On a problem of Konyagin

by
\section*{Tomasz Łuczak and Tomasz Schoen (Poznań)}

1. Introduction. For a subset A of an abelian group G and $t \in G$, let $\nu(t)=\nu_{A}(t)$ count the number of ways we can represent t as a sum of two elements from A, i.e.,

$$
\nu(t)=|\{(a, b) \in A \times A: t=a+b\}|
$$

(note that if $a \neq b$, then we view $t=a+b$ and $t=b+a$ as two different representations of t). We also set $\nu(A)=\min _{t \in A+A} \nu(t)$. Clearly, if A is a finite subset of integers, then $\nu(A)=1$, since for the element $s=2 \max A$ we have $\nu(s)=1$. On the other hand, for a finite subgroup H, we have $\nu(H)=|H|$. Is it possible that $\nu(A)$ is large also for sparse subsets A of $\mathbb{Z} / p \mathbb{Z}$, i.e., are there sparse subsets of $\mathbb{Z} / p \mathbb{Z}$ which are "similar" to subgroups? Straus [6] constructed sparse subsets A of $\mathbb{Z} / p \mathbb{Z}$, with $|A|=O\left(\log _{2} p\right)$, for which $\nu(A)=2$ (see Section 3 below). Konyagin (see [3, Problem 5]) made the above "subgroup approximation problem" more specific and asked if there exist constants $\varepsilon, C>0$ such that for every sufficiently large p and each set $A \subseteq \mathbb{Z} / p \mathbb{Z}$ with $|A|<\sqrt{p}$, we have $\nu(A) \leq C|A|^{1-\varepsilon}$.

The goal of this note is to provide an upper bound for $\nu(A)$. Our main result, Theorem 1 below, gives a fair estimate of $\nu(A)$ for sparse sets $A \subseteq \mathbb{Z} / p \mathbb{Z}$. On the other hand, since our argument is based on Dirichlet's approximation theorem, the upper bound for $\nu(A)$ we obtain is useful only for sets $A \subseteq \mathbb{Z} / p \mathbb{Z}$ with $|A|=p^{o(1)}$, so we are still far from settling Konyagin's conjecture.

Theorem 1. Let $A \subseteq \mathbb{Z} / p \mathbb{Z}$. If for some integer $d \geq 3$, and $K \geq 2^{d^{2}}$, we have

$$
\begin{equation*}
2^{2 d+2} K^{2^{d+3} / d} \leq|A| \leq \frac{p^{2^{-d-1} K^{-3 / d}}}{2^{d+2} K} \tag{1}
\end{equation*}
$$

then $\nu(A)<|A| / K$.

[^0]Since the statement of Theorem 1 is somewhat technical, we state one of its consequences in a slightly more accessible form.

Corollary. For every $\varepsilon, 0<\varepsilon<1$, there exists a constant a_{0} such that for every $A \subseteq \mathbb{Z} / p \mathbb{Z}$ with

$$
a_{0} \leq|A| \leq 2^{\left(\log _{2} p\right)^{1 / 5}}
$$

we have

$$
\nu(A) \leq|A| 2^{-(1-\varepsilon)\left(\log _{2} \log _{2}|A|\right)^{2}} .
$$

We also remark that results of Green and Ruzsa [2] imply that

$$
\begin{equation*}
\nu(A) \leq \max \left\{1,|A|\left(\log _{2} p\right)^{-1 / 2+o(1)}\right\} \tag{2}
\end{equation*}
$$

for every $A \subseteq \mathbb{Z} / p \mathbb{Z},|A| \leq \sqrt{p}$. For much sparser sets A this fact follows immediately from Dirichlet's approximation theorem and a "gap argument" used in the proof of Theorem 1 below. However, in the next section, we prove a result related to an additive lemma of Plünnecke and Ruzsa (Lemma 2) which leads to a better bound for $\nu(A)$. Then we give the proof of Theorem 1. Finally, in the last section, we supplement our results with an example of a sparse sets A with (moderately) large $\nu(A)$.
2. Proof of the main result. Let us first recall the following result of Plünnecke and Ruzsa (see, for instance, Nathanson [4, Theorem 7.6]).

