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On multiple zeros of Bernoulli polynomials

by

Karl Dilcher (Halifax)

1. Introduction. The Bernoulli polynomials Bn(x) can be defined by
the generating function

(1.1)
text

et − 1
=
∞∑

n=0

Bn(x)
tn

n!
, |t| < 2π,

or equivalently by way of the Bernoulli numbers defined by

(1.2)
t

et − 1
=
∞∑

n=0

Bn
tn

n!
, |t| < 2π,

and the relation

(1.3) Bn(x) =
n∑

j=0

(
n

j

)
Bjx

n−j

for all integers n ≥ 0. Since (1.2) shows that B0 = 1, and an easy recurrence
relation shows that all Bn are rational numbers, the identity (1.3) tells
us that the nth Bernoulli polynomial Bn(x) is monic of degree n and has
rational coefficients.

Bernoulli polynomials have important applications in different areas of
mathematics, most notably in number theory, asymptotic analysis, and the
theory of finite differences. Many of these applications have their origins in
the fundamental difference equation

(1.4) Bn(x+ 1)−Bn(x) = nxn−1, n ≥ 1,

which is easy to obtain by manipulating the generating function (1.1). Nu-
merous other properties can be found, e.g., in [1, Ch. 23], [9], or [14]; for a
comprehensive bibliography, see [8].
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Among the different aspects of Bernoulli polynomials, their zeros have
also been studied quite extensively, both from an analytic and an algebraic
point of view. For a brief summary of results, see [6]. One question that has
been asked is that of the possibility of multiple zeros. While this is inter-
esting in its own right, zero multiplicity properties of Bernoulli and related
polynomials have been used in the study of certain diophantine equations
involving sums of powers; see, e.g., [10], [15], or [4].

Along with a detailed study of various algebraic properties of Bernoulli
polynomials, Brillhart [3] established the following result on multiple zeros
of Bernoulli polynomials.

Theorem 1 (Brillhart, 1969).

(a) B2m+1(x) has no multiple zeros for any m ≥ 0.
(b) Any multiple zero of B2m(x) must be a zero of x2 − x − b, with b

a positive odd integer.

It appears that no further work on this problem has been published. It
is the purpose of this paper to fill the gap left by Brillhart’s result and to
use the strong condition given in part (b) of his theorem, to prove

Theorem 2. Bernoulli polynomials have no multiple zeros.

In Section 2 the reader will be reminded of some important properties
of Bernoulli numbers and polynomials that are necessary for the proof, and
some auxiliary results on combinatorial sums will be quoted or derived.
Section 3 contains the proof of Theorem 2, and we conclude the paper with
some additional remarks in Section 4.

2. Auxiliary results. We begin by quoting some basic properties of
Bernoulli polynomials, for easy reference. First, it is obvious from (1.3) or
(1.1) that Bn(0) = Bn, and by (1.4) we also have Bn(1) = Bn for n ≥ 2. By
manipulating the generating functions (1.1) and (1.3), we get

(2.1) Bn(1/2) = (21−n − 1)Bn,

and together with the fact that B2n+1 = 0 for all n ≥ 1, we immediately see
that 0, 1/2, and 1 are zeros of B2n+1(x). In fact, it was shown by Inkeri [13]
that these are the only rational zeros of any Bernoulli polynomial; see also
[3, p. 45, 59]. Another important property is that the derivative of the nth
Bernoulli polynomial is, essentially, the (n− 1)st, namely

(2.2) B′n(x) = nBn−1(x), n ≥ 1.

In other words, the Bernoulli polynomials form an Appell sequence. This
identity follows easily from (1.1), by taking the derivative with respect to x
on both sides of the identity. Following Brillhart [3], we use (2.1) and (2.2)
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to expand Bn(x) about x = 1/2, and obtain

Bn(x) =
n∑

j=0

(
n

j

)
(21−j − 1)(x− 1/2)n−jBj ,

and since the only nonzero odd-index Bernoulli number is B1 = −1/2, we
have

(2.3) Bn(x) =
bn/2c∑
j=0

(
n

2j

)
(21−2j − 1)(x− 1/2)n−2jB2j ,

and this shows that Bn(x + 1/2) is an even or an odd function, depending
on the parity of n.

