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On a problem of Konyagin

by

Tomasz Łuczak and Tomasz Schoen (Poznań)

1. Introduction. For a subset A of an abelian group G and t ∈ G, let
ν(t) = νA(t) count the number of ways we can represent t as a sum of two
elements from A, i.e.,

ν(t) = |{(a, b) ∈ A×A : t = a+ b}|
(note that if a 6= b, then we view t = a + b and t = b + a as two different
representations of t). We also set ν(A) = mint∈A+A ν(t). Clearly, if A is a
finite subset of integers, then ν(A) = 1, since for the element s = 2 maxA
we have ν(s) = 1. On the other hand, for a finite subgroup H, we have
ν(H) = |H|. Is it possible that ν(A) is large also for sparse subsets A of
Z/pZ, i.e., are there sparse subsets of Z/pZ which are “similar” to subgroups?
Straus [6] constructed sparse subsets A of Z/pZ, with |A| = O(log2 p), for
which ν(A) = 2 (see Section 3 below). Konyagin (see [3, Problem 5]) made
the above “subgroup approximation problem” more specific and asked if there
exist constants ε, C > 0 such that for every sufficiently large p and each set
A ⊆ Z/pZ with |A| < √p, we have ν(A) ≤ C|A|1−ε.

The goal of this note is to provide an upper bound for ν(A). Our main re-
sult, Theorem 1 below, gives a fair estimate of ν(A) for sparse sets A ⊆ Z/pZ.
On the other hand, since our argument is based on Dirichlet’s approxima-
tion theorem, the upper bound for ν(A) we obtain is useful only for sets
A ⊆ Z/pZ with |A| = po(1), so we are still far from settling Konyagin’s
conjecture.

Theorem 1. Let A ⊆ Z/pZ. If for some integer d ≥ 3, and K ≥ 2d
2 ,

we have

(1) 22d+2K2d+3/d ≤ |A| ≤ p2−d−1K−3/d

2d+2K
,

then ν(A) < |A|/K.
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Since the statement of Theorem 1 is somewhat technical, we state one of
its consequences in a slightly more accessible form.

Corollary. For every ε, 0 < ε < 1, there exists a constant a0 such that
for every A ⊆ Z/pZ with

a0 ≤ |A| ≤ 2(log2 p)
1/5
,

we have
ν(A) ≤ |A|2−(1−ε)(log2 log2 |A|)2 .

We also remark that results of Green and Ruzsa [2] imply that

(2) ν(A) ≤ max{1, |A|(log2 p)
−1/2+o(1)},

for every A ⊆ Z/pZ, |A| ≤ √p. For much sparser sets A this fact follows
immediately from Dirichlet’s approximation theorem and a “gap argument”
used in the proof of Theorem 1 below. However, in the next section, we prove
a result related to an additive lemma of Plünnecke and Ruzsa (Lemma 2)
which leads to a better bound for ν(A). Then we give the proof of Theorem 1.
Finally, in the last section, we supplement our results with an example of a
sparse sets A with (moderately) large ν(A).

2. Proof of the main result. Let us first recall the following result of
Plünnecke and Ruzsa (see, for instance, Nathanson [4, Theorem 7.6]).

Lemma 1. Let C, D be finite subsets of an abelian group. If |C +D| ≤
K|D|, then for every k ≥ 1,

(3) |kC| ≤ Kk|D|.

Our first lemma states that if ν(A) is large, then we can find in A dense
subsets whose sumset is smaller than anticipated in Lemma 1. This result
is somewhat similar to Lemma 2.7 of Green and Ruzsa [2] from which it
follows that, basically, if k ≥ K, then in (3) one can replace Kk by Kk/log2 k.
However, in the proof of Theorem 1, we use (3) with k = 2Θ(

√
log2K), which

is much smaller than K.

Lemma 2. Let A be a finite subset of an abelian group and suppose that
ν(A) ≥ |A|/K. Then, for each integer d ≥ 3, there are subsets A1, . . . , A2d

of A such that |Aj | ≥ |A|/K for j = 1, . . . , 2d, and

|A1 + · · ·+A2d | ≤ K2d+2/d−1|A|.

