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1. Background. The Hecke triangle groups G(λ) are the groups of
fractional linear transformations generated by the transformations S(z) =
z + λ and T (z) = −1/z. Hecke [3] showed that these groups are properly
discontinuous, and thus useful for studying associated modular forms, only
when λ ≥ 2 or λ = λq = 2 cos(π/q) where q is an integer, q ≥ 3. We will
only consider the latter case, λ = λq. When confusion will not result, we
shall omit the subscript and write simply λ for λq.

We define T (0) =∞, T (∞) = 0 and S(∞) =∞, so that the set Q̂(λq) :=
Q(λq)∪{∞} is closed under the action of G(λq). Our interest lies primarily
in the orbits of G(λq) in Q̂(λq).

In the case q = 3, we see λ3 = 2 cos(π/3) = 1, and under the action of
G(λ3) it is well-known that all of Q ∪ {∞} is a single orbit. Furthermore,
Leutbecher showed in [4] that Q(λ5) ∪ {∞} consists of only a single orbit.
However, no such simple result holds for all q.

We can identify a fractional linear transformation

z 7→ az + b

cz + d

with the matrix

M =

(
a b

c d

)
so that composition of transformations corresponds to matrix multiplication.
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Since a scalar multiple of M corresponds to the same transformation
as M itself, we need only look at those transformations with det(M) =
ad− bc = 1, and we can identify M with −M .

The study of G(λ) is thus identified with the study of subgroups of
PSL2(R) generated by (

1 λ

0 1

)
and

(
0 −1
1 0

)
.

We will sometimes abuse notation and refer to the transformation M .
In [5], Rosen developed the foundations of the generalized continued frac-

tions associated with the Hecke groups. It is clear that for any a0, a1, . . . , an
∈ Z the λ-continued fraction (λcf)

a0λ−
1

a1λ−
1

a2λ− · · · −
1
anλ

(1)

is equal to the transformation Sa0TSa1T . . . TSan ∈ G(λ) evaluated at 0.
The orbit of 0 under G(λ), also called the set of cusps of G(λ), is therefore
equivalent to the set that can be expressed in the form (1), that is, the finite
λ-continued fractions. We abbreviate (1) as α = [a0; a1, . . . , an], the value of
λ being clear from the context.

Extending consideration to infinite continued fractions, two numbers are
in the same orbit if they can be expressed as continued fractions which agree
beyond a certain point. More precisely, α and β are in the same orbit if α
and β can be expressed as α = [a0; a1, a2, . . .] and β = [b0; b1, b2, . . .] so
that for some non-negative integers l and m, al+i = bm+i for all i ∈ N.
Furthermore, the λ-continued fractions computed using the nearest integer
algorithm of [5] must be among the expansions meeting this condition if α
and β are in the same orbit. For this reason, we may assume all λ-continued
fractions are computed by this algorithm. (See also [6].)

If we let ζ = ζ2q denote the primitive 2qth root of unity, eiπ/q, then we
have λ = 2 cos(π/q) = ζ + ζ−1. From this we see that Q(λ) is the maximal
real subfield of the 2qth cyclotomic field. In particular, this means that
[Q(λ) : Q] = 1

2 [Q(ζ) : Q] = 1
2φ(2q). It is a standard result of the theory of

cyclotomic fields that the ring of integers of Q(λ) is simply Z[λ] (see [7]).
Let h = b(q − 1)/2c. In [5], Rosen showed that

[1; 1, . . . , 1︸ ︷︷ ︸
h terms

] =
{

1, q odd,
2/λ, q even.

(2)

The study of these Hecke triangle groups naturally, therefore, breaks into
two cases: q even and q odd.
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2. Infinitely many orbits when q is even. The focus of this paper
is in understanding the number of distinct orbits in Q̂(λq). In this section
we will be interested in the case when q is even.

In [6], the specific cases of q = 4 and q = 6 were considered. It was
shown that every unit in the ring Z[λq] had infinite repeating λq-continued
fraction expansions (for q = 4, 6). As the expansions are periodic, it is easy
to observe that the orbits are all distinct. Indeed, the units of Z[λq] are all
of the form ±ξnq , where ξ4 = 1+

√
2 and ξ6 = 2+

√
3. Writing ξnq = an+bnλq

it was shown that

ξnq = 2bnλ+
εn

2bnλ+
εn

2bnλ+
.. .

where ε = −1 for q = 4 and ε = 1 for q = 6.
Furthermore, since the bn grow monotonically with n, this gives an infi-

nite number of distinct orbits in Z[λq] ⊂ Q̂(λq). As a consequence, one can
observe that the (strictly increasing) sequence {an} of rational integers all
have distinct orbits (for q = 4, 6).