The proof of Theorem 2 also requires one of the most important prop-
erties of the Bernoulli numbers, namely the theorem of von Staudt and
Clausen (see, e.g., [11, p. 91]), here given in two of a variety of possible
formulations.

Theorem 3 (von Staudt and Clausen).

(a) A prime p divides the denominator of B2n if and only if p− 1 | 2n.
(b) If p− 1 | 2n, then pB2n ≡ −1 (mod p).

It will become clear in the proof of Theorem 2 that the nonvanishing
modulo p of certain lacunary sums and alternating sums of binomial coeffi-
cients is required. For this purpose we need the following results.

Lemma 1 (Hermite and Bachmann). Let p be a prime and k a positive
integer. Then

(2.4)
∑

0<j(p−1)<k

(
k

j(p− 1)

)
≡ 0 (mod p).

In particular , for a positive integer q,

(2.5)
q∑

j=1

(
q(p− 1)
j(p− 1)

)
≡ 1 (mod p).

The congruence (2.4) was first proved by Hermite [12] for odd integers k,
and then extended by Bachmann [2, p. 46] to the general case. The alter-
nating analogue to (2.5) is

Lemma 2. Let p be a prime and q a positive integer. Then

(2.6)
q∑

j=1

(−1)j

(
q(p− 1)
j(p− 1)

)
≡


−1 (mod p) for q odd ,
1 (mod p) for q even, p+ 1 - q,
0 (mod p) for p+ 1 | q.

This is the main result in [7]. Finally, we require a variant of the con-
gruence (2.6).
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Lemma 3. Let p ≥ 3 be a prime and q ≥ 2 an even integer. Then

(2.7)
q−1∑
j=1

(−1)j

(
q(p− 1)− 1
j(p− 1)

)
≡
{

(p− 1)/2 (mod p) when p+ 1 | q,
0 (mod p) otherwise.

Proof. Using standard properties of binomial coefficients, we have(
q(p− 1)
j(p− 1)

)
=
(
q(p− 1)− 1
j(p− 1)− 1

)
+
(
q(p− 1)− 1
j(p− 1)

)
=
j

q

(
q(p− 1)
j(p− 1)

)
+
(
q(p− 1)− 1
j(p− 1)

)
,

and thus (
q(p− 1)− 1
j(p− 1)

)
=
q − j
q

(
q(p− 1)
j(p− 1)

)
.

With this identity we get

q−1∑
j=1

(−1)j

(
q(p− 1)− 1
j(p− 1)

)
=

1
q

q−1∑
j=1

(−1)j(q − j)
(
q(p− 1)
j(p− 1)

)
(2.8)

=
1
q

q−1∑
j=1

(−1)q−jj

(
q(p− 1)
j(p− 1)

)
,

where we have switched the order of summation and used the fact that(
n

n−k

)
=
(
n
k

)
. Now, if q is even, then by adding the two expressions on the

right of (2.8) we obtain

2
q−1∑
j=1

(−1)j

(
q(p− 1)− 1
j(p− 1)

)
=

q∑
j=1

(−1)j

(
q(p− 1)
j(p− 1)

)
− 1,

and the congruence (2.7) follows immediately from the second and third
parts of (2.6).

3. Proof of Theorem 2. By Brillhart’s result (Theorem 1) we may
restrict our attention to even-index Bernoulli polynomials, and we know
that any multiple zero of B2m(x) must be a zero of x2 − x − b, with b a
positive integer. Let xb be such a zero, and assume it is a multiple zero of
B2m(x) for a fixed m. Then it is also a zero of B2m−1(x). Our goal is to lead
this to a contradiction.

We begin by noting that

4(xb − 1/2)2 = 4x2
b − 4xb + 1 = 4b+ 1.
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Then by (2.3) we have

22mB2m(xb) =
m∑

j=0

(
2m
2j

)
(4b+ 1)m−j(2− 22j)B2j ,(3.1)

22m−1
√

4b+ 1B2m−1(xb) =
m−1∑
j=0

(
2m− 1

2j

)
(4b+ 1)m−j(2− 22j)B2j .(3.2)

We first consider the right-hand side of (3.1). Let p be an odd prime such
that p− 1 | 2m. We distinguish between three cases.

