A note on the paper by K. Feng "Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture"

(Acta Arith. 75 (1996), 71-83)

by

Yan Li and Lianrong Ma (Beijing)

There is a mistake in Theorem $2.4(1)$ of [2], which says that for the imaginary quadratic field $K=\mathbb{Q}(\sqrt{D})$,

$$
2^{t-1} \| h_{K} \Leftrightarrow \text { the directed graph } F G(D) \text { is odd, }
$$

where D is the discriminant of K and t is the number of distinct prime factors of D. The correct statement is:

$$
2^{t-1} \| h_{K} \Leftrightarrow \text { the directed graph } R G(D) \text { is odd. }
$$

(For the definition of the graph $F G(D)$ and the odd graph, see [2]. Notice that our notation $F G(D)$ is just the notation $G(-D)$ in [2]. The definition of the Rédei graph $R G(D)$ is given in Definition 0.3 below.) In the following, we will give the proof of the correction and a counterexample (Example 0.5).

Lemma 0.1 ([3, Proposition 2.2]). D can be uniquely decomposed as $D=$ $D_{1} \ldots D_{t}$, where D_{i} is the discriminant of $\mathbb{Q}\left(\sqrt{D_{i}}\right)$ and a prime power (up to sign). Explicitly, $D_{1}=-4,8$, or -8 if $2 \mid D_{1}$ (and then put $p_{1}=2$), otherwise $D_{i}=(-1)^{\left(p_{i}-1\right) / 2} p_{i}$ with p_{i} an odd prime, for $1 \leq i \leq t$.

Definition 0.2. The Rédei matrix $R M(D)=\left(r_{i j}\right)$ is the $t \times t$ matrix over \mathbb{F}_{2} such that $\left(\frac{D_{j}}{p_{i}}\right)=(-1)^{r_{i j}}$, and $r_{i i}=\sum_{j \neq i} r_{i j}$, where $1 \leq i, j \leq t$, $i \neq j$ and $\left(\frac{D_{j}}{p_{i}}\right)$ is the Kronecker symbol.

Definition 0.3. Following the notation of [2], the Rédei graph $R G(D)$ for $\mathbb{Q}(\sqrt{D})$ is defined as the simple directed graph with vertices $\left\{D_{1}, \ldots, D_{t}\right\}$ such that there is an arc $\overrightarrow{D_{i} D_{j}}$ if and only if $\left(\frac{D_{j}}{p_{i}}\right)=-1$ (i.e. $r_{i j}=1$ in the Rédei matrix $\left.R M(D)=\left(r_{i j}\right)\right)$.

Key words and phrases: quadratic fields, Rédei matrix, Rédei graph.

The following theorem is well known. For a proof, see Rédei and Reichardt [5], [6] or Morton [4].

Theorem 0.4 (Rédei and Reichardt). Let r_{4} be the 4 -rank of Cl_{K}. Then $r_{4}=t-1-\operatorname{rank} R M(D)$.

Now we can prove the correction of Theorem 2.4(1) of [2].
Proof. Gauss's genus theory tells us that the 2-rank of Cl_{K} equals $t-1$. So $2^{t-1} \| h_{K}$ is equivalent to $r_{4}=0$. By Rédei and Reichardt's theorem, this is equivalent to $\operatorname{rank} R M(D)=t-1$. By Lemma 2.2 of [2], it is also equivalent to $R G(D)$ being odd.

Example 0.5 . Consider the imaginary quadratic field $\mathbb{Q}(\sqrt{-33})$. The table III in the appendix of Cohn [1] shows that

$$
\mathrm{Cl}_{\mathbb{Q}(\sqrt{-33})} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

The discriminant of $\mathbb{Q}(\sqrt{-33})$ is equal to -132 . The graphs $R G(-132)$ and $F G(-132)$ are as follows:

$R G(-132)$

$F G(-132)$

It is easily seen that $R G(-132)$ is odd but $F G(-132)$ is not.
REmark 0.6. Suppose $D=-8 p_{2} \ldots p_{t}, p_{2} \equiv \pm 3 \bmod 8$ and $p_{i} \equiv 1 \bmod 8$ for $i \geq 3$. Then it can be deduced that $R G(D)$ is odd if and only if $F G(D)$ is odd. So Theorem $2.4(2)$ of [2] is correct. Since the remaining part of [2] only uses Theorem $2.4(2)$, the mistake does not affect the main result of [2].

References

[1] H. Cohn, Advanced Number Theory, Dover Publ., 1980.
[2] K. Feng, Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture, Acta Arith. 75 (1996), 71-83.
[3] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein, Springer, 2000.
[4] P. Morton, On Rédei's theory of the Pell equation, J. Reine Angew. Math. 307/308 (1979), 373-398.
[5] L. Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, ibid. 171 (1934), 55-60.
[6] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, ibid. 170 (1933), 69-74.

Department of Mathematical Sciences
Tsinghua University
Beijing 100084, China
E-mail: liyan_00@mails.tsinghua.edu.cn
lrma@math.tsinghua.edu.cn

Received on 10.2.2008
and in revised form on 8.5.2008

