A note on the paper by K. Feng "Non-congruent numbers, odd graphs and the Birch–Swinnerton-Dyer conjecture"

(Acta Arith. 75 (1996), 71-83)

by

YAN LI and LIANRONG MA (Beijing)

There is a mistake in Theorem 2.4(1) of [2], which says that for the imaginary quadratic field $K = \mathbb{Q}(\sqrt{D})$,

 $2^{t-1} \parallel h_K \Leftrightarrow$ the directed graph FG(D) is odd,

where D is the discriminant of K and t is the number of distinct prime factors of D. The correct statement is:

 $2^{t-1} \parallel h_K \Leftrightarrow$ the directed graph RG(D) is odd.

(For the definition of the graph FG(D) and the odd graph, see [2]. Notice that our notation FG(D) is just the notation G(-D) in [2]. The definition of the Rédei graph RG(D) is given in Definition 0.3 below.) In the following, we will give the proof of the correction and a counterexample (Example 0.5).

LEMMA 0.1 ([3, Proposition 2.2]). D can be uniquely decomposed as $D = D_1 \dots D_t$, where D_i is the discriminant of $\mathbb{Q}(\sqrt{D_i})$ and a prime power (up to sign). Explicitly, $D_1 = -4$, 8, or -8 if $2 \mid D_1$ (and then put $p_1 = 2$), otherwise $D_i = (-1)^{(p_i-1)/2} p_i$ with p_i an odd prime, for $1 \leq i \leq t$.

DEFINITION 0.2. The *Rédei matrix* $RM(D) = (r_{ij})$ is the $t \times t$ matrix over \mathbb{F}_2 such that $\left(\frac{D_j}{p_i}\right) = (-1)^{r_{ij}}$, and $r_{ii} = \sum_{j \neq i} r_{ij}$, where $1 \leq i, j \leq t$, $i \neq j$ and $\left(\frac{D_j}{p_i}\right)$ is the Kronecker symbol.

DEFINITION 0.3. Following the notation of [2], the *Rédei graph* RG(D) for $\mathbb{Q}(\sqrt{D})$ is defined as the simple directed graph with vertices $\{D_1, \ldots, D_t\}$ such that there is an arc $\overrightarrow{D_i D_j}$ if and only if $\left(\frac{D_j}{p_i}\right) = -1$ (i.e. $r_{ij} = 1$ in the Rédei matrix $RM(D) = (r_{ij})$).

²⁰⁰⁰ Mathematics Subject Classification: 11R11, 11R29.

Key words and phrases: quadratic fields, Rédei matrix, Rédei graph.

The following theorem is well known. For a proof, see Rédei and Reichardt [5], [6] or Morton [4].

THEOREM 0.4 (Rédei and Reichardt). Let r_4 be the 4-rank of Cl_K . Then $r_4 = t - 1 - \operatorname{rank} RM(D)$.

Now we can prove the correction of Theorem 2.4(1) of [2].

Proof. Gauss's genus theory tells us that the 2-rank of Cl_K equals t-1. So $2^{t-1} \parallel h_K$ is equivalent to $r_4 = 0$. By Rédei and Reichardt's theorem, this is equivalent to rank RM(D) = t - 1. By Lemma 2.2 of [2], it is also equivalent to RG(D) being odd.

EXAMPLE 0.5. Consider the imaginary quadratic field $\mathbb{Q}(\sqrt{-33})$. The table III in the appendix of Cohn [1] shows that

$$\operatorname{Cl}_{\mathbb{Q}(\sqrt{-33})} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}.$$

The discriminant of $\mathbb{Q}(\sqrt{-33})$ is equal to -132. The graphs RG(-132) and FG(-132) are as follows:

It is easily seen that RG(-132) is odd but FG(-132) is not.

REMARK 0.6. Suppose $D = -8p_2 \dots p_t$, $p_2 \equiv \pm 3 \mod 8$ and $p_i \equiv 1 \mod 8$ for $i \geq 3$. Then it can be deduced that RG(D) is odd if and only if FG(D)is odd. So Theorem 2.4(2) of [2] is correct. Since the remaining part of [2] only uses Theorem 2.4(2), the mistake does not affect the main result of [2].

References

- [1] H. Cohn, Advanced Number Theory, Dover Publ., 1980.
- [2] K. Feng, Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture, Acta Arith. 75 (1996), 71–83.
- [3] F. Lemmermeyer, *Reciprocity Laws: From Euler to Eisenstein*, Springer, 2000.
- P. Morton, On Rédei's theory of the Pell equation, J. Reine Angew. Math. 307/308 (1979), 373–398.
- [5] L. Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, ibid. 171 (1934), 55–60.

[6] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, ibid. 170 (1933), 69–74.

Department of Mathematical Sciences Tsinghua University Beijing 100084, China E-mail: liyan_00@mails.tsinghua.edu.cn lrma@math.tsinghua.edu.cn

> Received on 10.2.2008 and in revised form on 8.5.2008

(5626)