The following theorem and its corollary vastly improve on these obser-
vations.

Theorem 1. Let q be even. Then µ, ν ∈ Z[λ2
q ] do not lie in the same

orbit under the action of G(λ) unless they differ by (multiplication by) a
unit of Z[λ2

q ].

We will use the fact that in the case when q is even, the fields Q(λq) and
Q(λ2

q) are distinct and, in fact, [Q(λq) : Q(λ2
q)] = 2. This is easy to prove.

Lemma 2. A matrix M ∈ G(λq) has one of the forms

M1 =

(
α βλ

γλ δ

)
or M2 =

(
αλ β

γ δλ

)
,

where α, β, γ, δ ∈ Z[λ2].

Proof. We refer to a matrix of the form Mi as type i. Recall that G(λ) is
generated by S and T , which are of type 2 and type 1, respectively. Applying
S to M1 and M2, we get matrices of types 2 and 1, respectively. Applying T ,
we get types 1 and 2, respectively.

Proof of Theorem 1. Let µ, ν ∈ Z[λ2] and suppose µ = Mν with M ∈
G(λ). We assume M is of type 1 (the proof for M = M2 is almost entirely
identical). Then

µ =
αν + βλ

γλν + δ
,
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or
λγµν + δµ = λβ + αν,

where all of the coefficients in this equation lie in Z[λ2]. Since {1, λ} is a
vector space basis for Q(λ) over Q(λ2), we may equate the coefficients of 1
and λ to get
(3) γµν = β, δµ = αν.

Furthermore, the determinant of M must be 1, so
(4) αδ − βγλ2 = 1,
or, upon multiplying (4) by µ and substituting (3),

α2ν − γ2λ2µ2ν = (α2 − γ2λ2µ2)ν = µ.

Since all the numbers here lie in Z[λ2], we obtain ν |µ. By relabeling ν and µ,
the same argument shows that µ | ν in Z[λ2]. Therefore, µ and ν differ by
(multiplication by) a unit in Z[λ2].

Corollary 3. For q even, Q(λq) contains infinitely many orbits under
the action of G(λq).

Proof. We apply Theorem 1 with µ and ν positive rational integers; then
µ = uν for some unit u of Z[λ2]. Since u = µ/ν ∈ Q, we must have u = ±1.
Since we took µ and ν to be positive, we have u = 1 and µ = ν. Thus, no
two natural numbers are in the same orbit under the action of G(λq) for any
even q.

3. A bound on the number of orbits for q odd. In this section
we will focus on the case when q is odd. We will develop a lower bound on
the number of orbits in Q(λ) under the action of G(λ) using ideas seen in
[1], [2], and [8]. The main idea is to work modulo 2. We begin with a bit of
notation.

Let O = Z[λ] be the ring of integers in Q(λ). We let : O → O/2O be
the natural reduction map and allow it to induce the obvious reductions on

: G(λ)→ G(λ).
For any ring R, we define P 1(R), the projective line over R, to consist of

(equivalence classes of) the relatively prime pairs of elements of R (so that
rR+ sR = R) with two pairs

(
r
s

)
and

(
r′

s′

)
considered equivalent if r = ur′

and s = us′ for some unit u in R. The group G(λ) acts on P 1(O) by the
action given by the usual matrix multiplication. (See Section 2 of [2].)

We consider the size of P 1(O). Since the projective line contains at least
all points of the form

(
a
1

)
and

(
1
0

)
for each a ∈ O = Z[λ]/(2), we obtain the

following easy bound.

Lemma 4. The number of elements in the projective line P 1(O) is at
least 2φ(q)/2 + 1.
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Of course, the ideal (2) does not have to be prime in O. However, if we
know how (2) factors, or indeed, the factorization of any ideal a in O, we
can say much more. The following proposition gives a sense of how one can
go about computing the number of elements in P 1(O/a).

Proposition 5. Suppose O is a principal ideal domain, and let a be
a prime of O. Suppose that a has norm equal to

∏
i p
di
i for some primes

pi ∈ N. Then the number of elements of P 1(O/a) is at least
∏

(pdi
i + 1).