Proof. Note that we can assume that

(4) |2dA| > K2d+2/d−1|A|,
since otherwise the assertion holds for Aj = A, j = 1, . . . , 2d.
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Let us consider the sequence of sumsets A, 2A, . . . , 2dA, and for i ≥ 1 set

νi(t) = |{(a, b) ∈ 2i−1A× 2i−1A : t = a+ b}|.
We claim that for some i0, 1 ≤ i0 ≤ d, we have

(5) min
t∈2i0A

νi0(t) ≤ K2i0/d−1|A|.

Indeed, suppose that (5) does not hold, i.e., for every 1 ≤ i ≤ d we have

(6) min
t∈2iA

νi(t) > K2i/d−1|A|.

We show that then, for 1 ≤ i ≤ d,

(7) |2iA| > K(d−i+4)2i/d−1|A|.
We prove (7) by a (backward) induction. For i = d the inequality (7) becomes
(4). If (7) holds for i, 1 ≤ i ≤ d, then, from (6) and the induction hypothesis,

|2i−1A|2 =
∑
t

νi(t) > |2iA|K2i/d−1|A| > K(d−(i−1)+4)2i/d−2|A|2.

Thus, (7) holds for all i, 1 ≤ i ≤ d. In particular, when i = 1, we have

|2A| > K(d+3)2/d−1|A| = K1+6/d|A|,
which contradicts the fact that

|2A| ≤ |A|
2

ν(A)
≤ K|A|.

Consequently, (5) holds, and for some i0 ≥ 1 and t0 ∈ 2i0A we have
νi0(t0) ≤ K2i0/d−1|A|. Take any two elements a, b ∈ 2i0−1A with t0 =
a + b. Then a = a1 + · · · + a2i0−1 and b = b1 + · · · + b2i0−1 for some
a1, . . . , a2i0−1 , b1, . . . , b2i0−1 ∈ A. Set cj = aj + bj , Aj = A ∩ (cj − A), and
observe that |Aj | = ν(cj) ≥ |A|/K. Then

(8) t0 = (a1 + · · ·+ a2i0−1) + (b1 + · · ·+ b2i0−1),

and for any choice of elements a1 ∈ A1, . . . , a2i0−1 ∈ A2i0−1 we can find
other elements b1 ∈ A1, . . . , b2i0−1 ∈ A2i0−1 satisfying (8). Thus, there are at
least |A1 + · · · + A2i0−1 | elements a ∈ 2i0−1A such that t0 = a + b for some
b ∈ 2i0−1A, which yields

|A1 + · · ·+A2i0−1 | ≤ νi0(t0) ≤ K2i0/d−1|A|.
By Lemma 1 applied with C = A1 + · · ·+A2i0−1−1, D = A2i0−1 , we get

|kA1 + · · ·+ kA2i0−1−1| ≤ Kk2i0/d−1|A|.
In particular, for k = 2d−i0+2, we have

|2d−i0+2A1 + · · ·+ 2d−i0+2A2i0−1−1| ≤ K2d+2/d−1|A|,
which completes the proof of Lemma 2.
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Our proof of Theorem 1 relies on the following consequence of Lemma 2.

Lemma 3. Let d ≥ 3, s = 2d, K ≥ 2d
2 , and A ⊆ Z/pZ be such that

|A| ≥ 4s2K8s/d, and ν(A) ≥ |A|/K. Then there exist subsets R1, . . . , R2s−1

of A with at most ` = bK3/dc elements each, such that

(9) |A ∩ (R1 + · · ·+Rs −Rs+1 − · · · −R2s−1)| >
1
4
Ks/d > 2K2.

Proof. Let A1, . . . , As be the sets given by Lemma 2. We may and will
assume that |Ai| = |A|/K for all i = 1, . . . , s. Denote by r(t) the number of
representations t = a1 + · · · + as, ai ∈ Ai. Let Ri, Rs+i ⊆ Ai, i = 1, . . . , s,
be sets chosen independently at random from the family of all subsets of Ai
with ` elements. We denote by U the set of (2s − 1)-tuples (c1, . . . , c2s−1)
such that ci ∈ Ri, i = 1, . . . , 2s− 1, all elements ci are different, and

c1 + · · ·+ cs − cs+1 − · · · − c2s−1 ∈ As ⊆ A.
Moreover, let X = |U |. In order to estimate the expectation of the random
variable X note that the number of solutions to

a1 + · · ·+ as = b1 + · · ·+ bs, ai, bi ∈ Ai,
is equal to

∑
t r

2(t). By Lemma 2 and the Cauchy–Schwarz inequality we
have

(10)
∑
t

r2(t) ≥
(
∑

t r(t))
2

|A1 + · · ·+As|
≥ (|A|/K)2s

K4s/d−1|A|
= K−4s/d

(
|A|
K

)2s−1

.

