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On the p-adic Leopoldt transform of a power series

by

Bruno Anglès (Caen)

Let p be an odd prime number. Let X be the projective limit for the
norm maps of the p-Sylow subgroups of the ideal class groups of Q(ζpn+1),
n ≥ 0. Let ∆ = Gal(Q(ζp)/Q) and let θ be an even and non-trivial character
of ∆. Then X is a Zp[[T ]]-module and the characteristic ideal of the isotypic
component X(ωθ−1) is generated by a power series f(T, θ) ∈ Zp[[T ]] such
that (see for example [2])

∀n ≥ 1, n ≡ 0 (mod p− 1), f((1 + p)1−n − 1, θ) = L(1− n, θ),
where L(s, θ) is the usual Dirichlet L-series. Therefore, it is natural and
interesting to study the properties of the power series f(T, θ).

We denote by f(T, θ) ∈ Fp[[T ]] the reduction of f(T, θ) modulo p. Then
B. Ferrero and L. Washington ([3]) have proved

f(T, θ) 6= 0.

Note that, in fact, we have ([1])

f(T, θ) 6∈ Fp[[T p]].
W. Sinnott has proved the following ([8]):

f(T, θ) 6∈ Fp(T ).

But note that Fp[[T ]] = Fp[[(1+T )a−1]] for all a ∈ Z∗p. Therefore it is natural
to introduce the notion of a pseudo-polynomial which is an element F (T ) in
Fp[[T ]] such that there exist an integer r ≥ 1 and elements c1, . . . , cr ∈ Fp
and a1, . . . , ar ∈ Zp such that F (T ) =

∑r
i=1 ci(1 + T )ai . An element of

Fp[[T ]] will be called a pseudo-rational function if it is the quotient of two
pseudo-polynomials.

In this paper, we prove that f(T, θ) is not a pseudo-rational function
(Theorem 4.5(1)). This suggests the following question: is f(T, θ) algebraic
over Fp(T )? We suspect that this is not the case but we have no proof for
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it. Note that, by the result of Ferrero and Washington, we can write

f(T, θ) = T λ(θ)U(T ),

where λ(θ) ∈ N and U(T ) ∈ Fp[[T ]]∗. S. Rosenberg ([6]) has proved that

λ(θ) ≤ (4p(p− 1))φ(p−1),

where φ is Euler’s totient function. In this paper, we improve Rosenberg’s
bound (Theorem 4.5(2)):

λ(θ) <
(
p− 1

2

)φ(p−1)

.

This implies that the lambda invariant of the field Q(ζp) is less than
2
(p−1

2

)φ(p−1)+1 (see Corollary 4.6 for the precise statement for an abelian
number field). Note that this bound is certainly far from being sharp, be-
cause according to a heuristic argument due to Ferrero and Washington
(see [5]), and to Greenberg’s conjecture,

λ(Q(ζp)) =
∑

θ∈ b∆, θ 6=1and even

λ(θ) ≤ log(p)
log log(p)

.

The author is indebted to Warren Sinnott for communicating some of
his unpublished work (note that Lemma 4.2 is due to Warren Sinnott).
The author thanks the referee for helpful remarks and suggestions. The
author also thanks Filippo Nuccio for pointing out the work of J. Kraft and
L. Washington ([4]).

1. Notations. Let p be an odd prime number, and K a finite extension
of Qp. Let OK be the valuation ring of K, and π a prime of K. We set
Fq = OK/πOK ; it is a finite field of q elements characteristic p. Let T be an
indeterminate over K, and set Λ = OK [[T ]]. Observe that Λ/πΛ ' Fq[[T ]].
Let F (T ) ∈ Λ \ {0}. Then we can write in a unique way ([9, Theorem 7.3])

F (T ) = πµ(F )P (T )U(T ),

where U(T ) is a unit of Λ, µ(F ) ∈ N, and P (T ) ∈ OK [T ] is a monic poly-
nomial such that P (T ) ≡ T λ(F ) (mod π) for some integer λ(F ) ∈ N. If
F (T ) = 0, we set µ(F ) = λ(F ) = ∞. An element F (T ) ∈ Λ is called
a pseudo-polynomial (see also [6, Definition 2]) if there exist some integer
r ≥ 1, c1, . . . , cr ∈ OK and a1, . . . , ar ∈ Zp such that

F (T ) =
r∑
i=1

ci(1 + T )ai .



p-adic Leopoldt transform of a power series 351

We denote the ring of pseudo-polynomials in Λ by A. For δ ∈ Z/(p − 1)Z
and F (T ) ∈ Λ, set

γδ(F (T )) =
1

p− 1

∑
η∈µp−1

ηδF ((1 + T )η − 1).

Then γδ : Λ→ Λ is an OK-linear map and:

• for δ, δ′ ∈ Z/(p− 1)Z, γδγδ′ = 0 if δ 6= δ′ and γ2
δ = γδ,

•
∑

δ∈Z/(p−1)Z γδ = IdΛ.

For F (T ) ∈ Λ, we set

D(F (T )) = (1 + T )
d

dT
F (T ),

U(F (T )) = F (T )− 1
p

∑
ζ∈µp

F (ζ(1 + T )− 1) ∈ Λ.

Then D,U : Λ→ Λ are OK-linear maps. Observe that:

• U2 = U,
• DU = UD,
• γδU = Uγδ for all δ ∈ Z/(p− 1)Z,
• Dγδ = γδ+1D for all δ ∈ Z/(p− 1)Z.