Proof. Let us first consider p a prime in O of norm pe for some prime
p ∈ Z and some e ∈ N. We show that the number of elements in the projec-
tive line P 1(O/pnO) is pne+pne−e. Indeed, O/pnO is a local ring with max-
imal ideal p. For an element

(
r
s

)
∈ P 1(O/pnO), either r or s must be a unit

(otherwise, both would lie in p, and thus they would not be relatively prime).
Therefore, we have pne elements of the form

(
α
1

)
and another pne−e elements

of the form
(

1
β

)
with β a non-unit; these are pairwise non-equivalent to each

other.
Next, we note that for any two relatively prime ideals m1 and m2, the

projective space P 1(O/m1m2) is isomorphic to the product P 1(O/m1) ×
P 1(O/m2) by the Chinese Remainder Theorem.

Note that if p1 and p2 happen to be primes with the same norm pe,
the number of elements in P 1(O/p1p2) is (pe + 1)2 > p2e + pe, which is the
number of elements in P 1(O/p2

1O). So replacing J distinct primes of the
same norm by the Jth power of a single prime of that norm reduces the
number of elements in the projective line.

Finally, consider a product of a collection of primes having norm pd.
Then the number of elements in the associated projective ring is minimal
if the collection consists of one copy of a prime of norm pd. (Replacing one
prime of norm pd by d primes of norm p1 clearly increases the number of
elements. We want to increase e in the count pne + pne−e.) The minimum
number of elements in the projective ring in this case is when n = 1 and
e = d. We get pd + 1.

In particular, if we have an ideal a whose norm is
∏
i p
di
i , the number of

elements in P 1(O/aO) is at least
∏
i(p

di
i + 1).

Lemma 6. Let I be any ideal of O. The map P 1(O)→ P 1(O/I) induced
by the reduction map O → O/I is surjective.

Proof. Let
(
r
s

)
∈ P 1(O/I). We wish to show that there are relatively

prime lifts of r and s to O.
Let r, s be any lifts of r, s to O, and let X be the (finite) set of prime

ideals dividing (r − s). Then X = X1 ∪ X2, where X1 consists of primes
dividing the ideal I and X2 consists of primes relatively prime to I. By
the Chinese Remainder Theorem, we can find % such that % ≡ r mod I and
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% ≡ 1 mod m for every m ∈ X2. Then % = r+ i for some i ∈ I; set σ = s+ i.
Since common divisors of % and σ must divide their difference r − s, they
must lie in X. Since no prime in X2 can divide %, any common factor of %
and σ must lie in X1. In other words, they must divide I.

Note that for any prime p dividing I, if p | (%) then p | (%) = (r) in O/I
as well. Therefore, if for some p ∈ X1 we have p | (%) and p | (σ), we would
have p | (r) + (s) = (1), which is impossible for a prime ideal p | I.

Therefore, % and σ are relatively prime, and
(
%
σ

)
is a lift of

(
r
s

)
to

P 1(O).

We return to the group G(λ).

Lemma 7. For q odd , the group G(λ) is the dihedral group of order 2q.

Proof. See Theorem 3.2 of [1].

It follows that the number of elements of any orbit in P 1(O) cannot
exceed 2q, the order of the group. In the following proposition we shall look
at one particular orbit: the orbit of 0.

Proposition 8. The size of the orbit of 0 under the action of G(λ) is
at most q.

Proof. It is clear from Lemma 7 that G(λ) is generated by S and ST .
The subgroup generated by ST has order q. We claim that the orbit of 0
under the action of this subgroup is equal to the entire orbit under the action
of G(λ), and thus has no more than q elements.

For notational convenience, let us write U = ST =
(
λ 1
1 0

)
and let ∞ be

the element
(

1
0

)
= U(0) of P 1(O). We will show that SUk(∞) = U−k(∞),

which will establish the proposition.
First note that since U is symmetric, so are all powers of U . Furthermore,

we can show by induction on k that if we write Uk =
(
a b
b d

)
, then a + d =

bλ. This is true when k = 1. We show that this property is preserved by
multiplication by U since U

(
a b
b d

)
=
(
aλ+b a
a b

)
. The desired property comes

down to aλ+ b+ b = aλ, which is clear modulo 2.
Now, if Uk =

(
a b
b d

)
, then U−k =

(
d b
b a

)
. We are therefore trying to show

that a/b+ λ = d/b, or a+ bλ = d. This is equivalent to what we showed in
the previous paragraph.

Theorem 9. For q odd , the number of orbits in Q(λ) under the action
of G(λ) is at least (2φ(q)/2 + q + 1)/2q.