Lemma 1. Let C, D be finite subsets of an abelian group. If $|C+D| \leq$ $K|D|$, then for every $k \geq 1$,

$$
\begin{equation*}
|k C| \leq K^{k}|D| . \tag{3}
\end{equation*}
$$

Our first lemma states that if $\nu(A)$ is large, then we can find in A dense subsets whose sumset is smaller than anticipated in Lemma 1. This result is somewhat similar to Lemma 2.7 of Green and Ruzsa [2] from which it follows that, basically, if $k \geq K$, then in (3) one can replace K^{k} by $K^{k / \log _{2} k}$. However, in the proof of Theorem 1, we use (3) with $k=2^{\Theta\left(\sqrt{\log _{2} K}\right)}$, which is much smaller than K.

Lemma 2. Let A be a finite subset of an abelian group and suppose that $\nu(A) \geq|A| / K$. Then, for each integer $d \geq 3$, there are subsets $A_{1}, \ldots, A_{2^{d}}$ of A such that $\left|A_{j}\right| \geq|A| / K$ for $j=1, \ldots, 2^{d}$, and

$$
\left|A_{1}+\cdots+A_{2^{d}}\right| \leq K^{2^{d+2} / d-1}|A| .
$$

Proof. Note that we can assume that

$$
\begin{equation*}
\left|2^{d} A\right|>K^{2^{d+2} / d-1}|A|, \tag{4}
\end{equation*}
$$

since otherwise the assertion holds for $A_{j}=A, j=1, \ldots, 2^{d}$.

Let us consider the sequence of sumsets $A, 2 A, \ldots, 2^{d} A$, and for $i \geq 1$ set

$$
\nu_{i}(t)=\left|\left\{(a, b) \in 2^{i-1} A \times 2^{i-1} A: t=a+b\right\}\right| .
$$

We claim that for some $i_{0}, 1 \leq i_{0} \leq d$, we have

$$
\begin{equation*}
\min _{t \in 2^{i_{0} A}} \nu_{i_{0}}(t) \leq K^{2^{i_{0} / d-1}}|A| . \tag{5}
\end{equation*}
$$

Indeed, suppose that (5) does not hold, i.e., for every $1 \leq i \leq d$ we have

$$
\begin{equation*}
\min _{t \in 2^{i} A} \nu_{i}(t)>K^{2^{i} / d-1}|A| . \tag{6}
\end{equation*}
$$

We show that then, for $1 \leq i \leq d$,

$$
\begin{equation*}
\left|2^{i} A\right|>K^{(d-i+4) 2^{i} / d-1}|A| . \tag{7}
\end{equation*}
$$

We prove (7) by a (backward) induction. For $i=d$ the inequality (7) becomes (4). If (7) holds for $i, 1 \leq i \leq d$, then, from (6) and the induction hypothesis,

$$
\left|2^{i-1} A\right|^{2}=\sum_{t} \nu_{i}(t)>\left|2^{i} A\right| K^{2^{i} / d-1}|A|>K^{(d-(i-1)+4) 2^{i} / d-2}|A|^{2} .
$$

Thus, (7) holds for all $i, 1 \leq i \leq d$. In particular, when $i=1$, we have

$$
|2 A|>K^{(d+3) 2 / d-1}|A|=K^{1+6 / d}|A|
$$

which contradicts the fact that

$$
|2 A| \leq \frac{|A|^{2}}{\nu(A)} \leq K|A| .
$$

Consequently, (5) holds, and for some $i_{0} \geq 1$ and $t_{0} \in 2^{i_{0}} A$ we have $\nu_{i_{0}}\left(t_{0}\right) \leq K^{2^{i 0} / d-1}|A|$. Take any two elements $a, b \in 2^{i_{0}-1} A$ with $t_{0}=$ $a+b$. Then $a=a_{1}+\cdots+a_{2^{i_{0}-1}}$ and $b=b_{1}+\cdots+b_{2^{i_{0}-1}}$ for some $a_{1}, \ldots, a_{2^{i_{0}-1}}, b_{1}, \ldots, b_{2^{i_{0}-1}} \in A$. Set $c_{j}=a_{j}+b_{j}, A_{j}=A \cap\left(c_{j}-A\right)$, and observe that $\left|A_{j}\right|=\nu\left(c_{j}\right) \geq|A| / K$. Then