Furthermore, if we denote by r(a) the number of representations

a = a1 + · · ·+ as − as+1 − · · · − a2s−1, ai, ai+s ∈ Ai, 1 ≤ i ≤ s,
such that am 6= an for 1 ≤ m < n ≤ 2s − 1, then (10) and the fact that
|A| ≥ 4s2K8s/d imply that

(11)
∑
a∈As

r(a) ≥
∑
t

r2(t)−
(

2s− 1
2

)(
|A|
K

)2s−2

≥ 1
2
K−4s/d

(
|A|
K

)2s−1

.

Then

(12) EX =
∑
a∈As

r(a)
(
`K

|A|

)2s−1

≥ 1
2
K−4s/d`2s−1 >

1
2
Ks/d > 4K2.

Now let Y denote the number of pairs of distinct (2s − 1)-tuples
(c1, . . . , c2s−1), (c′1, . . . , c

′
2s−1) from U such that

(13) c1 + · · ·+ cs − cs+1 − · · · − c2s−1 = c′1 + · · ·+ c′s − c′s+1 − · · · − c′2s−1.

Then, for the expectation of Y , we have

EY ≤
∑
a∈As

r(a)
2s−3∑
j=0

(
2s− 1
j

)(
|A|
K

)2s−2−j( `

|A|/K

)j( (
`
2

)(|A|/K
2

))2s−1−j
.
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Indeed, to estimate EY we choose first the sum on the left hand side of (13)
(so we sum over a ∈ As) and select the terms of the sum on the left hand side,
which gives the factor of r(a). In order to bound the number of choices of
the terms on the right hand side of (13), denote by j the number of indices i,
i = 1, . . . , 2s−1, such that ci = c′i. The number of ways we can choose all but
one 2s− 1− j terms c′i which are different from ci is very crudely estimated
by (|A|/K)2s−2−j . Finally, the probability that a randomly chosen pair of
distinct (2s − 1)-tuples for which (13) holds is identical with the one we
have just selected can be bounded from above by (`K/A)j (the probability
of choosing j elements which are the same on both sides) multiplied by((
`
2

)/(|A|/K
2

))2j−1−j (the probability of choosing 2j − 1− j pairs of different
elements).

Thus, using (11) and the fact that K ≥ sd and |A| ≥ 4s2K8s/d, we get

EY ≤
∑
a∈As

r(a)
(
`K

|A|

)2s−1( |A|/K
|A|/K − 1

)2s−1 K

|A|

2s−3∑
j=0

(
2s− 1
j

)
`2s−1−j

≤ exp
(

3sK
|A|

)
K(1 + `)2s−1

|A|
EX ≤ 2es/`

K`2s−1

|A|
EX ≤ EX

2
.

Consequently, E(X − Y ) > 1
4K

s/d > 2K2, and so there exists a choice of
sets R1, . . . , R2s−1 for which (9) holds.

Proof of Theorem 1. Let us recall that for α ∈ R,

‖α‖ = min
n∈Z
|α− n|.

Let R1, . . . , R2s−1, s=2d, be the sets whose existence is ensured by Lemma 3,
R =

⋃
iRi, and F = A ∩ (R1 + · · · + Rs − Rs+1 − · · · − R2s−1). Since

|R| ≤ 2sK3/d, by Dirichlet’s approximation theorem there is u, 1 ≤ u < p,
such that for every c ∈ R, we have

‖uc/p‖ ≤ p−1/|R| ≤ p−1/(2sK3/d).

Thus, by (1), for every a ∈ F , a = c1 + · · ·+ cs − cs+1 − · · · − c2s−1,

‖ua/p‖ ≤ ‖uc1/p‖+ · · ·+ ‖uc2s−1/p‖ ≤ 2sp−1/(2sK3/d) ≤ 1/(2K|A|).
Since, obviously, for every u ∈ Z/pZ and B = {u · a : a ∈ A}, we have
|A| = |B| and ν(A) = ν(B), without loss of generality we can assume that
u = 1. Thus, for every a ∈ F , we have either

(14) 0 ≤ a ≤ p

2K|A|
,

or

(15) p− p

2K|A|
≤ a < p.
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Let us suppose that for the set F ′ of all elements of F which satisfy (14) we
have |F ′| ≥ |F |/2 > K2 (the case when (15) holds more often than (14) can
be dealt with by a similar argument).