If F (T ) ∈ Λ, we denote its reduction modulo π by F (T ) ∈ Fq[[T ]]. If f :
Λ → Λ is an OK-linear map, we denote its reduction modulo π by f :
Fq[[T ]]→ Fq[[T ]]. For all n ≥ 0, we set ωn(T ) = (1 + T )p

n − 1.
Let B be a commutative and unitary ring. We denote by B∗ the set of

invertible elements of B.
We fix a topological generator κ of 1 + pZp. Let x ∈ Zp and let n ≥ 1.

We denote by [x]n the unique integer k ∈ {0, . . . , pn − 1} such that x ≡
k (mod pn). Let ω : Z∗p → µp−1 be the Teichmüller character, i.e. ω(a) ≡
a (mod p) for all a ∈ Z∗p. For x, y ∈ Zp, we write:

• x ∼ y if there exists η ∈ µp−1 such that y = ηx,
• x ≡ y (mod Q∗) if there exists z ∈ Q∗ such that y = zx.

The function logp will denote the usual p-adic logarithm, and vp the usual
p-adic valuation on Cp such that vp(p) = 1.

Let % be a Dirichlet character of conductor f%. Recall that the Bernoulli
numbers Bn,% are defined by the identity

f%∑
a=1

%(a)eaZ

efZ − 1
=
∑
n≥0

Bn,%
n!

Zn−1,

where eZ =
∑

n≥0 Z
n/n!. If % = 1, then for n ≥ 2, Bn,1 is the nth Bernoulli

number.
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Let x ∈ R. We denote by [x] the biggest integer less than or equal to x.
Finally, log will denote the usual logarithm.

2. Preliminaries. Let δ ∈ Z/(p − 1)Z. In this section, we will recall
the construction of the p-adic Leopoldt transform Γδ (see [5, Theorem 6.2])
which is an OK-linear map from Λ to Λ.

First, observe that (πn, ωn(T )) = πnΛ + ωn(T )Λ, n ≥ 1, is a basis of
neighbourhoods of zero in Λ:

Lemma 2.1.

(1) (π, T )2n ⊂ (πn, Tn) ⊂ (π, T )n for all n ≥ 1.
(2) ωn(T ) ∈ (p[n/2], T p

[n/2]+1
) for all n ≥ 1.

(3) For N ≥ 1, set n = [log(N)/ log(p)]. Then

TN ∈ (p[n/2], ω[n/2]+1(T )).

Proof. Note that assertion (1) is obvious. Assertion (2) comes from the
fact that

∀k ∈ {1, . . . , pn}, vp

(
pn!

k!(pn − k)!

)
= n− vp(k).

To prove assertion (3), it is enough to prove that for all n ≥ 0, there
exist δ(n)

0 (T ), . . . , δ(n)
n (T ) ∈ Z[T ] such that

T p
n

=
∑
i+j=n

ωi(T )pjδ(n)
j (T ).

This is clear for n = 0. Assume that it is true for some n and let r(T ) ∈ Z[T ]
be such that

ωn+1(T )
ωn(T )

+ pr(T ) = T p
n(p−1).

Then

T p
n+1

= T p
n ωn+1(T )
ωn(T )

+ pr(T )T p
n
.

Note that there exists q(T ) ∈ Z[T ] such that

ωn+1(T )
ωn(T )

= ωn(T )p−1 + pq(T ).

Thus

T p
n+1

= ωn+1(T )δ(n)
0 (T ) +

∑
i+j=n, j≥1

(ωn(T )p−1 + pq(T ))ωi(T )pjδ(n)
j (T )

+
∑
i+j=n

ωi(T )pj+1δ
(n)
j (T )r(T ).
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Thus, there exist δ(n+1)
0 (T ), . . . , δ(n+1)

n+1 (T ) ∈ Z[T ] such that

T p
n+1

=
∑

i+j=n+1

ωi(T )pjδ(n+1)
j (T ).

The following lemma will be used (for a similar result see [6, Lemma 5]):

Lemma 2.2. Let F (T ) ∈ A. Write F (T ) =
∑r

i=1 βi(1+T )αi with β1, . . . ,
βr ∈ OK , α1, . . . , αr ∈ Zp, and αi 6= αj for i 6= j. Let N = max{vp(αi−αj) :
i 6= j}. Let n ≥ 1 be an integer. Then

F (T ) ≡ 0 (mod (πn, ωN+1(T ))) ⇔ ∀i = 1, . . . , r, βi ≡ 0 (mod πn).

Proof. We have

F (T ) ≡
r∑
i=1

βi(1 + T )[αi]N+1 (mod ωN+1(T )).

Therefore F (T ) ≡ 0 (mod (πn, ωN+1(T ))) if and only if
r∑
i=1

βi(1 + T )[αi]N+1 ≡ 0 (mod πn).

But [αi]N+1 6= [αj ]N+1 for i 6= j. Therefore
∑r

i=1 βi(1 + T )[αi]N+1 ≡ 0
(mod πn) if and only if βi ≡ 0 (mod πn) for all i = 1, . . . , r.

Observe that U, D, γδ are continuous OK-linear maps by Lemma 2.1 and
the following lemma:

Lemma 2.3. Let F (T ) ∈ Λ and n ≥ 0.