$$
\begin{equation*}
t_{0}=\left(a_{1}+\cdots+a_{2^{i_{0}-1}}\right)+\left(b_{1}+\cdots+b_{2^{i_{0}-1}}\right), \tag{8}
\end{equation*}
$$

and for any choice of elements $a_{1} \in A_{1}, \ldots, a_{2^{i_{0}-1}} \in A_{2^{i_{0}-1}}$ we can find other elements $b_{1} \in A_{1}, \ldots, b_{2^{i_{0}-1}} \in A_{2^{i_{0}-1}}$ satisfying (8). Thus, there are at least $\left|A_{1}+\cdots+A_{2^{i_{0}-1}}\right|$ elements $a \in 2^{i_{0}-1} A$ such that $t_{0}=a+b$ for some $b \in 2^{i_{0}-1} A$, which yields

$$
\left|A_{1}+\cdots+A_{2^{i_{0}-1}}\right| \leq \nu_{i_{0}}\left(t_{0}\right) \leq K^{2^{i_{0} / d-1}|A| .}
$$

By Lemma 1 applied with $C=A_{1}+\cdots+A_{2^{i_{0}-1}-1}, D=A_{2^{i_{0}-1}}$, we get

$$
\left|k A_{1}+\cdots+k A_{2^{i_{0}-1}-1}\right| \leq K^{k 2^{i_{0} / d-1}}|A| .
$$

In particular, for $k=2^{d-i_{0}+2}$, we have

$$
\left|2^{d-i_{0}+2} A_{1}+\cdots+2^{d-i_{0}+2} A_{2^{i_{0}-1}-1}\right| \leq K^{2^{d+2} / d-1}|A|,
$$

which completes the proof of Lemma 2.

Our proof of Theorem 1 relies on the following consequence of Lemma 2.
Lemma 3. Let $d \geq 3, s=2^{d}, K \geq 2^{d^{2}}$, and $A \subseteq \mathbb{Z} / p \mathbb{Z}$ be such that $|A| \geq 4 s^{2} K^{8 s / d}$, and $\nu(A) \geq|A| / K$. Then there exist subsets $R_{1}, \ldots, R_{2 s-1}$ of A with at most $\ell=\left\lfloor K^{3 / d}\right\rfloor$ elements each, such that

$$
\begin{equation*}
\left|A \cap\left(R_{1}+\cdots+R_{s}-R_{s+1}-\cdots-R_{2 s-1}\right)\right|>\frac{1}{4} K^{s / d}>2 K^{2} . \tag{9}
\end{equation*}
$$

Proof. Let A_{1}, \ldots, A_{s} be the sets given by Lemma 2 . We may and will assume that $\left|A_{i}\right|=|A| / K$ for all $i=1, \ldots, s$. Denote by $r(t)$ the number of representations $t=a_{1}+\cdots+a_{s}, a_{i} \in A_{i}$. Let $\mathbf{R}_{i}, \mathbf{R}_{s+i} \subseteq A_{i}, i=1, \ldots, s$, be sets chosen independently at random from the family of all subsets of A_{i} with ℓ elements. We denote by U the set of $(2 s-1)$-tuples $\left(c_{1}, \ldots, c_{2 s-1}\right)$ such that $c_{i} \in \mathbf{R}_{i}, i=1, \ldots, 2 s-1$, all elements c_{i} are different, and

$$
c_{1}+\cdots+c_{s}-c_{s+1}-\cdots-c_{2 s-1} \in A_{s} \subseteq A .
$$

Moreover, let $X=|U|$. In order to estimate the expectation of the random variable X note that the number of solutions to