Now let us make the following elementary observation. The set A + A
clearly contains a gap of length at least p/|A + A| − 1 ≥ p/(2K|A|). The
existence of such a gap implies that there are at least |A|/K gaps of at least
the same length in the set A. Indeed, if t ∈ A+A and

{t+ 1, . . . , t+ L} ∩ (A+A) = ∅,
then for every a ∈ A such that a+ b = t we have

{a+ 1, . . . , a+ L} ∩A = ∅.
Thus, let H be the set of all a ∈ A such that {a+1, . . . , a+p/(2K|A|)}∩

A = ∅. Then

(16) |A+A| ≥ |H + F ′| = |H| |F ′| > |A|
K

K2 = K|A|,

while

|A+A| ≤ |A|
2

ν(A)
≤ K|A|.

This contradiction completes the proof of Theorem 1.

Proof of Corollary. We apply Theorem 1 with d =
√

1− ε log2 log2 |A|
and K = 2d

2 , where, to simplify calculations, we assume that ε is chosen in
such a way that d is an integer. Then

log2(2
2d+2K2d+3/d) = 2d+ 2 + d2d+3 ≤ d22d ≤ log2 |A|,

provided |A| is large enough, i.e., the left inequality in (1) holds. Moreover,

log2

(
p2−d−1K−3/d

2d+2K

)
= 2−4d−1 log2 p− d− 2− d2

≥ log2 p

2(log2 |A|)4
√

1−ε
− 2(log2 log2 |A|)2 ≥ log2 |A|,

so the right inequality in (1) holds as well. Consequently, ν(A) ≤ |A|2−d2

and the assertion follows.

Let us make a few comments on the proof of Theorem 1. Our argument
is based on the fact that, using Dirichlet’s approximation theorem, we can
“compress” the set F so it can be put into large gaps which must exist in A.
Basically the same proof would work if we could find in A large subsets which
depend on a small number of parameters as, for instance, dense subsets
of long arithmetic progressions, or large cubes (i.e., the sets of the form
x+ {0, x1}+ · · ·+ {0, xd} with many distinct sums). For example, for every
set A ⊆ Z/pZ with |A+A| ≤ K|A|, by Ruzsa’s theorem (see [5] or Lemma 7.4
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in [4]), we have |A − A| ≤ K2|A|. For such sets A it was shown by Croot,
Ruzsa, and Schoen (see Theorem 4 in [1]) that the set A + A contains an
arithmetic progression of length at least L = log2 |A|/(4 log2K). This result
immediately implies that whenever |A + A| ≤ K|A| and K4|A| ≤ p/log2 p,
we have

(17) ν(A) ≤ |A|(log2 |A|)−1/5+o(1).

Indeed, it is easy to observe that ν(A + A) ≥ ν(A) ≥ |A|/K and from the
Plünnecke–Ruzsa theorem it follows that |4A| ≤ K4|A|, so in any dilation
of 4A there is a gap of size at least

p

K4|A|+ 1
>

log2 |A|
4 log2K

,

which generates at least |A|/K gaps of the same size in 2A. On the other
hand, every arithmetic progression of length L can be compressed to the
interval of the same length. Thus, we have

|A|
K

log2 |A|
4 log2K

≤ K4|A|

and (17) follows. This estimate is, of course, even weaker than the bound
given in (2), but since the assumption ν(A) ≥ |A|/K is stronger than
|A + A| ≤ K|A|, there is at least some hope that Konyagin’s conjecture
can be shown using a similar technique. Such an approach looks even more
promising if we observe that to improve bounds given by Theorem 1 it is
enough to find a “large easily compressible subset” which shares a lot of ele-
ments with sets of type A+A+A, which are “much more structured” than
A itself. Indeed, if ν(A) is large, then the sets A+A, A+A+A, or, say, 8A,
are not much denser than A, and have large values of ν(·) as well. Hence,
one way to verify Konyagin’s conjecture would be, for instance, to show that
if ν(A) ≥ |A|1−ε, then the set A+ A+ A+ A shares a lot of elements with
some large cube.

