or three sides, the first of which, S1, joins (0, 0) to (p− 2, 1).
The associated polynomial of S1 being linear, once again we conclude by [4,
Theorem 1.8].

As the following example shows, when k = s = 1, the (Qp, X+b)-polygon
of ψ(X) may have one, two or three sides according to the choice of b:

• if b = −1 + 2p, then vp(bp−1 + pb− 1) = 1, hence a unique side;
• if b = 1 + p, then vp(bp−1 + pb − 1) ≥ 2 and b 6≡ −1 (mod p), hence

two sides;
• if b = −1 + p− p2 + 5(p+1)

2 p3 for p > 3, then vp(bp−1 + pb− 1) ≥ 4 and
vp(bp−2 + 1) = 1, hence three sides.

We are now going to look at the inertia at p in the extension N/K.

Proposition 2.5. Assume p | vp(a) ≥ 1. Let vp(a) = kp for an integer
k ≥ 1 and b := a/pkp.

(1) If vp(bp−1− (−1)spksbs− 1) = 1, then the inertia group of p (in fact
of a prime of N above p) in N/Q is isomorphic to Aff(Fp) except
when k = s = 1 and b ≡ −1 (mod p), in which case it is isomorphic
to the subgroup of index 2 of Aff(Fp).
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(2) If instead vp(bp−1−(−1)spksbs−1) > 1, then the inertia group of p in
N/Q is cyclic; it is generated by a (p−1)-cycle except when k = s = 1
and b ≡ −1 (mod p), in which case it is generated either by a (p−2)-
cycle or by a product of a transposition and a disjoint (p− 2)-cycle.

Proof. (1) We fix a p-adic prime ℘ of N . Let p = ℘ ∩K. We denote by
N℘ the completion of N at ℘ and by Kp the closure of K in N℘. By Lemma
2.3, we know that p = pp.

We let D(M/N) be the different of a local extension M/N . By the tran-
sitivity of the different, we have

D(N℘/Qp) = D(N℘/Kp) · D(Kp/Qp).

The discriminant of the polynomial ψ(X) is given by

D(ψ) = (−1)(p−1)/2bs−1[ppbp−s + ss(p− s)p−sbppksp],

so the p-adic valuation of D(ψ) is equal to p except when k = s = 1 and
b ≡ −1 (mod p).

We first treat the case where vp(D(ψ)) = p. Since p is wildly ramified
in K by Lemma 2.3, so is the p-adic valuation of the discriminant of K:
vp(DK) = p. Thus we also have vp(D(Kp/Qp)) = p and

D(Kp/Qp) = (℘e/p)p = ℘e

where the integer e is the ramification index of the extension N℘/Qp. On
the other hand, since N℘/Kp is tamely ramified,

D(N℘/Kp) = ℘e/p−1.

Now let (Gi)i≥0 denote the ramification groups of the Galois extension
N℘/Qp. We then have [14, chapitre IV, §2]

D(N℘/Qp) = ℘
P

i≥0(Card(Gi)−1) = ℘e−1+λ(p−1)

where Gλ is the last non-trivial ramification group.
Taking all these equalities into account, we obtain e = λp(p− 1). As any

maximal solvable transitive permutation group of degree p is isomorphic to
Aff(Fp), we necessarily have λ = 1 and e = p(p− 1).

Suppose now that k = s = 1 and b ≡ −1 (mod p). Then

ψ(X) =
ϕ(pX)
pp

= Xp + bpX + b.

Let β = α/p be a root of ψ(X). As noticed in the proof of Lemma 2.3, the
polynomial ψ(X − b) is Eisenstein with respect to the prime p: in particular
its root β + b is a prime element of the local field Kp = Qp(α). Since p
divides b+ 1, the same holds for β− 1 = (β+ b)− (b+ 1). Now if we rewrite
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the equality ψ(β) = 0 as

βp−1 + b =
b

β
[(β − 1)− pβ],

we see that (β being a unit of Kp since its norm b is a unit of Qp)

vp(βp−1 + b) = 1.

So the (Kp, X − β)-polygon [4] of

ψ(X)
X − β

= (X−β)p−1+pβ(X−β)p−2+· · ·+ p(p− 1)
2

βp−2(X−β)+p(βp−1+b)

has a unique side S joining (0, 0) to (p−1, p+1). As the associated polynomial
of S is a binomial of degree 2 = gcd(p− 1, p+ 1), it is separable modulo p.
Accordingly, by [4, Theorem 1.5], the ramification index of Qp(α, α2)/Qp(α)
is (p− 1)/2. Since ϕ remains irreducible over Qp, the decomposition group
of p in N/Q is a subgroup of Aff(Fp). As a non-trivial element of Aff(Fp)
does not fix two points [1, §15], we have N℘ = Qp(α, α2). Hence the inertia
group of p in N/Q is of order p(p− 1)/2. It is therefore isomorphic to the
unique subgroup of Aff(Fp) of index 2.