(1) F (T ) ≡ 0 (mod ωn(T ))⇒ γδ(F (T )) ≡ 0 (mod ωn(T )).
(2) F (T ) ≡ 0 (mod ωn(T ))⇒ D(F (T )) ≡ 0 (mod (pn, ωn(T ))).
(3) n ≥ 1, F (T ) ≡ 0 (mod ωn(T ))⇒ U(F (T )) ≡ 0 (mod ωn(T )).

Proof. Assertions (1) and (2) are obvious. It remains to prove (3). Ob-
serve that, by [9, Proposition 7.2], for all G(T ) ∈ Λ we have

G(T ) ≡ 0 (mod ωn(T )) ⇔ ∀ζ ∈ µpn , G(ζ − 1) = 0.

Now, let F (T ) ∈ Λ with F (T ) ≡ 0 (mod ωn(T )). For all ζ ∈ µpn , we get

U(F )(ζ − 1) = 0.

Therefore U(F (T )) ≡ 0 (mod ωn(T )).

Let s ∈ Zp. For n ≥ 0, set

kn(s, δ) = [s]n+1 + δnp
n+1 ∈ N \ {0},

where δn ∈ {1, . . . , p− 1} is such that [s]n+1 + δn ≡ δ (mod p− 1). Observe
that:

• kn(s, δ) ≡ δ (mod p− 1) and kn(s, δ) ≡ s (mod pn+1) for all n ≥ 0,
• kn+1(s, δ) > kn(s, δ) for all n ≥ 0,
• s = limn kn(s, δ).
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In particular,

∀a ∈ Zp, ∀n ≥ 0, akn+1(s,δ) ≡ akn(s,δ) (mod pn+1).

Now, let F (T )∈A. Write F (T )=
∑r

i=1 βi(1+T )αi with β1, . . . , βr ∈ OK ,
α1, . . . , αr∈Zp. We set

Γδ(F (T )) =
∑
αi∈Z∗p

βiω
δ(αi)(1 + T )logp(αi)/ logp(κ),

where ωδ is the δ power of the Teichmüller character. Thus, we have a
surjective OK-linear map Γδ : A→ A.

Lemma 2.4. Let F (T ) ∈ A.

(1) Let s ∈ Zp. Then

∀n ≥ 0, Γδ(F )(κs − 1) ≡ Dkn(s,δ)(F )(0) mod pn+2.

(2) If n ≥ 1 and F (T ) ≡ 0 (mod ωn(T )), then

Γδ(F (T )) ≡ 0 (mod ωn−1(T )).

Proof. For a ∈ Z∗p, write a = ω(a)〈a〉, where 〈a〉 ∈ 1 + pZp. Let

F (T ) =
r∑
i=1

βi(1 + T )αi , β1, . . . , βr ∈ OK , α1, . . . , αr ∈ Zp.

We have

Dkn(s,δ)(F (T )) =
r∑
i=1

βiα
kn(s,δ)
i (1 + T )αi .

Thus

Dkn(s,δ)(F (T )) ≡
∑
αi∈Z∗p

βiω
δ(αi)〈αi〉s(1 + T )αi (mod pn+2).

But recall that
Γδ(F )(κs − 1) =

∑
αi∈Z∗p

βiω
δ(αi)〈αi〉s,

and assertion (1) follows easily.
Now, suppose that F (T ) ≡ 0 (mod ωn(T )) for some n ≥ 1. Then

∀a ∈ {0, . . . , pn − 1},
∑

αi≡a (mod pn)

βi = 0.

This implies that

∀a ∈ {0, . . . , pn−1 − 1},
∑

αi∈Z∗p, logp(αi)/logp(κ)≡a (mod pn−1)

ωδ(αi)βi = 0.
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But recall that

Γδ(F (T )) =
∑
αi∈Z∗p

βiω
δ(αi)(1 + T )logp(αi)/ logp(κ).

Thus Γδ(F (T )) ≡ 0 (mod ωn−1(T )).

Proposition 2.5. Let F (T ) ∈ Λ. Then there exists a unique power
series Γδ(F (T )) ∈ Λ such that

∀s ∈ Zp, ∀n ≥ 0, Γδ(F )(κs − 1) ≡ Dkn(s,δ)(F )(0) (mod pn+1).

Proof. Let (FN (T ))N≥0 be a sequence of elements in A such that

∀N ≥ 0, F (T ) ≡ FN (T ) (mod ωN (T )).

Fix N ≥ 1. Then

∀m ≥ N, Fm(T ) ≡ FN (T ) (mod ωN (T )).

Therefore, by Lemma 2.4,

∀m ≥ N, Γδ(Fm(T )) ≡ Γδ(FN (T )) (mod ωN−1(T )).

This implies that the sequence (Γδ(FN (T )))N≥1 converges in Λ to some
power series G(T ) ∈ Λ. Observe that, for all N ≥ 1,

G(T ) ≡ Γδ(FN (T )) (mod ωN−1(T )).

In particular,
G(κs − 1) ≡ Γδ(FN )(κs − 1) (mod pN ).

Thus, applying Lemma 2.4, we get

G(κs − 1) ≡ DkN−1(s,δ)(FN )(0) (mod pN ).

But

DkN−1(s,δ)(F (T )) ≡ DkN−1(s,δ)(FN (T )) (mod (pN , ωN (T ))).

Therefore
G(κs − 1) ≡ DkN−1(s,δ)(F )(0) (mod pN ).

Now, set Γδ(F (T )) = G(T ) to complete the proof.