$$
a_{1}+\cdots+a_{s}=b_{1}+\cdots+b_{s}, \quad a_{i}, b_{i} \in A_{i},
$$

is equal to $\sum_{t} r^{2}(t)$. By Lemma 2 and the Cauchy-Schwarz inequality we have

$$
\begin{equation*}
\sum_{t} r^{2}(t) \geq \frac{\left(\sum_{t} r(t)\right)^{2}}{\left|A_{1}+\cdots+A_{s}\right|} \geq \frac{(|A| / K)^{2 s}}{K^{4 s / d-1}|A|}=K^{-4 s / d}\left(\frac{|A|}{K}\right)^{2 s-1} . \tag{10}
\end{equation*}
$$

Furthermore, if we denote by $\bar{r}(a)$ the number of representations

$$
a=a_{1}+\cdots+a_{s}-a_{s+1}-\cdots-a_{2 s-1}, \quad a_{i}, a_{i+s} \in A_{i}, 1 \leq i \leq s,
$$

such that $a_{m} \neq a_{n}$ for $1 \leq m<n \leq 2 s-1$, then (10) and the fact that $|A| \geq 4 s^{2} K^{8 s / d}$ imply that

$$
\begin{equation*}
\sum_{a \in A_{s}} \bar{r}(a) \geq \sum_{t} r^{2}(t)-\binom{2 s-1}{2}\left(\frac{|A|}{K}\right)^{2 s-2} \geq \frac{1}{2} K^{-4 s / d}\left(\frac{|A|}{K}\right)^{2 s-1} \tag{11}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathbb{E} X=\sum_{a \in A_{s}} \bar{r}(a)\left(\frac{\ell K}{|A|}\right)^{2 s-1} \geq \frac{1}{2} K^{-4 s / d} \ell^{2 s-1}>\frac{1}{2} K^{s / d}>4 K^{2} \tag{12}
\end{equation*}
$$

Now let Y denote the number of pairs of distinct $(2 s-1)$-tuples $\left(c_{1}, \ldots, c_{2 s-1}\right),\left(c_{1}^{\prime}, \ldots, c_{2 s-1}^{\prime}\right)$ from U such that

$$
\begin{equation*}
c_{1}+\cdots+c_{s}-c_{s+1}-\cdots-c_{2 s-1}=c_{1}^{\prime}+\cdots+c_{s}^{\prime}-c_{s+1}^{\prime}-\cdots-c_{2 s-1}^{\prime} \tag{13}
\end{equation*}
$$

Then, for the expectation of Y, we have

$$
\mathbb{E} Y \leq \sum_{a \in A_{s}} \bar{r}(a) \sum_{j=0}^{2 s-3}\binom{2 s-1}{j}\left(\frac{|A|}{K}\right)^{2 s-2-j}\left(\frac{\ell}{|A| / K}\right)^{j}\left(\frac{\binom{\ell}{2}}{\binom{|A| / K}{2}}\right)^{2 s-1-j}
$$

Indeed, to estimate $\mathbb{E} Y$ we choose first the sum on the left hand side of (13) (so we sum over $a \in A_{s}$) and select the terms of the sum on the left hand side, which gives the factor of $\bar{r}(a)$. In order to bound the number of choices of the terms on the right hand side of (13), denote by j the number of indices i, $i=1, \ldots, 2 s-1$, such that $c_{i}=c_{i}^{\prime}$. The number of ways we can choose all but one $2 s-1-j$ terms c_{i}^{\prime} which are different from c_{i} is very crudely estimated by $(|A| / K)^{2 s-2-j}$. Finally, the probability that a randomly chosen pair of distinct $(2 s-1)$-tuples for which (13) holds is identical with the one we have just selected can be bounded from above by $(\ell K / A)^{j}$ (the probability of choosing j elements which are the same on both sides) multiplied by $\left(\binom{\ell}{2} /\binom{|A| / K}{2}\right)^{2 j-1-j}$ (the probability of choosing $2 j-1-j$ pairs of different elements).