(2) By Lemma 2.4, the ramification of p in K/Q is tame, more precisely,
p = pp−1p′ or p = pp−2a. Thus the ramification of p in N/Q is tame, so
that the inertia group is cyclic. This decomposition of p corresponds to a
factorization of the polynomial ϕ(X) over Qp:

ϕ(X) = g(X)h(X)

with g(X) being irreducible over Qp of degree deg g = p− 1 in the first case
and deg g = p− 2 in the second. The first case occurs precisely when (i) or
(ii) of Lemma 2.4 holds. The local field Kp is obtained by adjoining a root of
g(X) to Qp; it is a totally ramified extension of Qp. Write I℘ for the inertia
group of ℘ | p in N/Q. Introduce the inertia field M in N℘/Qp. The totally
ramified extension Kp/Qp is linearly disjoint from the unramified extension
M/Qp, so g(X) remains irreducible over M . Hence I℘ = G(N℘/M) acts
transitively on the roots of g(X). As I℘ is cyclic, it contains a cycle of order
p− 1 or p− 2 according to the degree of g(X).

Now if deg g = p − 1, and α′ is another root of ϕ(X), the ramifica-
tion index of Qp(α′)/Qp is p − 1 or 1, according to whether α′ is a root of
g(X) or h(X). By Abhyankar’s lemma [13, p. 236], the extension N℘/Kp is
unramified, so in this case I℘ is cyclic generated by a (p− 1)-cycle.

If instead deg g = p − 2, consider a root α′ of h(X). If Qp(α′)/Qp is
unramified, arguing as in the preceding case we see that I℘ is cyclic generated
by a (p − 2)-cycle. If Qp(α′)/Qp is ramified, then its ramification index is
2 = deg h(X), in particular the quadratic polynomial h(X) is irreducible
over Qp (hence also over the inertia field M). In this last case, again by
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Abhyankar’s lemma, the ramification index of N℘/Qp is 2(p− 2). As I℘ also
acts transitively on the roots of h(X), we conclude that it is generated by a
product of a transposition and a disjoint (p− 2)-cycle.

2.2. Inertia at non-p-adic primes. Let ` 6= p be a prime divisor of a.

Lemma 2.6.

1. If p does not divide v`(a), then the prime number ` is totally ramified
in K = Q(α).

2. If p divides v`(a), then ` is unramified in K = Q(α).

Proof. The (Q`, X)-polygon [4] of ϕ(X) has a unique side S joining (0, 0)
to (p, v`(a)). The associated polynomial of S is a binomial of the form

F (Y ) = Y m +
a

`v`(a)

where m = p or 1, according to whether p divides v`(a) or not. Furthermore,
F (Y ) is separable modulo `. Thus, by [4, Theorem 1.5], the ramification
index of Q`(α)/Q` is equal to p/m.

This lemma together with Abhyankar’s lemma immediately yields:

Proposition 2.7. Let ` 6= p be a prime divisor of a. The inertia group
(defined up to conjugation) of ` in N/Q is trivial or cyclic of order p ac-
cording to whether p divides v`(a) or not.

Let ` 6= p be a prime divisor of the number D0 given by (2).

Proposition 2.8. The prime ` |D0 (` 6= p) is ramified in K precisely
when v`(D0) is odd , in which case the corresponding inertia group is gener-
ated by a transposition.

Proof. Since ` does not divide a, by [10, Theorem 2] the `-adic valuation
of the absolute discriminant of K = Q(α) is either 0 or 1 according to the
parity of the `-adic valuation of D0. The rest of the proof is similar to that
of Lemma 5 of [12].

3. Galois group. It is known that every transitive solvable permu-
tation group of prime degree p is isomorphic to a subgroup of the affine
group Aff(Fp). Suppose that the Galois group G of the irreducible trinomial
ϕ(X) = Xp+aXs+a is solvable. Then, in view of Propositions 2.2 and 2.5,
G is either Aff(Fp) or its unique subgroup of index 2, except possibly when
we simultaneously have (p− 1, svp(a)) > 1 and svp(a) < p.

Using the classification of finite simple groups, W. Feit [7, Section 4] drew
up the list of possible non-solvable Galois groups of prime degree trinomials
over Q:
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1. the projective linear group PSL3(2) of degree 7;
2. the groups PSL2(11) or M11 (Mathieu group) of degree 11;
3. the projective linear groups G between PSL2(2e) and PΓL2(2e) of

degree p = 1 + 2e > 5;
4. the symmetric group Sp or the alternating group Ap.

When p = 7, by (1) and (2), the discriminant D of ϕ(X) is

D = −a6[77 + (7− s)7−sssas].
For s ∈ {1, 3, 4, 6}, D/a6 ≡ −1 (mod 3), while for s = 2 or s = 5, D/a6 ≡ 2
(mod 5), so that D is never a square. Hence the first case above does not
hold.

