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Exotic Collatz cycles
by

JouN L. SiMONS (Groningen)

1. Introduction. The generalized Collatz problem (also called the
px + q problem with p an odd prime and ¢ odd) is defined by a sequence
of natural numbers, generated conditionally by x +— x/2 if = is even and by
x +— (pr +q)/2 if x is odd. We restrict ourselves to the case where p > 5
(prime), ¢ odd and GCD(p, q) = 1. For each factor ¢ > 1 of g, either none
or all of the numbers z; in each trajectory (including a hypothetical cycle)
must satisfy GCD(z;, q) = c. Because each cycle of the px + g problem with
GCD(x;,q) = ¢ corresponds with a cycle of the pz + ¢/c problem, we call
cycles with GCD(z;,q) = 1 primitive and any other cycle non-primitive. An
m-cycle of the px 4+ ¢ problem has m local minima x;. We call an m-cycle
(m > 2) trivial if it is a multiple of an m*-cycle with m* < m. In a non-trivial
m-cycle we have z; # x; if ¢ # j and we assume in what follows that an
m-cycle is non-trivial unless explicitly stated otherwise.

Simons [5] has proved that in an m-cycle (p — 2)z; = a;2% — ¢ and
consequently that a necessary and sufficient condition for the existence of
an m-cycle is the existence of a solution (a;, k;, ;) of the diophantine system
of equations

_pko ok1+lo ap q(zlo —1)
_pk1 2k2+l1 ai q(2l1 _ 1)
(1) =
2ko+lm_1 _pkm—l A1 q(2lm_1 _ 1)

He further derives the following two existence conditions for 1-cycles:
LEMMA 1. A necessary and sufficient condition for the existence of a

1-cycle for the px + q problem is the existence of positive integers k, | and r
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(odd) such that 28! — pk = q-r and the existence of an odd integer xo such
that
pk _ 2k
Tg= ——.
(p—2)r
COROLLARY 2. If, and only if,
(P* —2%)q
(p — 2)(28H — ph)

then there exists a primitive 1-cycle with minimal element xg.

xo = and GCD(zg,q) =1

Let C'(m, p, q) be the number of primitive m-cycles of the px + g problem
and let C(p,q) = >_,, C(m,p,q). Let B(m,p,q) be the number of primi-
tive and non-primitive m-cycles of the px + ¢ problem and let B(p,q) =
> m B(m,p,q). Let S(p) be the set of primes ¢ such that

ohH _ kg

has a solution with & > 2. In this paper we derive the following results:

e For each p, there exist infinitely many pz + ¢ problems with C(1, p, q)
> 1.

e For each p and d > 0, there exist infinitely many px + g problems with
C(p,q) > d.

e Let p be fixed. If S(p) is an infinite set (conjectured, no proof) then
for each d > 0 there exist infinitely many pz + ¢ problems (g prime)
with C(p,q) > d.

Matthews [4] conjectured that (i) if p = 3 then all trajectories end in a
cycle, (ii) if p > 5 then almost all trajectories are divergent, (iii) B(p, q) < oo.
Lagarias [3] conjectured (i) C'(3,q) > 1, (ii) C(3,q) < oo and proved that
occasionally C(3,q) takes large values. Brox [2] and Simons & de Weger
[6] proved C(m,3,1) < oo. Simons [5] proved C(m,p,q) < oo. Belaga &
Mignotte [1] numerically showed that there exist 3z +¢ problems with many
primitive cycles. Our results formally agree with Matthews’ second and third
conjecture, however px+¢q problems with arbitrarily many cycles can be seen
as exotic exceptions to the empirical divergent behavior of px + g problems

(p = 5).