3. Some properties of the p-adic Leopoldt transform. We need
the following fundamental result:

Proposition 3.1. Let δ ∈ Z/(p − 1)Z, F (T ) ∈ Λ, and m,n ∈ N \ {0}.
Then

Γδ(F (T )) ≡ 0 (mod (πn, ωm−1(T ))) ⇔ γ−δU(F (T ))
≡ 0 (mod (πn, ωm(T ))).

Proof. A similar result has been obtained by S. Rosenberg ([6, Lemma 8]).
We begin by proving that Γδ is a continuous OK-linear map. By Lemma 2.1,
this comes from the following assertion:
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Let F (T ) ∈ Λ. Let n ≥ 1 and assume that F (T ) ≡ 0 (mod ωn(T )). Then

Γδ(F (T )) ≡ 0 (mod ωn−1(T )).

Indeed, let (FN (T ))N≥0 be a sequence of elements in A such that

∀N ≥ 0, F (T ) ≡ FN (T ) (mod ωN (T )).

By the proof of Proposition 2.5,

∀N ≥ 1, Γδ(F (T )) ≡ Γδ(FN (T )) (mod ωN−1(T )),

and Lemma 2.4 yields the assertion.
Now, since Γδ, γ−δ, U are continuous OK-linear maps, it suffices to prove

the statement of the proposition for F (T )∈A.Write F (T )=
∑r

i=1 βi(1+T )αi
with β1, . . . , βr ∈ OK and α1, . . . , αr ∈ Zp. Let I ⊂ {α1, . . . , αr} be a set of
representatives of the classes of α1, . . . , αr for the relation ∼ . For x ∈ I,
x 6≡ 0 (mod p), set

βx =
∑
αi∼x

βi
αi
x
.

We get

(p− 1)γ−δU(F (T )) =
∑

η∈µp−1

∑
x∈I, x∈Z∗p

η−δβx(1 + T )ηx.

Now observe that

Γδ(F (T )) = Γδγ−δU(F (T )) =
∑

x∈I, x∈Z∗p

βxω
δ(x)(1 + T )logp(x)/logp(κ).

Therefore Γδ(F (T )) ≡ 0 (mod (πn, ωm−1(T ))) if and only if, for all a ∈
{0, . . . , pm−1 − 1}, ∑

x∈I, x∈Z∗p, logp(x)/logp(κ)≡a (mod pm−1)

βxω
δ(x) ≡ 0 (mod πn).

Now, observe that for each a ∈ {0, . . . , pm−1}, there exists at most one η ∈
µp−1 such that [ηx]m = a, and if such an η exists it is equal to ω(a)ω−1(x).
Therefore Γδ(F (T )) ≡ 0 (mod (πn, ωm−1(T ))) if and only if

∀a ∈ {0, . . . , pm − 1},
∑

x∈I, x∈Z∗p, ∃ηx∈µp−1, [ηxx]m=a

βxη
−δ
x ≡ 0 (mod πn).

This last property is equivalent to γ−δU(F (T )) ≡ 0 (mod (πn, ωm(T ))).

Now, we can list the basic properties of Γδ:

Proposition 3.2. Let δ ∈ Z/(p− 1)Z and F (T ) ∈ Λ.

(1) Γδ : Λ→ Λ is a surjective and continuous OK-linear map.
(2) Γδ(F (T )) = Γδγ−δU(F (T )).
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(3) For all a ∈ Z∗p,

Γδ(F ((1 + T )a − 1)) = ωδ(a)(1 + T )logp(a)/logp(κ)Γδ(F (T )).

(4) Let κ′ be another topological generator of 1 + pZp and let Γ ′δ be the
p-adic Leopoldt transform associated to κ′ and δ. Then

Γ ′δ(F (T )) = Γδ(F )((1 + T )logp(κ)/logp(κ
′) − 1).

(5) µ(Γδ(F (T ))) = µ(γ−δU(F (T ))) and

∀N ≥ 1, λ(Γδ(F (T ))) ≥ pN−1 ⇔ λ(γ−δU(F (T ))) ≥ pN .
Proof. Assertions (1)–(4) come from the fact that Γδ, γ−δ, U are contin-

uous and that these assertions are true for pseudo-polynomials. Assertion
(5) is a direct application of Proposition 3.1.

Let us recall the following remarkable result due to W. Sinnott:

Proposition 3.3 ([8, Proposition 1]). Let r1(T ), . . . , rs(T ) ∈ Fq(T ) ∩
Fq[[T ]]. Let c1, . . . , cs ∈ Zp \ {0} and suppose that

s∑
i=1

ri((1 + T )ci − 1) = 0.

Then
∀a ∈ Zp,

∑
ci≡a (mod Q∗)

ri((1 + T )ci − 1) ∈ Fq.

Let us give a first application of this result:

Proposition 3.4. Let δ ∈ Z/(p− 1)Z and F (T ) ∈ K(T ) ∩ Λ.
(1) If δ is odd or δ = 0, then

µ(Γδ(F (T ))) = µ(U(F (T )) + (−1)δU(F ((1 + T )−1 − 1))).

(2) If δ is even and δ 6= 0, then

µ(Γδ(F (T ))) = µ(U(F (T )) + U(F ((1 + T )−1 − 1))− 2U(F )(0)).

Proof. The case δ = 0 has already been obtained by Sinnott ([7, Theo-
rem 1]). We prove (1); the proof of (2) is quite similar. Observe that (1) is
a consequence of Proposition 3.2 and the equality

µ(γ−δ(F (T ))) = µ(F (T ) + (−1)δF ((1 + T )−1 − 1)).