Proof. The size of an orbit under the action of G(λ) in P 1(O) cannot
exceed the order of the group, which is at most 2q. Moreover, by Proposition
8 above, the orbit of 0 has order at most q. Therefore, the number of orbits



Generalized continued fractions 343

in P 1(O) is at least

1 +
#P 1(O)− q

#G(λ)
≥ 2φ(q)/2 + q + 1

2q
.

Since by Lemma 6 the reduction from O to O induces a surjective map from
P 1(O) onto P 1(O), every one of these orbits has a preimage in P 1(O), and
clearly the lifts of distinct orbits are themselves distinct orbits.

Note that if O = O/2O is not a field, we have strictly more elements in
P 1(O), and therefore strictly more orbits.

In Table 1, we list the lower bounds on the number of orbits, t, obtained
in Theorem 9.

Table 1. Minimum number of orbits in Q(λq) under the
action of G(λq)

q = 3 5 7 9 11 13 15 17 19

t ≥ 1 1 2 1 2 3 2 9 14

q = 21 23 25 27 29 31 33 35 37

t ≥ 3 46 21 10 283 530 17 60 3543

Remark 1. We emphasize that the bounds stated are lower bounds.
For q = 3 and q = 5, the bound of 1 is known to be the actual number of
orbits. For q = 7, it was conjectured in [6] that there are exactly two orbits,
but this claim remains unproven. However, for q = 9, the stated bound is 1,
but λ-continued fraction computations show that there must be at least five
distinct orbits: those of 0, ±2, and ±8. These all collapse modulo 2, of course.

Remark 2. Note that for some values of q, the lower bound stated is less
than the lower bound given in [2]. Borho and Rosenberger claim, without
proof, that the bound that they state follows from their methods. In fact, it
appears that their bound is based on the assumption that in the residue field
modulo a prime divisor of 2, all of the orbits, with the possible exception of
an orbit of two elements, have q elements. In fact, a slight adaptation of their
methods (in the proof of their Theorem 5.1) shows that while the orbit of 0
has q elements, all other orbits must have 2q elements except for one possible
orbit of two elements. We present such an adaptation in the next proposition.

Proposition 10. Suppose that O is a field. Then the orbits in P 1(O)
under the action of G(λq) have exactly 2q elements, with the exception of
the orbit of 0 which has q elements and one possible orbit with two elements.

Proof. Fix an element x of P 1(O). We know that U has order q, which,
we remind the reader, is assumed to be odd throughout this section. Let u
and t be the number of elements in the orbit of x under the actions of the
cyclic group generated by U and G(λ), respectively. Then u must divide q,
the order of the subgroup, and t must divide 2q, the order of the full group.
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Thus u must be odd. So either u = 1, in which case x is fixed by U , or u ≥ 3.
The u elements of the orbit are fixed by the group element Uu. Thus Uu is a
fractional linear transformation which fixes u elements. So if u ≥ 3, then Uu

must be the identity. (Here we are using the assumption that O is a field.)
This would mean that q |u, and so u would equal q. We have established
that u = 1 or u = q. In either case, we know that u ≤ t.

First, let us consider the case u = 1. This means that t could only equal
1 or 2, since x is fixed by U . However, if t = 1, then x would be fixed by the
entire group. In particular, x would be fixed by S. This means that x =∞.
But ∞ is not fixed by T . So this is impossible. Therefore, t = 2. Note that
this case only occurs when x is fixed by U , and U can only fix at most two
points. Therefore there is at most one orbit of order 2.

The remaining case is when u = q. Here, t can equal either q or 2q. We
consider the action of S. The only way t could equal q is if S permutes the
set {x, Ux, . . . , U q−1x}. Since S has order 2 and this set has an odd number
of elements, we see that S must fix some Ukx. This means that Ukx = ∞,
so the orbit of x is the orbit of ∞ (which is the orbit of 0). Any other orbit
must have t = 2q.

From the form of our bound it is clear that the number of orbits as q
tends to infinity is unbounded, since φ(q) grows (approximately) linearly
in q. For example, setting q = 3n we have φ(q)/2 = 3n−1, and the sequence
23n−1

+3n+1
2·3n clearly tends to infinity. A stronger result is possible, namely

Corollary 11. For every n, there are only finitely many values of q
with no more than n orbits.

