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On the p-adic Leopoldt transform of a power series
by

BRUNO ANGLES (Caen)

Let p be an odd prime number. Let X be the projective limit for the
norm maps of the p-Sylow subgroups of the ideal class groups of Q((yn+1),
n > 0. Let A = Gal(Q(¢p)/Q) and let 6 be an even and non-trivial character
of A. Then X is a Z,[[T]]-module and the characteristic ideal of the isotypic
component X (wf~!) is generated by a power series f(T,0) € Z,[[T]] such
that (see for example [2])

Vn>1,n=0 (modp—1), f(1+p)' ™ —1,0)=L(1—n,0),

where L(s, ) is the usual Dirichlet L-series. Therefore, it is natural and
interesting to study the properties of the power series f(T,0).

We denote by f(T,0) € Fp[[T]] the reduction of f(7,6) modulo p. Then
B. Ferrero and L. Washington ([3]) have proved

FT0) £0.
Note that, in fact, we have ([1])

f(T,0) & Fp[[T7]].
W. Sinnott has proved the following ([8]):

F(T,0) & By (T).

But note that Fp[[T]] = Fp[[(1+T)*~1]] for all a € Zy. Therefore it is natural
to introduce the notion of a pseudo-polynomial which is an element F(T') in
F,[[T]] such that there exist an integer » > 1 and elements c¢i,...,¢, € F)
and a1,...,a, € Zp such that F(T) = >/, ¢(1 4+ T)%. An element of
F,[[T]] will be called a pseudo-rational function if it is the quotient of two
pseudo-polynomials.

In this paper, we prove that f(7,60) is not a pseudo-rational function
(Theorem 4.5(1)). This suggests the following question: is f(T',6) algebraic
over F,,(T")? We suspect that this is not the case but we have no proof for
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350 B. Angles

it. Note that, by the result of Ferrero and Washington, we can write
f(T,0) =T"OU(T),
where A(§) € N and U(T) € Fp[[T]]*. S. Rosenberg ([6]) has proved that
A(0) < (4p(p — 1)),

where ¢ is FEuler’s totient function. In this paper, we improve Rosenberg’s
bound (Theorem 4.5(2)):

AO) < (T)Mp_l).

This implies that the lambda invariant of the field Q((,) is less than
2(%)(}3@ —h (see Corollary 4.6 for the precise statement for an abelian
number field). Note that this bound is certainly far from being sharp, be-
cause according to a heuristic argument due to Ferrero and Washington

(see [5]), and to Greenberg’s conjecture,

QG = Y ap) < 8@

_ ~ loglog(p)
0c A, 0#1 and even

The author is indebted to Warren Sinnott for communicating some of
his unpublished work (note that Lemma 4.2 is due to Warren Sinnott).
The author thanks the referee for helpful remarks and suggestions. The
author also thanks Filippo Nuccio for pointing out the work of J. Kraft and
L. Washington ([4]).

1. Notations. Let p be an odd prime number, and K a finite extension
of Q. Let O be the valuation ring of K, and m a prime of K. We set
Fq = Og/mOks; it is a finite field of g elements characteristic p. Let T be an
indeterminate over K, and set A = Og|[[T]]. Observe that A/7A ~ Fy[[T].
Let F(T) € A\ {0}. Then we can write in a unique way ([9, Theorem 7.3])

F(T) = ") p(T)U(T),

where U(T) is a unit of A, pu(F) € N, and P(T) € Og|[T] is a monic poly-
nomial such that P(T) = TM*) (mod ) for some integer A\(F) € N. If
F(T) = 0, we set u(F) = AMF) = 0o. An element F(T) € A is called
a pseudo-polynomial (see also [6, Definition 2]) if there exist some integer
r>1,c,...,¢ € Og and aq,...,a, € Z, such that

r

F(T) =) a(l+T)™.