Finally, let us note that the elementary gap argument presented above
shows that sets A ⊆ Z/pZ for which ν(A) ≥ |A|/K for small K, have rather
special properties. For instance, each such set A ⊆ Z/pZ contains at least
|A|2/K arithmetic progressions of length three (since for each a ∈ A we have
ν(2a) ≥ |A|/K) but no arithmetic progressions P longer than K2. Indeed, in
this case we could transform P into v+u·P = {0, 1, . . . , |P |−1}, which would
fit in into the gaps of v + u · A, contradicting (16). In a similar way, A+ A
cannot contain arithmetic progressions of length K4, A+A+A contains no
arithmetic progressions of length K5 and so on.

3. Small sets A with large ν(A). In [6] Straus presented an example
of a set S ⊆ Z/pZ such that ν(S) ≥ 2, and |S| ≥ γp log2 p for some constant
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γp ≤ 2 which tends to 2/log2 3 as p → ∞. In this section we show how to
use this example to construct a sparse set A with ν(A) larger than two.

We start with the following two observations.

Lemma 4. Let A,B ⊆ Z/pZ be non-empty sets and suppose that |A| |B|
<
√
p. Then there exists x0 ∈ Z/pZ \ {0} such that |A+ x0B| = |A| |B|.
Proof. Let ν(x; t) denote the number of pairs (a, b), a ∈ A, b ∈ B, so

that t can be represented as t = a + bx with a ∈ A, b ∈ B. Then, clearly,
ν2(x; t) counts quadruplets (a′, b′, a′′, b′′) such that a′+b′x = a′′+b′′x, where
a′, a′′ ∈ A and b′, b′′ ∈ B. For fixed a′, a′′ ∈ A and b′, b′′ ∈ B let us consider
the number of x’s, where x ∈ Z/pZ \ {0}, for which
(18) a′ − a′′ = (b′ − b′′)x.
Clearly, if a 6= a′ and b 6= b′, then (18) has one solution; if both a′ = a′′,
b′ = b′′, then we have p − 1 such solutions; while when just one of the
equalities a = a′, b = b′ holds, the equation (18) has no non-zero solutions
at all. Thus, the total number of solutions to a′ + b′x = a′′ + b′′x, where
a′, a′′ ∈ A, b′, b′′ ∈ B and x ∈ Z/pZ \ {0}, is equal to∑

t

p−1∑
x=1

ν2(x; t) = |A|(|A| − 1)|B|(|B| − 1) + (p− 1)|A| |B|.

Hence, for some x0 ∈ Z/pZ \ {0},∑
t

ν2(x0; t) ≤
1

p− 1
|A|(|A| − 1)|B|(|B| − 1) + |A| |B| < 1 + |A| |B|,

so that there are only trivial solutions to a′+b′x0 = a′′+b′′x0. Consequently,

|A+ x0B| = |A| |B|.
Lemma 5. Let A,B ⊆ Z/pZ be such that |A + B| = |A| |B|. Then, for

C = A+B, we have ν(C) ≥ ν(A)ν(B).

Proof. Let t ∈ C + C, i.e., t = c+ c′ for some c, c′ ∈ C. Since c = a+ b
and c′ = a′ + b′ for some a, a′ ∈ A and b, b′ ∈ B, we have

c+ c′ = (a+ b) + (a′ + b′) = (a+ a′) + (b+ b′).

Note that each representation a + a′ = a1 + a2, b + b′ = b1 + b2, where
a1, a2 ∈ A, b1, b2 ∈ B, yields a different representation of c+ c′. Indeed,

c+ c′ = (a+ b) + (a′ + b′) = (a+ a′) + (b+ b′)
= (a1 + a2) + (b1 + b2) = (a1 + b1) + (a2 + b2),

and from |A + B| = |A| |B| it follows that all representations are distinct.
Since there are at least ν(A) [ν(B)] ways to write a+ a′ = a1 + a2 [b+ b′ =
b1 + b2], we get ν(C) ≥ ν(A)ν(B).
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Theorem 2. For every positive integer Q < log2 p/(2 log2(γp log2 p)),
where γp is the constant given in Straus’ construction, there exists a set
A ⊆ Z/pZ such that |A| = (γp log2 p)Q and ν(A) ≥ 2Q.

Proof. Let S be the set constructed by Straus. From Lemmas 4 and 5,
it follows that for every Q satisfying |S|Q < √p there is a set A of the form
A = S + x1 · S + · · · + xQ−1 · S, for some x1, . . . , xQ−1 ∈ Z/pZ \ {0}, such
that |A| = |S|Q and ν(A) ≥ ν(S)Q ≥ 2Q.
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