To prove this equality, observe that for any r(T ) ∈ Λ,
γ−δ(r(T )) = (−1)δγ−δ(r((1 + T )−1 − 1)).

Thus
2γ−δ(F (T )) = γ−δ(F (T ) + (−1)δF ((1 + T )−1 − 1)).

We can assume that F (T ) + (−1)δF ((1 + T )−1 − 1) 6= 0. Write

F (T ) + (−1)δF ((1 + T )−1 − 1) = πmG(T ),
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where m ∈ N and G(T ) ∈ Λ \ πΛ. Note that G(T ) ∈ K(T ). We have to
prove that γ−δ(G(T )) 6≡ 0 (mod π). Suppose that γ−δ(G(T )) ≡ 0 (mod π).
By Proposition 3.3, there exists c ∈ OK such that

G(T ) + (−1)δG((1 + T )−1 − 1) ≡ c (mod π).

But we must have c ≡ 0 (mod π). Since

G(T ) = (−1)δG((1 + T )−1 − 1),

we get G(T ) ≡ 0 (mod π), which is a contradiction.

Lemma 3.5. Let F (T ) ∈ Fq(T ) ∩ Fq[[T ]]. Then F (T ) is a pseudo-poly-
nomial if and only if (1 + T )nF (T ) ∈ Fq[T ] for some integer n ≥ 0.

Proof. Assume that F (T ) is a pseudo-polynomial. We can suppose that
F (T ) 6= 0. Write

F (T ) =
r∑
i=1

ci(1 + T )ai ,

where c1, . . . , cr ∈ F∗q , a1, . . . , ar ∈ Zp and ai 6= aj for i 6= j. Since F (T ) ∈
Fq(T ) there exist m,n ∈ N \ {0} with m > max{vp(ai − aj) : i 6= j} such
that

(T q
n − T )q

m
F (T ) ∈ Fq[T ].

Thus
r∑
i=1

ci(1 + T )ai+q
n+m −

r∑
i=1

ci(1 + T )ai+q
m ∈ Fq[T ].

Observe that

• ai + qn+m 6= aj + qm for all i, j ∈ {1, . . . , r},
• ai + qm = aj + qm ⇔ i = j.

Write
r∑
i=1

ci(1 + T )ai+q
n+m −

r∑
i=1

ci(1 + T )ai+q
m

=
t∑

j=1

bj(1 + T )dj ,

where b1, . . . , bt ∈ F∗q , d1, . . . , dt ∈ N, di 6= dj for each i 6= j. Then, by
Lemma 2.2, for each i ∈ {1, . . . , r}, there exists ji ∈ {1, . . . , t} such that
ci = dji and ai + qn = dji . In particular, ai + qm ∈ N for all i. Therefore
(1 + T )q

m
F (T ) ∈ Fq[T ].

Let us give a second application of Proposition 3.3:

Proposition 3.6. Let δ ∈ Z/(p− 1)Z and F (T ) ∈ Fq(T )∩Fq[[T ]]. Sup-
pose that there exist r ∈ {0, . . . , (p− 3)/2}, c1, . . . , cr ∈ Zp \ {0}, G1(T ), . . . ,
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Gr(T ) ∈ Fq(T ) ∩ Fq[[T ]] and a pseudo-polynomial R(T ) ∈ Fq[[T ]] such that

γδ(F (T )) = R(T ) +
r∑
i=1

Gi((1 + T )ci − 1).

Then there exists an integer n ≥ 0 such that

(1 + T )n(F (T ) + (−1)δF ((1 + T )−1 − 1)) ∈ Fq[T ].

Proof. Note that if η, η′ ∈ µp−1, then η ≡ η′ (mod Q∗) ⇔ η = η′ or
η = −η′. Since r < (p− 1)/2, by Proposition 3.3, there exists η ∈ µp−1 such
that

ηδF ((1 + T )η − 1) +−ηδF ((1 + T )−η − 1) is a pseudo-polynomial.

Therefore

F (T ) + (−1)δF ((1 + T )−1 − 1) is a pseudo-polynomial.

It remains to apply Lemma 3.5.

Let F (T ) ∈ Λ. We say that F (T ) is a pseudo-rational function if it is the
quotient of two pseudo-polynomials. For example, for all a ∈ Zp and b ∈ Z∗p,
((1 + T )a − 1)/((1 + T )b − 1) is a pseudo-rational function. We finish this
section by giving a generalization of [8, Theorem 1]:

Theorem 3.7. Let δ ∈ Z/(p − 1)Z and F (T ) ∈ Fq(T ) ∩ Fq[[T ]]. Then
Γ δ(F (T )) is a pseudo-rational function if and only if there exists some in-
teger n ≥ 0 such that

(1 + T )n(U(F (T )) + (−1)δU(F ((1 + T )−1 − 1))) ∈ Fq[T ].

Proof. Let R(T ) ∈ Fq[[T ]]. Let a1, . . . , ar ∈ Zp and c1, . . . , cr ∈ Fq.
Observe that, by Proposition 3.2,( r∑

i=1

ci(1 + T )ai
)
Γ δ(R(T )) = Γ δ

( r∑
i=1

ciR((1 + T )κ
ai − 1)

)
.

Assume that Γ δ(F (T )) is a pseudo-rational function. Then, by the above
remark, there exist c1, . . . , cr ∈ F∗q and a1, . . . , ar ∈ Zp, ai 6= aj for i 6= j,
such that

Γ δγ−δU
( r∑
i=1

ciF ((1 + T )κ
ai − 1)

)
is a pseudo-polynomial.