The importance of the proof of Theorem 9 is that it allows us to construct
elements whose continued fraction expansion is provably not finite, since the
orbits in P 1(O) are easily computable (O is a finite ring). We include two
example computations.

Example 3. Let q = 11. The lower bound we obtain is

t ≥ 25 + 11 + 1
22

= 2.

In this case, the minimal polynomial x5−x4− 4x3 + 3x2 + 3x− 1 of λ stays
irreducible modulo 2, implying that the ideal (2) remains inert, and O/2O
is a field with 25 = 32 elements. The orbit of 0 will consist of 11 elements
of P 1(O) including the single point at infinity. Writing λ for λ to ease no-
tation, we write the orbit of 0 with the sequence determined by the action
of U : {0,∞, λ, λ4 +λ3 + 1, λ4 +λ3 +λ2 +λ, λ4 +λ, 1, λ+ 1, λ4, λ4 +λ3 +λ2,
λ4 + λ3 + λ+ 1}.

The remaining elements of the field form the orbit of length 2q = 22. Any
lifting of them to characteristic 0 is non-cuspidal. So, in particular, we can
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state with certainty that the real number λ2
11, for example, has an infinite

λ11-continued fraction expansion. This stands in contrast to λ4
11, which may

or may not have a finite expansion. Numerical computations for λ4
11 yield a

continued fraction which does not terminate after 10 000 terms.

Example 4. The computation is somewhat more involved in the case
when O/2O is not a field, since the elements of the projective line are not
all of the form that we counted in Lemma 4. We consider the case q = 17,
the smallest q for which 2 splits. With strictly more than 2φ(17)/2 + 1 =
257 elements in the projective ring and strictly more than eight orbits, a
full account of all orbits would be excessive. In fact, since 2 splits into
two distinct primes of degree 4, the number of elements in the projective
ring is (24 + 1)2 = 289. Following the proof of Theorem 9, we get a lower
bound on the number of orbits of 1 + (289− 17)/34 = 9, which agrees with
the estimate from the theorem. One can compute the orbit of 0, as in the
previous example. The only potentially cuspidal elements in Q(λ) would be
congruent to one of the 17 elements of that orbit modulo 2.

4. Fixed points and periodic continued fractions

4.1. Fixed points and periodic continued fractions. Let x ∈ Q(λ) and
consider a transformation M =

(
a b
c d

)
. Then x is a fixed point of M if and

only if

(5)
ax+ b

cx+ d
= x.

It is easy to see that this relation yields a polynomial equation that is of
degree at most two in x. Therefore, when the relation is non-trivial, the
equation will have at most two solutions, and M can have at most two fixed
points over a field. The relation is trivial only in the case when M is the
identity transformation, in which case all points are fixed.

Fixed points of Hecke triangle groups are expressible as periodic con-
tinued fractions, i.e. continued fractions of the form in [a0; a1, a2, . . . ] for
which there exist integers i and k so that aj = aj+k for all j ≥ i. Two ele-
ments of Q̂(λq) are in the same orbit when they can be expressed as periodic
λ-continued fractions with the same periodic part. It can thus be convenient
to consider periodic λ-continued fractions as it is easy to tell whether two
periodic λ-continued fractions are in the same orbit. However, it is not al-
ways easy to find such elements in Q̂(λq), since these are the fixed points
of some element M of G(λ) which may, as roots of a quadratic polynomial
determined by (5), lie in some quadratic extension of Q(λ).

In this section we present some results having to do with periodic λ-
continued fractions. We are motivated by the situations present in the cases
when q = 7 and q = 9.
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When q = 7, there are, conjecturally, just two orbits in Q(λ7): the cuspi-
dal orbit (i.e. the finite continued fractions) and the orbit of λ2−1 = [1,−1].

When q = 9, we again find that the elements of Q(λ9) all appear to have
λ9-continued fraction representations which are either finite or (eventually)
periodic. The periodic elements are in the orbits of 2λ + 2 = [3,−4, 1, 1],
8λ+ 8 = [12,−1, 3, 1,−2,−18,−1, 40, 3, 1, 1, 1], −2λ− 2, or −8λ− 8.

4.2. Period length for q = 2pn with p ≡ 3 mod 4

Lemma 12. Let q ≥ 3 be an integer. If q can be written in the form
q = 2pn for some odd prime p, then the ideals (λφ(q)

q ) and (p) of Z[λq] are
equal.

The proof of the lemma is left as an exercise in algebraic number theory.

Remark 5. It can also be shown that λq is a unit of Z[λq] whenever q
is not of the form 2pn.