Thus, using (11) and the fact that $K \geq s^{d}$ and $|A| \geq 4 s^{2} K^{8 s / d}$, we get

$$
\begin{aligned}
\mathbb{E} Y & \leq \sum_{a \in A_{s}} \bar{r}(a)\left(\frac{\ell K}{|A|}\right)^{2 s-1}\left(\frac{|A| / K}{|A| / K-1}\right)^{2 s-1} \frac{K}{|A|} \sum_{j=0}^{2 s-3}\binom{2 s-1}{j} \ell^{2 s-1-j} \\
& \leq \exp \left(\frac{3 s K}{|A|}\right) \frac{K(1+\ell)^{2 s-1}}{|A|} \mathbb{E} X \leq 2 e^{s / \ell} \frac{K \ell^{2 s-1}}{|A|} \mathbb{E} X \leq \frac{\mathbb{E} X}{2}
\end{aligned}
$$

Consequently, $\mathbb{E}(X-Y)>\frac{1}{4} K^{s / d}>2 K^{2}$, and so there exists a choice of sets $R_{1}, \ldots, R_{2 s-1}$ for which (9) holds.

Proof of Theorem 1. Let us recall that for $\alpha \in \mathbb{R}$,

$$
\|\alpha\|=\min _{n \in \mathbb{Z}}|\alpha-n| .
$$

Let $R_{1}, \ldots, R_{2 s-1}, s=2^{d}$, be the sets whose existence is ensured by Lemma 3, $R=\bigcup_{i} R_{i}$, and $F=A \cap\left(R_{1}+\cdots+R_{s}-R_{s+1}-\cdots-R_{2 s-1}\right)$. Since $|R| \leq 2 s K^{3 / d}$, by Dirichlet's approximation theorem there is $u, 1 \leq u<p$, such that for every $c \in R$, we have

$$
\|u c / p\| \leq p^{-1 /|R|} \leq p^{-1 /\left(2 s K^{3 / d}\right)}
$$

Thus, by (1), for every $a \in F, a=c_{1}+\cdots+c_{s}-c_{s+1}-\cdots-c_{2 s-1}$,

$$
\|u a / p\| \leq\left\|u c_{1} / p\right\|+\cdots+\left\|u c_{2 s-1} / p\right\| \leq 2 s p^{-1 /\left(2 s K^{3 / d}\right)} \leq 1 /(2 K|A|)
$$

Since, obviously, for every $u \in \mathbb{Z} / p \mathbb{Z}$ and $B=\{u \cdot a: a \in A\}$, we have $|A|=|B|$ and $\nu(A)=\nu(B)$, without loss of generality we can assume that $u=1$. Thus, for every $a \in F$, we have either

$$
\begin{equation*}
0 \leq a \leq \frac{p}{2 K|A|} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
p-\frac{p}{2 K|A|} \leq a<p \tag{15}
\end{equation*}
$$

Let us suppose that for the set F^{\prime} of all elements of F which satisfy (14) we have $\left|F^{\prime}\right| \geq|F| / 2>K^{2}$ (the case when (15) holds more often than (14) can be dealt with by a similar argument).

Now let us make the following elementary observation. The set $A+A$ clearly contains a gap of length at least $p /|A+A|-1 \geq p /(2 K|A|)$. The existence of such a gap implies that there are at least $|A| / K$ gaps of at least the same length in the set A. Indeed, if $t \in A+A$ and

$$
\{t+1, \ldots, t+L\} \cap(A+A)=\emptyset
$$

then for every $a \in A$ such that $a+b=t$ we have

$$
\{a+1, \ldots, a+L\} \cap A=\emptyset
$$

Thus, let H be the set of all $a \in A$ such that $\{a+1, \ldots, a+p /(2 K|A|)\} \cap$ $A=\emptyset$. Then

$$
\begin{equation*}
|A+A| \geq\left|H+F^{\prime}\right|=|H|\left|F^{\prime}\right|>\frac{|A|}{K} K^{2}=K|A| \tag{16}
\end{equation*}
$$