Similarly when p = 11, we are going to check that

D = −a10[1111 + (11− s)11−sssas]

is not a square. First observe that D/a10 is not a square modulo 8, except
when s = 2 or s = 9. When s = 2, the discriminant is not a square since it
is negative. When s = 9, assume that D is a square: there exists an integer
y such that y2 = −1111 − 4 · 99a9. Setting x := (−9a)3, this would imply
that the elliptic curve (E) of equation

y2 = 4x3 − 1111

has a rational non-trivial point. By the change of coordinates defined by
y = 2 · 113Y + 113 and x = 112X, one sees that (E) is isomorphic to the
elliptic curve (E′) defined by the equation

Y 2 + Y = X3 − 40263,

which is the curve 1089 b 1 in Cremona’s tables of elliptic curves [5]. In
particular, it is of conductor 1089. By Table One of [5], (E′) has rational
rank 0 and trivial torsion. So there is no non-trivial rational point in (E′),
hence none in (E). This completes the proof.

Therefore when the Galois group G is not solvable, either it contains Ap
or we have PSL2(2e) ≤ G ≤ PΓL2(2e). Of course the latter happens in the
very special case where p is a Fermat prime p = 1 + 2e with e > 2. Further,
since the projective semilinear group PΓL2(2e) consists of even permutations
[3, Lemma 3.1] the last case does not occur when D is not a square.

The above discussion immediately yields the following result.

Proposition 3.1. If the Galois group G of ϕ(X) = Xp + aXs + a is
not solvable, then it is the full symmetric group Sp as soon as one of the
following conditions holds:

(i) svp(a) > p;
(ii) svp(a) < p and svp(a) is odd.
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Proof. In both cases, vp(D) is odd.

Theorem 3.2. Let a be an integer , and p a prime number not dividing a.
Let ϕ(X) = Xp + aXs + a be irreducible over Q and G its Galois group
over Q. Then

(i) G ' Sp if the discriminant of ϕ(X) is not a square;
(ii) G ' Ap or PSL2(2e) if the discriminant of ϕ(X) is a square. The

latter is only possible when p is a Fermat prime.

Proof. We can assume that p > 3. Suppose that G is not isomorphic
to Sp. By Proposition 2.8, the number D0 = pp+(p−s)p−sssas given by (2)
is a square and only the prime divisors of a may ramify in K = Q(α).
The inertia group of such a ramified prime ` | a in N/Q is cyclic of order p
(Proposition 2.7). Hence G is generated by elements of order p. On the other
hand, the extension K/Q is not normal since the trinomial ϕ(X) has at most
three real roots. Therefore G is not solvable. As all the elements of order p
of PΓL2(2e) lie in PSL2(2e), the proof is complete.

We keep the notations already introduced. Combining the above Propo-
sition 3.1 with Proposition 2.2, we obtain:

Theorem 3.3. Let a be an integer such that p | a and p does not divide
vp(a). Further assume that gcd(p − 1, svp(a)) = 1 if svp(a) < p. Then the
Galois group G of ϕ(X) is either Sp or Aff(Fp).

There remains the case where vp(a) = kp with an integer k ≥ 1. Let
p = 1 + 2e > 17 be a Fermat prime. We first notice that PΓL2(2e) does
not contain any subgroup isomorphic to the subgroup of index 2 of Aff(Fp).
In fact, the latter contains an element of order (p− 1)/2, and this is not
even the case of the semilinear group ΓL2(2e). Let, indeed, u be a semilinear
transformation of the vector space F2

2e relative to an automorphism σ of F2e

and suppose that u is of order (p− 1)/2 = 2e−1. Since σe is the identity of
F2e , we see that ue is a linear map. On the other hand, the general linear
group GL2(2e) being of order

(22e − 1)(22e − 2e),

its 2-Sylow subgroups are of order 2e. Considering the subgroup{(
1 λ

0 1

)
: λ ∈ F2e

}
,

we see that these 2-Sylow subgroups are elementary abelian. Consequently,
u2e = IdF2

2e
, and 2e−1 divides 2e. This contradicts the inequality 2e > 16.

Now the above discussion together with Proposition 2.5 yields:
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Theorem 3.4. Let p 6= 17 be a prime number and a be an integer such
that vp(a) = kp for an integer k ≥ 1. Assume that the trinomial ϕ(X) =
Xp+aXs+a is irreducible over Q and denote by G its Galois group over Q.
Then

(i) G is Aff(Fp) or Sp if the discriminant of ϕ(X) is not a square;
(ii) G ' Ap or the subgroup of index 2 of Aff(Fp) if the discriminant of

ϕ(X) is a square.

Notice that the discriminant of ϕ(X) in the above theorem can be a
square only when we simultaneously have ks = 1 and b := a/pkp ≡ −1
(mod p). Further, by Proposition 2.5 the hypothesis p 6= 17 can be removed
when either ks > 1 or b 6≡ −1 (mod 17). Finally, observe that once we fix
the prime p, then for only finitely many integers a can the above Galois
group G be contained in Aff(Fp) [2].
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