This implies, again by Proposition 3.1, that

γ−δU
( r∑
i=1

ciF ((1 + T )κ
ai − 1)

)
is a pseudo-polynomial.

Set

G(T ) = U(F (T )) + (−1)δU(F ((1 + T )−1 − 1)) ∈ Fq(T ) ∩ Fq[[T ]].
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Now, by Proposition 3.3, there exist d1, . . . , dl ∈ F∗q , b1, . . . , bl ∈ Zp, bi 6= bj
for i 6= j, η1, . . . , ηl ∈ µp−1, with ηiκ

bi ≡ ηjκ
bj (mod Q∗) for all i, j, and

ηiκ
bi 6= ηjκ

bj for i 6= j, such that
l∑

i=1

diG((1 + T )ηiκ
bi − 1) is a pseudo-polynomial.

For i = 1, . . . , l, write
ηiκ

bi = η1κ
b1xi,

where xi ∈ Q∗∩Z∗p, and xi 6= xj for i 6= j. SinceG(T )=(−1)δG((1+T )−1−1),
we can assume that x1, . . . , xl are positive. Now, we see that

l∑
i=1

diG((1 + T )xi − 1) is a pseudo-polynomial.

Therefore, there exist N1, . . . , Nl ∈ N \ {0}, Ni 6= Nj for i 6= j, such that
l∑

i=1

diG((1 + T )Ni − 1) is a pseudo-polynomial.

Now, by Lemma 3.5, there exists some integer N ≥ 0 such that

(1 + T )N
( l∑
i=1

diG((1 + T )Ni − 1)
)
∈ Fq[T ].

Write

G(T ) =
P (T )

(1 + T )nQ(T )
,

where n≥0, P (T ), Q(T )∈Fq[T ], Q(−1) 6=0, and (P (T ), (1 + T )nQ(T ))=1.
Let A(T ), B(T ) ∈ Fq[T ] be such that

G(T ) =
A(T )

(1 + T )n
+
B(T )
Q(T )

.

Then there exists M ≥ 0 such that

(1 + T )M
( l∑
i=1

di
B((1 + T )Ni − 1)
Q((1 + T )Ni − 1)

)
∈ Fq[T ].

But (1 + T,Q((1 + T )Ni − 1)) = 1 for i ∈ {1, . . . , l}. Therefore
l∑

i=1

di
B((1 + T )Ni − 1)
Q((1 + T )Ni − 1)

∈ Fq[T ].

Now assume that degT Q(T ) ≥ 1. Write

B(T ) = q(T )Q(T ) + r(T ),
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where q(T ), r(T )∈Fq[T ] and degT r(T )<degT Q(T ). Observe that r(T ) 6=0.
Hence

l∑
i=1

di
r((1 + T )Ni − 1)
Q((1 + T )Ni − 1)

∈ Fq[T ].

Recall that −degT is a discrete valuation on Fq(T ). Since Ni 6= Nj for i 6= j
and d1, . . . , dl ∈ F∗q , we get

degT

( l∑
i=1

di
r((1 + T )Ni − 1)
Q((1 + T )Ni − 1)

)
< 0,

which is a contradiction. Thus (1 + T )nG(T ) ∈ Fq[T ].

4. Application to Kubota–Leopoldt p-adic L-functions. Let θ be
a Dirichlet character of the first kind, θ 6= 1 and θ even. We denote by
f(T, θ) the Iwasawa power series attached to the p-adic L-function Lp(s, θ)
(see [9, Theorem 7.10]). Write

θ = χωδ+1,

where χ is of conductor d ≥ 1 with d 6≡ 0 (mod p), and δ ∈ Z/(p− 1)Z. Set
κ = 1 + pd and K = Qp(χ). We define

Fχ(T ) =
∑d

a=1 χ(a)(1 + T )a

1− (1 + T )d
.

Let us give the basic properties of Fχ(T ):

Lemma 4.1.

(1) If d ≥ 2, then Fχ(T ) ∈ Λ.
(2) If d = 1, then γα(Fχ(T )) ∈ Λ for all α ∈ Z/(p− 1)Z, α 6= 1.
(3) U(Fχ(T )) = Fχ(T )− χ(p)Fχ((1 + T )p − 1).
(4) If d ≥ 2, then Fχ((1 + T )−1 − 1) = εFχ(T ), where ε = 1 if χ is odd

and ε = −1 if χ is even.
(5) If d = 1, then Fχ((1 + T )−1 − 1) = −1− Fχ(T ).

Proof. (1), (4) and (5) are obvious.
(2) For d = 1, we have

Fχ(T ) = −1 +
∑p−1

a=0(1 + T )a

1− (1 + T )p
.

Set
G(T ) = (1− (1 + T )p)γα(Fχ(T )).

Note that

∀η ∈ µp−1,
1− (1 + T )p

1− (1 + T )ηp
≡ η−1 (mod ω1(T )).
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Therefore

(p− 1)G(T ) ≡
∑

η∈µp−1

ηα−1
p−1∑
a=0

(1 + T )ηa (mod ω1(T )).

Thus

(p− 1)G(T ) ≡
∑

η∈µp−1

ηα−1
p−1∑
b=0

(1 + T )b (mod ω1(T )).

Since α 6= 1, we get G(T ) ≡ 0 (mod ω1(T )). Therefore γα(Fχ(T )) ∈ Λ.
(3) For d = 1, we have

U(Fχ(T )) =
∑p−1

a=1(1 + T )a

1− (1 + T )p
= Fχ(T )− Fχ((1 + T )p − 1).