while

$$
|A+A| \leq \frac{|A|^{2}}{\nu(A)} \leq K|A|
$$

This contradiction completes the proof of Theorem 1.
Proof of Corollary. We apply Theorem 1 with $d=\sqrt{1-\varepsilon} \log _{2} \log _{2}|A|$ and $K=2^{d^{2}}$, where, to simplify calculations, we assume that ε is chosen in such a way that d is an integer. Then

$$
\log _{2}\left(2^{2 d+2} K^{2^{d+3} / d}\right)=2 d+2+d 2^{d+3} \leq d^{2} 2^{d} \leq \log _{2}|A|
$$

provided $|A|$ is large enough, i.e., the left inequality in (1) holds. Moreover,

$$
\begin{aligned}
\log _{2}\left(\frac{p^{2^{-d-1} K^{-3 / d}}}{2^{d+2} K}\right) & =2^{-4 d-1} \log _{2} p-d-2-d^{2} \\
& \geq \frac{\log _{2} p}{2\left(\log _{2}|A|\right)^{4 \sqrt{1-\varepsilon}}}-2\left(\log _{2} \log _{2}|A|\right)^{2} \geq \log _{2}|A|
\end{aligned}
$$

so the right inequality in (1) holds as well. Consequently, $\nu(A) \leq|A| 2^{-d^{2}}$ and the assertion follows.

Let us make a few comments on the proof of Theorem 1. Our argument is based on the fact that, using Dirichlet's approximation theorem, we can "compress" the set F so it can be put into large gaps which must exist in A. Basically the same proof would work if we could find in A large subsets which depend on a small number of parameters as, for instance, dense subsets of long arithmetic progressions, or large cubes (i.e., the sets of the form $x+\left\{0, x_{1}\right\}+\cdots+\left\{0, x_{d}\right\}$ with many distinct sums). For example, for every set $A \subseteq \mathbb{Z} / p \mathbb{Z}$ with $|A+A| \leq K|A|$, by Ruzsa's theorem (see [5] or Lemma 7.4
in [4]), we have $|A-A| \leq K^{2}|A|$. For such sets A it was shown by Croot, Ruzsa, and Schoen (see Theorem 4 in [1]) that the set $A+A$ contains an arithmetic progression of length at least $L=\log _{2}|A| /\left(4 \log _{2} K\right)$. This result immediately implies that whenever $|A+A| \leq K|A|$ and $K^{4}|A| \leq p / \log _{2} p$, we have

$$
\begin{equation*}
\nu(A) \leq|A|\left(\log _{2}|A|\right)^{-1 / 5+o(1)} \tag{17}
\end{equation*}
$$

Indeed, it is easy to observe that $\nu(A+A) \geq \nu(A) \geq|A| / K$ and from the Plünnecke-Ruzsa theorem it follows that $|4 A| \leq K^{4}|A|$, so in any dilation of $4 A$ there is a gap of size at least

$$
\frac{p}{K^{4}|A|+1}>\frac{\log _{2}|A|}{4 \log _{2} K}
$$

which generates at least $|A| / K$ gaps of the same size in $2 A$. On the other hand, every arithmetic progression of length L can be compressed to the interval of the same length. Thus, we have

$$
\frac{|A|}{K} \frac{\log _{2}|A|}{4 \log _{2} K} \leq K^{4}|A|
$$

and (17) follows. This estimate is, of course, even weaker than the bound given in (2), but since the assumption $\nu(A) \geq|A| / K$ is stronger than $|A+A| \leq K|A|$, there is at least some hope that Konyagin's conjecture can be shown using a similar technique. Such an approach looks even more promising if we observe that to improve bounds given by Theorem 1 it is enough to find a "large easily compressible subset" which shares a lot of elements with sets of type $A+A+A$, which are "much more structured" than A itself. Indeed, if $\nu(A)$ is large, then the sets $A+A, A+A+A$, or, say, $8 A$, are not much denser than A, and have large values of $\nu(\cdot)$ as well. Hence, one way to verify Konyagin's conjecture would be, for instance, to show that if $\nu(A) \geq|A|^{1-\varepsilon}$, then the set $A+A+A+A$ shares a lot of elements with some large cube.