=1
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We denote the ring of pseudo-polynomials in A by A. For 6 € Z/(p — 1)Z
and F(T') € A, set

W) = —— S g F((1+T)" 1),

P 1 NEMp—1
Then s : A — A is an Og-linear map and:
o for 6,0 € Z/(p— 1)Z, ysvs = 0 if § # &' and 7¢ = s,
* > sez)p-1yz Y6 = Ida.
For F(T) € A, we set
d
D(F(T 1+7T)—=F(T
(RO} = (14 T) D)
U(F(T)) = F(T) — - Z F(C(1+T)—-1) € A
CEup
Then D,U : A — A are Og-linear maps. Observe that:
U2 =10,
DU =UD,
vsU = U~s forall § € Z/(p — 1)Z,
Dvs =~541D forall 6 € Z/(p — 1) Z.

T) € A, we denote its reduction modulo 7 by F(T) € F[[T]]. If f :
A is an Og-linear map, we denote its reduction modulo 7 by f :
([T = Fy[[T]]. For all n > 0, we set wy,(T) = (1 +T)*" — 1.

Let B be a commutative and unitary ring. We denote by B* the set of
invertible elements of B.

We fix a topological generator x of 1+ pZ,. Let x € Z, and let n
We denote by [z], the unique integer k € {0,...,p" — 1} such that
k (mod p"). Let w : Zy — pp—1 be the Teichmiiller character, i.e. w(a
a (mod p) for all a € Z;. For x,y € Z,, we write:

If
A
F

ﬁl;‘]oooo

=

e x ~ y if there exists n € p,—1 such that y = nz,

o z =y (mod Q) if there exists z € Q" such that y = zz.
The function log, will denote the usual p-adic logarithm, and v, the usual
p-adic valuation on C, such that v,(p) = 1.

Let o be a Dirichlet character of conductor f,. Recall that the Bernoulli
numbers B, , are defined by the identity

f
= o(a)e*? Z B g1
ef2 -1 n! ’
a=1 n>0

where ¢Z = Y om0 2"/l If p =1, then for n > 2, By, ; is the nth Bernoulli
number. B
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Let x € R. We denote by [z] the biggest integer less than or equal to z.
Finally, log will denote the usual logarithm.

2. Preliminaries. Let § € Z/(p — 1)Z. In this section, we will recall
the construction of the p-adic Leopoldt transform I's (see [5, Theorem 6.2])
which is an Og-linear map from A to A.

First, observe that (7", w,(T)) = 7"A + w,(T)A, n > 1, is a basis of
neighbourhoods of zero in A:

LEMMA 2.1.

(1) (m,T)?" C (7™, T") C (7, T)" for alln > 1.
(2) wn(T) € (p[n/z],Tp[anl) for alln > 1.
(3) For N > 1, set n = [log(N)/log(p)]. Then

T € (p[n/Q]vw[n/Q]Jrl(T))'

Proof. Note that assertion (1) is obvious. Assertion (2) comes from the
fact that

g

VEe{l,...,p"}, Up<k:!(p];;k‘)!) =n—uvy(k).

To prove assertion (3), it is enough to prove that for all n > 0, there
exist 5én) (7),... 5 (T') € Z[T] such that
7" = 3 w(T)pe(T).
i+j=n
This is clear for n = 0. Assume that it is true for some n and let r(T") € Z[T]
be such that

w1 (T) _ P (p-1)
won(T) +pr(T)=T .
Then
pn+1 _ pn wn_l,_]_ (T) pn
T T o) +pr(T)T?".
Note that there exists ¢q(7") € Z[T] such that
wn—l—l(T) —1
———— =w,(T)P T).
o) ¢ (T +pa(T)
Thus
7" = 0t (M) + Y (walT)PL + pa(T))ws(T)p 64 (T)

i+j=n,j=>1

+ 3wy (T)e(T).

i+j=n
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Thus, there exist (5én+1)(T), . ,(5&;1)(T) € Z[T] such that

7 = N w8 (). .