(i) Suppose that we can find such a prime p with the additional property
that p | 4b + 1. Then all the terms on the right of (3.1), with the exception
of the last one (for j = m), are divisible by p or, when p = 3 and j = m− 1,
are p-integral. Hence we get from (3.1),

p22mB2m(xb) ≡
(
2− 22m

)
pB2m (mod p).

Now, by Fermat’s little theorem we have

22m ≡ 1 (mod p) and 2− 22m ≡ 1 (mod p).

With the theorem of von Staudt and Clausen (Theorem 3(b)) we then get

pB2m(xb) ≡ −1 (mod p),

which means that B2m(xb) cannot vanish.
(ii) Suppose that we have in fact p− 1 = 2m. Then by the von Staudt–

Clausen theorem all terms on the right-hand side of (3.1), for 0 ≤ j < m, are
p-integral, while the final term (2 − 2p−1)pBp−1 has p in the denominator,
which is not cancelled since 2p−1 ≡ 1 (mod p). This means that B2m(xb)
cannot vanish for any b.

(iii) Suppose there is no odd prime satisfying cases (i) or (ii); so let p be
an odd prime with p− 1 | 2m but p− 1 < 2m and p - 4b+ 1. Now set

q =
2m
p− 1

; then q ∈ Z, 2 ≤ q ≤ m.

Multiply both sides of (3.1) by p, and note that by the von Staudt–Clausen
theorem we have

(3.3) pB2j ≡
{−1 (mod p) when 2j = r(p− 1), r = 1, 2, . . . , q,

0 (mod p) for all other j.

Furthermore, for 2j = r(p− 1) we have by Fermat’s little theorem,

(3.4) 2− 22j ≡ 1 (mod p),
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and since p - 4b+ 1,

(3.5) (4b+ 1)j = ((4b+ 1)(p−1)/2)r ≡ εrb (mod p),

where by Euler’s criterion we have

εb =
{

1 if 4b+ 1 is a quadratic residue (mod p),
−1 otherwise.

With (3.3), (3.4), and (3.5), the identity (3.1) gives us the congruence

(3.6) pB2m(xb) ≡ −εqb
q∑

r=1

(
q(p− 1)
r(p− 1)

)
εrb (mod p).

When εb = 1, then by the congruence (2.5) we have

pB2m(xb) ≡ −1 (mod p),

and so xb cannot be a zero. When εb = −1, then Lemma 2 shows that

(3.7) pB2m(xb) ≡
{

0 (mod p) when p+ 1 | q,
±1 (mod p) otherwise.

Thus the only case that remains open is the case p+ 1 | q and εb = −1, with
the other conditions under (iii) above.

To deal with this case, we use the fact that if xb is a multiple zero of
B2m(x), it must be a zero of B2m−1(x). Let B̃2m−1(x) be the right-hand
side of (3.2). Then with the congruences (3.3), (3.4), and (3.5), and with
εb = −1 we get, as above,

pB̃2m−1(xb) ≡ −(−1)q
q−1∑
r=1

(−1)r

(
q(p− 1)− 1
r(p− 1)

)
(mod p)

≡ (−1)q−1 p− 1
2

(mod p)

when p+1 | q, where the last congruence follows from Lemma 3. This means
that B2m−1(xb) cannot be zero, which completes the proof of Theorem 2.

4. Additional remarks. Closely related to the Bernoulli polynomials
are the Euler polynomials En(x) which can be defined by the generating
function

2ext

et + 1
=
∞∑

n=0

En(x)
tn

n!
, |t| < π;

see, e.g., [1, Ch. 23]. It was observed by Carlitz [5] that

E5(x) = (x− 1/2)(x2 − x− 1)2,

so that there are indeed multiple zeros. However, Brillhart [3] showed that
no other Euler polynomial has multiple zeros.
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