Now, let d ≥ 2. Set q0 = pd and κ = 1 + pd. Note that

Fχ(T ) =
∑q0

a=1 χ(a)(1 + T )a

1− (1 + T )q0
.

Therefore

U(Fχ(T )) =

∑q0
a=1, a 6≡0 (mod p) χ(a)(1 + T )a

1− (1 + T )q0
.

But

Fχ(T )− χ(p)Fχ((1 + T )p − 1)

=
∑q0

a=1 χ(a)(1 + T )a

1− (1 + T )q0
− χ(p)

∑d
a=1 χ(a)(1 + T )pa

1− (1 + T )q0
,

and the lemma follows easily.

Lemma 4.2. Assume that d ≥ 2. The denominator of Fχ(T ) is φd(1+T )
where φd(X) is the dth cyclotomic polynomial , and the same is true for
Fχ(T ).

Proof. Let ζ ∈ µd. If ζ is not a primitive dth root of unity, then, by [9,
Lemma 4.7], we have

d∑
a=1

χ(a)ζa = 0.

Recall that

Fχ(T ) =
∑d

a=1 χ(a)(1 + T )a

1− (1 + T )d
and (1 + T )d − 1 =

∏
n|d

φn(1 + T ).

Therefore the denominator of Fχ(T ) is φd(1 + T ).
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If ζ is a primitive dth root of unity, then, by [9, Lemma 4.8], we have
d∑
a=1

χ(a)ζa 6≡ 0 (mod π̃)

for any prime π̃ of K(µd). Hence the denominator of Fχ(T ) is φd(1 + T ).

Lemma 4.3. The derivative of γ−δ(Fχ(T )) is not a pseudo-polynomial
modulo π.

Proof. We first handle the case d ≥ 2. By (3) and (4) of Lemma 4.1, and
Lemma 4.2, we get

∀n ≥ 0, (1 + T )n(U Fχ(T ) + (−1)δ U Fχ((1 + T )−1 − 1)) 6∈ Fq[T ].

Thus by Proposition 3.6, γ−δU(Fχ(T )) is not a pseudo-polynomial. But
observe that U = Dp−1. Thus Dγ−δ(Fχ(T )) is not a pseudo-polynomial.

For d = 1, set

F̃χ(T ) = Fχ(T )− 2Fχ((1 + T )2 − 1) = 1− 1
2 + T

.

Observe that:

• ˜Fχ((1 + T )−1 − 1) = 1− F̃χ(T ),

• U(F̃χ(T )) = F̃χ(T )− ˜Fχ((1 + T )p − 1).

Therefore, as in the case d ≥ 2, γ−δU(F̃χ(T )) is not a pseudo-polynomial.
Thus neither is γ−δU(Fχ(T )), and one can conclude as in the case d ≥ 2.

Lemma 4.4.

ΓδUγ−δ(Fχ(T )) = f

(
1

1 + T
− 1, θ

)
.

Proof. We consider the case d = 1; the case d ≥ 2 is quite similar. Set
T = eZ − 1. We get

γ−δ(Fχ(T )) =
∑

n≥0, n≡1+δ (mod p−1)

Bn
n!

Zn−1.

Thus, by [9, Theorem 5.11], we get

∀k ∈ N, k ≡ δ (mod p− 1), Dkγ−δU(Fχ)(0) = Lp(−k, θ).
But, by Proposition 2.5, for s ∈ Zp we have

Γδγ−δU(Fχ)(κs−1) = lim
n
Dkn(s,δ)γ−δU(Fχ)(0) = Lp(−s, θ) = f(κ−s−1, θ),

and the lemma follows.

We can now prove our main result:
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Theorem 4.5.

(1) f(T, θ) is not a pseudo-rational function.
(2) λ(f(T, θ)) <

(p−1
2 φ(d)

)φ(p−1)
, where φ is Euler’s totient function.

Proof. (1) Suppose that f(T, θ) is a pseudo-rational function. Then so
are f

(
1

1+T − 1, θ
)

and Γ δγ−δU(Fχ(T )). Recall that if d ≥ 2 then, by Propo-
sition 3.2, Γ δFχ(T ) = Γ δγ−δU(Fχ(T )).

We first deal with the case d ≥ 2. By Theorem 3.7, there exists an integer
n ≥ 0 such that

(1 + T )n(U(Fχ(T )) + (−1)δU(Fχ((1 + T )−1 − 1)) ∈ Fq[T ].

This is a contradiction by Lemmas 4.1(3)–(4) and 4.2.
For d = 1, we work with

F̃χ(T ) = Fχ(T )− 2Fχ((1 + T )2 − 1) = 1− 1
2 + T

.

Then, by Proposition 3.2, Γ δγ−δU(F̃χ(T )) is a pseudo-rational function. We
get a contradiction as in the case d ≥ 2.

(2) Our proof is inspired by a method introduced by S. Rosenberg ([6]).
We first deal with the case d = 1. Note that we can assume that λ(f(T, θ))
≥ 1. Now, by Lemma 4.3,

µ(γ−δ(Fχ(T ))) = 0.

Furthermore,
γ−δ(Fχ)(0) ≡ 0 (mod π).

Therefore, by Lemma 4.1(3),

λ(γ−δU(Fχ(T ))) = λ(γ−δ(Fχ(T ))).