2. Generalized Collatz sequences with ¢ odd. From Lemma 1 it
follows directly that for each prime p there exist infinitely many ¢-values for
which the pz+¢ problem has a 1-cycle. Simply set ¢ = 28T —p¥ for each pair
(k,1). Then Lemma 1 applies with » = 1. Consequently, the pz 4+ ¢ problem
has a 1-cycle with minimal element 2o = (p* — 2¥)/(p — 2). For each p we
can construct a value for ¢ such that the pxr 4+ g problem has a primitive
1-cycle.
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LEMMA 3. Let p > 5 be a prime. For each k > 2 and > (logy p—1)k >k,
let

u = -
The px + q problem with ¢ = v/GCD(u,v) has a primitive 1-cycle.
Proof. Set xyp = u/GCD(u,v). Then

v — ok _ )k

and p-.

@) 20 u u-q  (p"—2Mq

T GCD(u,v) v (p—2)(2F —pF)’

Further, we have

u v
GCD(zo,q) = GC <G,(j])(u7 v)’ GCD(U,U)>

We now distinguish two cases:

1. ¢ =1. Then 2" — p* =4 = ¢-v and z9 = (p* — 2¥)/(p — 2)v. Hence
Lemma 1 applies.
2. g > 3. Because GCD(xg, q) = 1, Corollary 2 applies.

In both cases the px + ¢ problem has a primitive 1-cycle. »

Lemma 3 generates for fixed p infinitely many values ¢ = v/GCD(u,v)
for which the pr 4+ ¢ problem has a primitive 1-cycle. These ¢-values are
not necessarily different. However, each new pair (k,[) generates a new pair
(u,v). Now either the px + v problem has a primitive 1-cycle with & odd
and [ even elements or the px + ¢ with ¢ = v/GCD(u,v) problem has such
a primitive 1-cycle. Because C(1,p,v) < oo and C(1,p,q) < oo the infinite
sequence of pairs {k, [} must generate an infinite sequence either of pz + v
problems with a primitive 1-cycle and/or an infinite sequence of pz + ¢
problems with a primitive 1-cycle. Hence we have

COROLLARY 4. For each p there are infinitely many q-values for which
the px + q problem has a primitive 1-cycle.

Consider as an example the case p = 5:

e For k=2and [ =3 we have u =v =7, hence xy = ¢q=1. The 5z + 1
problem has the primitive 1-cycle (1,3, 8,4, 2).

e For k=2 and [ =4 we have u = 7 and v = 39, hence 2o = 7 and ¢ =
39. The 5z+39 problem has the primitive 1-cycle (7,37,112, 56, 28, 14).

e For k = 2 and [ = 5 we have u = 7 and v = 103, hence g = 7
and ¢ = 103. The 5z + 103 problem has the primitive 1-cycle (7,69,
224,112,56,28,14).

e For k =3 and! =4 we have u = 39 and v=3, hence zg = 13 and ¢ = 1.
The 52+ problem has the primitive 1-cycle (13, 33, 83,208,104, 52, 26).
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Note that ¢ can be 1, prime or composite. Because the 5z + 1 problem has
exactly two 1-cycles [5], for no other pair (k,l) can reduction to the 5z + 1
problem occur.

If for the px + g problem a 1-cycle exists with k > 2, then m-cycles with
m > 2 also exist. This follows from the general solution of the system (1):

Aa; =q- [pki+1+ki+2+"‘+k’i—l(2li _ 1) + 2k5i+1+lipki+2+'“+ki—1(21i+1 —1)
4o o QR tHlithipo i bt R Hlio (211'71 _ 1)]

If A =2kt — pk = ¢ then each choice for k; and [; results in an integral a;.
Given Z?if)l ki =k >2 and Z?lf)l l; = 1> 3 and any choice for k;, we can
choose (cyclic) different values for I; which result in a new m-cycle.

e The 5247 problem has the non-primitive 1-cycle (7,21, 56, 28, 14) with
k =2 and [ = 3. There exists one 2-cycle: (kg =k1 =1, lop =1, I; =2)
resulting in (9, 26, 13, 36, 18), which is primitive.

e The 5x + 39 problem has the primitive 1-cycle (7,37,112,56, 28, 14)
with £ = 2 and | = 4. There exist two 2-cycles: (kg = k1 =1, lp = 1,
l1 = 3) resulting in (9,42, 21,72, 36, 18), which is non-primitive, and
(ko =k1 =1, lp =13 =2) resulting in (13,52, 26, 13, 52, 26), which is
non-primitive and trivial.