Finally, let us note that the elementary gap argument presented above shows that sets $A \subseteq \mathbb{Z} / p \mathbb{Z}$ for which $\nu(A) \geq|A| / K$ for small K, have rather special properties. For instance, each such set $A \subseteq \mathbb{Z} / p \mathbb{Z}$ contains at least $|A|^{2} / K$ arithmetic progressions of length three (since for each $a \in A$ we have $\nu(2 a) \geq|A| / K)$ but no arithmetic progressions P longer than K^{2}. Indeed, in this case we could transform P into $v+u \cdot P=\{0,1, \ldots,|P|-1\}$, which would fit in into the gaps of $v+u \cdot A$, contradicting (16). In a similar way, $A+A$ cannot contain arithmetic progressions of length $K^{4}, A+A+A$ contains no arithmetic progressions of length K^{5} and so on.
3. Small sets A with large $\nu(A)$. In [6] Straus presented an example of a set $S \subseteq \mathbb{Z} / p \mathbb{Z}$ such that $\nu(S) \geq 2$, and $|S| \geq \gamma_{p} \log _{2} p$ for some constant
$\gamma_{p} \leq 2$ which tends to $2 / \log _{2} 3$ as $p \rightarrow \infty$. In this section we show how to use this example to construct a sparse set A with $\nu(A)$ larger than two.

We start with the following two observations.
Lemma 4. Let $A, B \subseteq \mathbb{Z} / p \mathbb{Z}$ be non-empty sets and suppose that $|A||B|$ $<\sqrt{p}$. Then there exists $x_{0} \in \mathbb{Z} / p \mathbb{Z} \backslash\{0\}$ such that $\left|A+x_{0} B\right|=|A||B|$.

Proof. Let $\nu(x ; t)$ denote the number of pairs $(a, b), a \in A, b \in B$, so that t can be represented as $t=a+b x$ with $a \in A, b \in B$. Then, clearly, $\nu^{2}(x ; t)$ counts quadruplets $\left(a^{\prime}, b^{\prime}, a^{\prime \prime}, b^{\prime \prime}\right)$ such that $a^{\prime}+b^{\prime} x=a^{\prime \prime}+b^{\prime \prime} x$, where $a^{\prime}, a^{\prime \prime} \in A$ and $b^{\prime}, b^{\prime \prime} \in B$. For fixed $a^{\prime}, a^{\prime \prime} \in A$ and $b^{\prime}, b^{\prime \prime} \in B$ let us consider the number of x^{\prime} s, where $x \in \mathbb{Z} / p \mathbb{Z} \backslash\{0\}$, for which

$$
\begin{equation*}
a^{\prime}-a^{\prime \prime}=\left(b^{\prime}-b^{\prime \prime}\right) x \tag{18}
\end{equation*}
$$

Clearly, if $a \neq a^{\prime}$ and $b \neq b^{\prime}$, then (18) has one solution; if both $a^{\prime}=a^{\prime \prime}$, $b^{\prime}=b^{\prime \prime}$, then we have $p-1$ such solutions; while when just one of the equalities $a=a^{\prime}, b=b^{\prime}$ holds, the equation (18) has no non-zero solutions at all. Thus, the total number of solutions to $a^{\prime}+b^{\prime} x=a^{\prime \prime}+b^{\prime \prime} x$, where $a^{\prime}, a^{\prime \prime} \in A, b^{\prime}, b^{\prime \prime} \in B$ and $x \in \mathbb{Z} / p \mathbb{Z} \backslash\{0\}$, is equal to

$$
\sum_{t} \sum_{x=1}^{p-1} \nu^{2}(x ; t)=|A|(|A|-1)|B|(|B|-1)+(p-1)|A||B|
$$

Hence, for some $x_{0} \in \mathbb{Z} / p \mathbb{Z} \backslash\{0\}$,

$$
\sum_{t} \nu^{2}\left(x_{0} ; t\right) \leq \frac{1}{p-1}|A|(|A|-1)|B|(|B|-1)+|A||B|<1+|A||B|
$$

so that there are only trivial solutions to $a^{\prime}+b^{\prime} x_{0}=a^{\prime \prime}+b^{\prime \prime} x_{0}$. Consequently,

$$
\left|A+x_{0} B\right|=|A||B|
$$

Lemma 5. Let $A, B \subseteq \mathbb{Z} / p \mathbb{Z}$ be such that $|A+B|=|A||B|$. Then, for $C=A+B$, we have $\nu(C) \geq \nu(A) \nu(B)$.