Hence we have to evaluate λ(γ−δ(Fχ(T ))). Set F (T ) = −1/T . Since δ is
odd, we have

γ−δ(Fχ(T )) = γ−δ(F (T )).

Observe that F ((1 + T )−1 − 1) = 1 − F (T ). Let S ⊂ µp−1 be a set of
representatives of µp−1/{1,−1}. We have

(p− 1)γ−δ(F (T )) = 2
∑
η∈S

η−δF ((1 + T )η − 1) −
∑
η∈S

η−δ.

Set
G(T ) =

(∏
η∈S

((1 + T )η − 1)
)
γ−δ(F (T )).

Then:

• µ(G(T )) = 0,
• λ(G(T )) = (p− 1)/2 + λ(γ−δ(F (T ))).
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For S′ ⊂ S, set t(S′) =
∑

x∈S′ x. We can write

G(T ) =
∑
S′⊂S

aS′(1 + T )t(S
′),

where aS′ ∈ OK . Define

N = max{vp(t(S′)− t(S′′)) : S′, S′′ ⊂ S, t(S′) 6= t(S′′)}.
Observe that if t(S′) 6= t(S′′), then

pvp(t(S
′)−t(S′′)) ≤ |NQ(µp−1)/Q(t(S′)− t(S′′))|.

Thus

pN <

(
p− 1

2

)φ(p−1)

.

But, by Lemma 2.2, λ(G(T )) < pN+1. Thus, by Proposition 3.2, we get

λ(f(T, θ)) = λ

(
f

(
1

1 + T
− 1, θ

))
< pN <

(
p− 1

2

)φ(p−1)

.

Now, we consider the general case, i.e. d ≥ 2. Again we can assume that
λ(f(T, θ)) ≥ 1. Thus as in the case d = 1, we get

λ(γ−δU(Fχ(T ))) = λ(γ−δ(Fχ(T ))).

Now, since d ≥ 2, we have degT Fχ(T ) < 0, and, by Lemma 4.2, we can
write

Fχ(T ) =
∑φ(d)−1

a=0 ra(1 + T )a

φd(1 + T )
,

where ra ∈ OK for a ∈ {0, . . . , φ(d) − 1}. Let again S ⊂ µp−1 be a set of
representatives of µp−1/{1,−1}. By Lemma 4.1,

(p− 1)γ−δ(Fχ(T )) = 2
∑
η∈S

η−δFχ((1 + T )η − 1).

Set
G(T ) =

(∏
η∈S

φd((1 + T )η)
)
γ−δ(Fχ(T )).

We have

G(T ) =
φ(d)−1∑
a=0

∑
η∈S

∑
S′⊂S\{η}

∑
d=(dη′ )η′∈S′ , dη′∈{0,...,φ(d)}

bS′,d(1+T )aη+
P
η′∈S′ dη′η

′
,

where bS′,d ∈ OK . Note that again µ(G(T )) = 0, and λ(G(T )) =
λ(γ−δ(Fχ(T ))). Now, for a, b ∈ {0, . . . , φ(d)− 1}, η1, η2 ∈ S, S1 ⊂ S \ {η1},
and S2 ⊂ S \ {η2}, set

V = aη1 +
∑
η∈S1

dηη − bη2 −
∑
η∈S2

d′ηη,
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where dη ∈ {0, . . . , φ(d)} for all η ∈ S1, and d′η ∈ {0, . . . , φ(d)} for all η ∈ S2.
If η1 = η2 then we can write

V = (a− b)η1 +
∑
η∈S′

uηη,

where |uη| ∈ {0, . . . , φ(d)} and |S′| ≤ (p− 3)/2.
If η1 6= η2, we can write

V = a′η1 + b′η2 +
∑
η∈S′

uηη,

where |a′|, |b′|, |uη| ∈ {0, . . . , φ(d)}, and |S′| ≤ (p− 5)/2. Therefore, if V 6= 0,
we get

pvp(V ) <

(
p− 1

2
φ(d)

)φ(p−1)

.

Now, we can conclude as in the case d = 1.

Let E be a number field and let E∞/E be the cyclotomic Zp-extension.
For n ≥ 0, let An be the p-Sylow subgroup of the ideal class group of the
nth layer in E∞/E. Then, by [9, Theorem 13.13], there exist µp(E) ∈ N,
λp(E) ∈ N and νp(E) ∈ Z such that for all sufficiently large n,

|An| = pµp(E)pn+λp(E)n+νp(E).

Recall that it is conjectured that µp(E) = 0; this has been proved by B. Fer-
rero and L. Washington ([3]) if E is an abelian number field.

Corollary 4.6. Let F be an abelian number field of conductor N. Write
N = pmd, where m ∈ N and d ≥ 1, d 6≡ 0 (mod p). Then

λp(F ) < 2
(
p− 1

2
φ(d)

)φ(p−1)+1

.

Proof. Set qn = pn+1d for n ≥ 0. Then F ⊂ Q(µqm). It is not difficult to
deduce that (see the arguments in the proof of Theorem 7.15 in [9])

λp(F ) ≤ λp(Q(µqm)).

But λp(Q(µqm)) = λp(Q(µq0)), and, by [9, Proposition 13.32 and Theorem
7.13],

λp(Q(µq0)) ≤ 2
∑

θ even, θ 6=1, fθ|q0

λ(f(T, θ)).

It remains to apply Theorem 4.5.

Note that the bound of the last corollary is certainly far from being sharp
even in the case p = 3 (see [4]).
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