e The 5x + 103 problem has the primitive l-cycle (7,69,224,112,56,
28,14) with £ = 2 and [ = 5. There exist two 2-cycles: (kg = k1 = 1,
lo =1, 1 = 4) resulting in (9,74,37,144,72,36,18) and (ko= k1 =1,
lo = 2, I3 = 3) resulting in (13,84,42,21,104,52,26). Both cycles are
primitive.

e The 52+ 3 problem has the non-primitive 1-cycle (39,99, 249, 624, 312,
156,78) with £k = 3 and [ = 4. There exist three 2-cycles: (ko = 1,
ki = 2,0y = 2, I1 = 2) resulting in (51,129,324, 162, 81, 204, 102),
which is non-primitive, and (kg = 1, k1 =2, lp =1, l; = 3) resulting
in (43,109,274,137,344,172,86) and (ko = 1, k1 =2, lo =3, I; = 1)
resulting in (53,134, 67,169,424,212,106), which are both primitive.
There exists one 3-cycle: (kg = k1 = ko =1, lo =11 =1, lo = 2)
resulting in (61,154, 77,194, 97,244,122), which is primitive.

We denote by B*(m,p,q) (resp. C*(m,p,q)) the number of m-cycles
(resp. primitive m-cycles) generated by partitioning from a 1-cycle. Clearly,
B(m,p,q) > B*(m,p, q) etc. For special px+¢q problems, B(m, p, q), C(2,p,q)
and consequently C(p, q) can be arbitrarily large.

LEMMA 5. For each prime p > 5, m and d > 0 there exist infinitely
many q = 280 — pk for which B(m,p,q) > d.

Proof. For fixed p, k,l, m, a (cyclic) new pair of partitions
[(koyk1y .-y km—1), (los 11y ooy lim—1)]
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generates a new m-cycle. Note that ¢ follows from p, k, [. For fixed p and m,
B*(m,p,q) is an increasing function of k£ and [. So for any p,m and d > 0
we can choose k*,[* such that if & > k* and [ > [* then B*(m,p,q) > d.
Consequently, B(m,p,q) > B*(m,p,q) > d. =

LEMMA 6. For each prime p > 5 and d > 0 there exist infinitely many
q = 2K —pF for which C(p,q) > C(2,p,q) > d.

Proof. For each d > 0 we can choose k,[ (hence ¢q) such that GCD(k,1)
=1 and B*(2,p,q) > 2d. Let z((j) be a local minimal element of the jth
2-cycle. From the matrix system (1) it follows for kg = k—1, ky = 1, lp = 7,
ly =1 —j that

(3) ao(j) = (p — 2)27 + (2" —p).
Using (p — 2)z0 = ap2¥ — ¢ we find

k 2k )
) no() = Fg + (2 - 1) -2

p—2
We observe that z((0) is the global minimum of the 1-cycle, hence xo(j+1)
— x0(j) = 27%* for all j, from which it follows that if the jth 2-cycle is
non-primitive, then the (j — 1)th and the (54 1)th 2-cycle is primitive. Such
a primitive 2-cycle is non-trivial because GCD(k,l) = 1. As a consequence
we find C(p,q) > C(2,p,q) > C*(2,p,q) > %B*(Q,p,q) >d. m

For m > 3 we cannot prove that C'(m, p, q) is arbitrarily large. For fixed
p, m,d and each d* >0 we can choose ¢ such that B(m, p, q) > B*(m, p, q)>d*.
Now suppose C(m,p,q) < d < d*. Then for this pair (p,q) the number
of non-primitive m-cycles is B(m,p,q) — C(m,p,q) > d* —d > 0. Each
non-primitive m-cycle reduces to a different primitive m-cycle for a px + r
problem with r|q. Now C(m,p,r) < oo and consequently B*(m,p,q) <
B(m,p,q) = >_,.C(m,p,r) < oo. This upper bound for B*(m,p,q) could
conflict with the lower bound d* if the number of different factors of ¢ is
small enough. In such cases the assumption C(m,p,q) < d < d* cannot be
true, so C(m,p,q) is arbitrarily large. However if the number of different
factors of q is sufficiently large, the contradiction of the lower and upper
bound of C(m,p, ¢q) cannot be reached.