Proof. Let $t \in C+C$, i.e., $t=c+c^{\prime}$ for some $c, c^{\prime} \in C$. Since $c=a+b$ and $c^{\prime}=a^{\prime}+b^{\prime}$ for some $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$, we have

$$
c+c^{\prime}=(a+b)+\left(a^{\prime}+b^{\prime}\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right)
$$

Note that each representation $a+a^{\prime}=a_{1}+a_{2}, b+b^{\prime}=b_{1}+b_{2}$, where $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$, yields a different representation of $c+c^{\prime}$. Indeed,

$$
\begin{aligned}
c+c^{\prime} & =(a+b)+\left(a^{\prime}+b^{\prime}\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \\
& =\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right)=\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)
\end{aligned}
$$

and from $|A+B|=|A||B|$ it follows that all representations are distinct. Since there are at least $\nu(A)[\nu(B)]$ ways to write $a+a^{\prime}=a_{1}+a_{2}\left[b+b^{\prime}=\right.$ $\left.b_{1}+b_{2}\right]$, we get $\nu(C) \geq \nu(A) \nu(B)$.

THEOREM 2. For every positive integer $Q<\log _{2} p /\left(2 \log _{2}\left(\gamma_{p} \log _{2} p\right)\right)$, where γ_{p} is the constant given in Straus' construction, there exists a set $A \subseteq \mathbb{Z} / p \mathbb{Z}$ such that $|A|=\left(\gamma_{p} \log _{2} p\right)^{Q}$ and $\nu(A) \geq 2^{Q}$.

Proof. Let S be the set constructed by Straus. From Lemmas 4 and 5, it follows that for every Q satisfying $|S|^{Q}<\sqrt{p}$ there is a set A of the form $A=S+x_{1} \cdot S+\cdots+x_{Q-1} \cdot S$, for some $x_{1}, \ldots, x_{Q-1} \in \mathbb{Z} / p \mathbb{Z} \backslash\{0\}$, such that $|A|=|S|^{Q}$ and $\nu(A) \geq \nu(S)^{Q} \geq 2^{Q}$.

References

[1] E. Croot, I. Ruzsa and T. Schoen, Arithmetic progressions in sparse sumsets, in: Combinatorial Number Theory, B. Landman et al. (eds.), de Gruyter, Berlin, 2007, 157-164.
[2] B. Green and I. Z. Ruzsa, Sets with small sumset and rectification, Bull. London Math. Soc. 38 (2006), 43-52.
[3] V. F. Lev, Reconstructing integer sets from their representation functions, Electron. J. Combin. 11 (2004), Res. Paper 78, 6 pp.
[4] M. B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Grad. Texts in Math. 165, Springer, New York, 1996.
[5] I. Z. Ruzsa, On the cardinality of $A+A$ and $A-A$, in: Combinatorics (Keszthely, 1976), Vol. II, A. Hajnal and V. T. Sós (eds.), Colloq. Math. Soc. János Bolyai 18, North-Holland, Amsterdam, 1978, 933-938.
[6] E. G. Straus, Differences of residues ($\bmod p$), J. Number Theory 8 (1976), 40-42.
Faculty of Mathematics and Computer Science
Adam Mickiewicz University
Umultowska 87
61-614 Poznań, Poland
E-mail: tomasz@amu.edu.pl
schoen@amu.edu.pl

Received on 1.3.2007
and in revised form on 7.5.2008

[^0]: 2000 Mathematics Subject Classification: Primary 11B34; Secondary 11B75.
 Key words and phrases: sumsets, representation function.
 The first and second authors partially supported by KBN grants 1 P03A 02527 and 1 P03A 029 30, respectively.