Theorem 13. Suppose q can be written as q = 2pn for some prime p
congruent to 3 modulo 4. Suppose x ∈ Q(λq) has a periodic continued frac-
tion expansion. Then the length of the period of x is even.

Proof. Since λq is not a unit, we can consider the groupG(λq) modulo λq.
The reduction is generated by the matrices

S =

(
1 0
0 1

)
, T =

(
0 −1
1 0

)
.

Now let x have a purely periodic continued fraction expansion, that is, let
x be a fixed point of M ∈ G(λq). Suppose M ≡ T mod λq. Then −1/x ≡
x mod λ. That is, −1 ≡ x2 mod λ.

From Lemma 12, we have N(λq) = ±p, and from this it follows that
Z[λ]/(λ) is isomorphic to Z/pZ, and since p ≡ 3 mod 4, we know that −1 is
not a square modulo λ.

Therefore, M ≡ S mod λ. This means that in the decomposition of M
into a word in S and T , the number of factors T must be even, and the
number of terms in the period of x must be even. Note that if x is even-
tually periodic (not necessarily purely periodic), the matrix M fixing x is
also congruent to S modulo λ, being conjugate to a matrix fixing a purely
periodic continued fraction.

4.3. Periodic continued fractions for q = 7. The following proposition
is a step in the direction of proving that, for q = 7, there is a single orbit
containing periodic continued fractions, and it is the orbit of λ2−1 = [1,−1].

Proposition 14. For q = 7, if x ∈ Q(λ) has the continued fraction
expansion x = [n,−n ], then n = ±1.
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Proof. Suppose x = [n,−n ]. Then unwinding the first part of the contin-
ued fraction, we see that −1/(x−nλ) = [−n, n ] = −x, so x2−nλx− 1 = 0.
The discriminant of this equation is

D = (nλ)2 + 4,
which has norm

N(D) = n6 + 24n4 + 80n2 + 64.

In order for x to be in the field, D must be a square in the field. If D is
to be a square in the field, its norm must be a square in Z, so we can set
n6 + 24n4 + 80n2 + 64 = (n3 + 12n+ ε)2. For n ≥ 32, we see that N(D) lies
strictly between (n3 +12n)2 and (n3 +12n+1)2 (in other words, ε < 1), and
hence is not a square. Checking numerically, we find that for 1 ≤ n < 32,
the only time N(D) is a square is when n = 1.

5. Open questions and conjectures. We conclude with some remain-
ing questions and directions for further work.

Remark 6. It is tempting to try to analyze the orbits modulo higher
powers of 2. For example, when q = 7, it may be possible to conclude that
there are only two orbits in characteristic 0 under the action of G(λ) by
looking 2-adically (the prime 2 remains inert when q = 7). Modulo 2 we
have the hopeful result of two orbits (one of length 7 and one of length
2); however, to obtain an upper bound on the number of orbits, a lower
bound on their order seems necessary. In a ring with zero divisors (such as
O/2nO), a lower bound on the size of an orbit is difficult to compute since,
in particular, a fractional linear transformation may have many fixed points
without being the identity. It will, for example, be the case that the size of
P 1(O/2nO) is even, so S will have to have more than one fixed point.

Remark 7. For q > 9, we believe that there are numbers in Q(λ) whose
continued fraction expansion is not periodic. However, the only tools we have
so far for showing that the continued fraction expansion of a number does not
terminate involve looking modulo (2), and that method will not prove that
an element of Q(λ) has a trivial stabilizer. Once again, it may be possible
to approach the problem p-adically for some suitably chosen prime p. (It
should be noted that Borho [1] demonstrates that no interesting results
arise when one considers the continued fractions over a field of characteristic
other than 2. However, different results may arise modulo higher powers of
a prime.)

Remark 8. It is unclear whether the estimate we give for the number of
orbits is ever accurate when q > 7. We know that it is not when q = 9, but
for higher values of q it is difficult to show that elements belong to distinct
orbits.
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Remark 9. Extensive computations of continued fractions of the form
aλn performed using PARI/GP did not find any hyperbolic fixed points in
Q(λq) for q odd, 11 ≤ q ≤ 29. This, however, does not show that any of the
elements considered were not hyperbolic fixed points. We thank the referee
for pointing out that since “there is always a finite index subgroup without
torsion and no elementary Fuchsian group can consist of parabolic elements
alone”, there must always exist hyperbolic fixed points.
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