3. Generalized Collatz sequences with ¢ an odd prime. Recall
that S(p) is the set of primes ¢ such that 2kt _ pF = ¢ has a solution with
k>2, thereby excluding the trivial 1-cycle (1,271, ..., 2) for p+¢=2'. Such
pxr~+q problems form an interesting subset because of the empirical excep-
tionality of non-primitive cycles, i.e. B(m,p,q) ~ C(m,p,q). Also, for these
px+ q problems, C(2,p, q) and consequently C(p, ¢) can be arbitrarily large.
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LEMMA 7. For fixed p, consider the set of px+q problems with ¢ € S(p).
If S(p) is an infinite set, then for each d > 0 there are infinitely many pxr—+q
problems with C(2,p,q) > d.

Proof. Let q € S(p) satisfy B(2,p,q) > B*(2,p,q) ~ (k—1)(1—1)/2
> 2d. Consider the set of 2-cycles generated by partitioning from the 1-
cycle with k odd and [ even elements, starting with zo = (p¥ — 2%)/(p — 2).
Similarly to the proof of Lemma 6 we have C*(2,p, q) > %B*(Q,p, q). Conse-
quently, C(2,p,q) > C*(2,p,q) > %B*(Q,p, q) > d. Since S(p) is an infinite
set, for infinitely many k* > k and [* > [ another ¢* (prime) results for
which the same reasoning applies. =

Note that C'(2,p,1) < oo and only exceptionally (empirical fact, no
proof) C(2,p,1) > 0. For a generalization of the proof of Lemma 7 to
C(m,p,q) > d, it is required that for every k > 1 there exist infinitely
many primes ¢ € S(p). Since C(p,q) > C(2,p,q) we have without this re-
quirement:

COROLLARY 8. For fized p, consider the set of pxr + q problems with
q € S(p). If S(p) is an infinite set, then for each d > 0 there are infinitely
many px + q problems with C(p,q) > d.

Trivial m-cycles can exist by definition, but they need not be generated
by partitioning if ¢ is prime.

LEMMA 9. If 28t — pkF = ¢ with p,q prime and k > 2, for infinitely
many p all the m-cycles of the px + q problem, generated by partitions from
a l-cycle, are non-trivial.

Proof. For the existence of a trivial m-cycle we must have GCD(k,[) =
¢c>1.Then k =c-vand | = c-w and q = [2VT%]¢ — [p¥]¢ = [2VT% — p]
J[2vtw)e=1) ... 4 pv(e=D] Now ¢ is prime and the second factor is > p+2,
so 2VtW — p¥ =1 hence v = 1 and p = 2%+ — 1. Consequently, if p is not a
Mersenne prime, then all generated m-cycles are non-trivial. If p = 2@+ —1
and ¢ = Z;;é (651)2(“+w)(0*1*j )p¥7 are both prime, then a non-trivial non-
primitive cycle with length v 4+ w exists. =

As a consequence of Corollary 8 and Lemma 9 we have

CoOROLLARY 10. Consider the pxr + q problem with p > 5 prime and
g € S(p). If S(p) is an infinite set, then for each p and d > 0 there are
infinitely many px + q problems with C(p,q) > d.

Simons [5] gives for p < 100 the smallest ¢ € S(p). They are shown in
Table 1.

Exotic candidates are px + q problems with large values for k and [. For
example, the 23z + 4217 problem with £ = 3 and [ = 11 has 26 primitive
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cycles, and the 97x + 32641759 problem with £ = 3 and [ = 22 has 92
primitive cycles.

Table 1. px + ¢ problem (¢ minimal) with primitive cycles

p q p q p q

3|31 1087 | 67 28279

79 | 37 6823 | 71 126031

11 7| 41 367 | 73 125743

13 1879 | 43 199 | 79 1951

17 223 | 47 30559 | 83 1303

19 151 | 53 29959 | 89 271

23 4217 | 59 29287 | 97 32641759
29 7351 | 61 520567

We computed C(p,q) for p = 5,7 and ¢ € S(p) (¢ < 10%). These are
presented in Table 2.

Table 2. C(5,q) and C(7,q) as a function of k and !

q k1 C(5,q9) > q k1 C(T7,q) >
3 3 4 3 79 2 5
7 2 3 3 463 2 7
103 2 5 3 1999 2 9
131 3 5 9 5791 49 62
487 2 7T 4 30367 4 11 95
971 5 7 66 32719 2 13 7
1423 4 7 37 130729 3 14 40
8167 2 11 6 131023 2 15 8
13259 5 9 173 521887 4 15 206
32143 4 11 95
130447 4 13 140
259019 5 13 489

Notice that B*(p,q) is an increasing function of k£ and [. These tables
confirm that C(p, q) ~ B(p, q) > B*(p, q) is an increasing function of k and [.

4. Remarks. 1. The infinity of S(p) is a conjecture (as the Mersenne
conjecture). We found that 3,7,103, 131,487,971, 1423, 8167, 13259, 32143,
130447, 259019, 1706527,4191179, 16699091, 16774091, 18280739, 33163807,

. € S(5). This S(p) conjecture is milder than the Mersenne conjecture
because k > 2 instead of k = 0 is required for the primality of ¢.
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2. If g € S(p) and C(1,p,q) = 1, then B*(p,q) can easily be calculated.
Let v(a, b) be the number of (cyclic) different and w(a, b) be the total number
of b-partitions of a. For fixed k and [ (note that [ > k) there are: one 1-cycle,
v(k,2)-w(l,2) 2-cycles etc. We checked that in many cases (not always) this
lower bound equals the empirically found number of primitive cycles for
p = 5,7. Exceptions are the 5z 4+ 7 problem with no primitive 1-cycle and
the 3z 4+ 463 problem with an extra 3-cycle.

3. For the px + g problem, the minimal elements in found cycles of equal
length show a regular pattern. Let xo(m, j) be the minimal element of the
jth primitive m-cycle. From the matrix system (1) it follows for m = 2, kg =
k— 1,l0 :j that

(5) 20(2,j) = + (2 1) 24
A similar expression can be found for x;(2, 7). For small j we have z¢ < 1
and consequently successive minima of 2-cycles for 57 = 1,...,1 — 1 differ

by successive powers of 2. Because the minimal element is min(zg, x;) this
regular pattern can be disturbed for larger j.

4. For the 23z + 4217 problem all cycles have length 14 with & = 3
and [ = 11. We found next to zo(1,1) = 579 the sequence of minima:
x0(2,7) = 583,591, 607,639, 703,831, 1087 for 2-cycles. The next elements
of this sequence: 1599, 2623, 4671, appear to be local minima in a 2-cycle,
while the global minima are 929,729,629. They form the beginning of a
similar sequence for the global minima of 3-cycles. So next to z(2,9) = 929
we found z¢(3,5) = 961, 1025, 1152, 1409 for 3-cycles etc.

5. For the 7z + 521887 problem, £k = 4 and | = 15. From partitioning
we found 204 cycles (m < 4) with length 19 and with zo(m,j) in a regular
pattern. We found two extra cycles (m = 5,6) with length 38 and with a
minimal element smaller than z((1,1).

6. In this paper we have proved that C(p,q) can be arbitrarily large.
In view of the regular behavior of the minimal x; over the cycles we did
not apply transcendence theory (as in [5]) to exclude cycles with large cycle
length. This leaves theoretically open that C'(5,q) and C(7,q) are greater
than the numbers indicated in Table 2.
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