i+j=n+1
The following lemma will be used (for a similar result see [6, Lemma 5]):
LEMMA 2.2. Let F(T) € A. Write F(T) =Y., Bi(1+T)% with (1, ..,
Br € Ok, aa,...,0p € Ly, and o # o fori # j. Let N = max{v,(o; — ;) :
i # j}. Let n > 1 be an integer. Then
F(T)=0 (mod (7", wn+1(T))) < Vi=1,...,r, 3; =0 (mod 7").
Proof. We have
T
F(T) =) Bi(1+T) I+ (mod wy1(T)).

i=1
Therefore F(T) =0 (mod (7", wn+1(T))) if and only if

> i1+ TN+ =0 (mod 7).
=1

But [og]ni1 # [oy]nga for i@ # j. Therefore S°0_, 6;(1 + T)lilvet = 0
(mod 7™) if and only if ; =0 (mod #™) for alli=1,...,7. =

Observe that U, D, s are continuous Og-linear maps by Lemma 2.1 and
the following lemma:

LEMMA 2.3. Let F(T) € A and n > 0.

(1) F(T) =0 (mod wy(T)) = v(F(T)) =0 (mod wy(T)).

(2) F(T) =0 (mod w,(T)) = D(F(T)) =0 (mod (p", wn(T))).
(3) n>1, F(T) =0 (mod wy(T)) = U(F(T)) =0 (mod wy,(T)).

Proof. Assertions (1) and (2) are obvious. It remains to prove (3). Ob-
serve that, by [9, Proposition 7.2], for all G(T') € A we have

G(T) =0 (mod wy(T)) & V(€ ppn, G((—1) =0.
Now, let F(T') € A with F(T) =0 (mod wy(T')). For all { € piyn, we get
UF)(¢—1)=0.

Therefore U(F(T)) =0 (mod wy,(T)). =

Let s € Zy,. For n > 0, set

kn(sv 5) = [S]n+1 + 5npn+1 eN \ {O},

where 6,, € {1,...,p— 1} is such that [s],4+1 + 6, = d (mod p — 1). Observe
that:

e ky(s,0) =6 (mod p—1) and ky,(s,6) = s (mod p"*!) for all n > 0,

® knii1(s,6) > kn(s,6) for all n >0,

o s =lim, ky(s,0).
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In particular,
Va € Zyp, ¥n > 0, afn1(8:0) = gFn(8:9) (mod pntl).
Now, let F(T) € A. Write F(T)=3"_, 8i(1+T)% with 81, ..., 3, € Ok,
at,...,qp €24y, We set

= 37 B () (1 +T)°el 0/ 108(),

aZEZ*

where w? is the § power of the Teichmiiller character. Thus, we have a
surjective Og-linear map Iy : A — A.

LEMMA 2.4. Let F(T) € A.
(1) Let s € Zy. Then
VYn >0, I3(F)(k*—1)= D) (F)(0) modp™t2.
(2) Ifn>1 and F(T) =0 (mod w,(T)), then
I's(F(T)) =0 (mod wy—1(T)).
Proof. For a € Zj, write a = w(a)(a), where (a) € 1+ pZ,. Let

r
:Zﬂz(1+T)aza ﬁl?"'aﬁ?‘EOK,ala"'aarEZp-

We have
DR CI(P(T)) = 37 i (14 1)

Thus
DFn(s:2)( = > B’ )5 (L+T)% (mod p"*?).

aZEZ*

But recall that

I5(F)(r*—1) Z@ a;)®,

i €73

and assertion (1) follows easily.
Now, suppose that F(T) =0 (mod w,(T")) for some n > 1. Then

Va € {0,...,p" — 1}, Z B; = 0.
a;=a (mod p™)
This implies that

Va € {0,...,p" 1 =1}, Z W ()3 = 0.

a; €23, 1og,(a;)/log,(k)=a (mod pm~1)
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But recall that
T5(F(T) = > Biw (o) (1 + T8 (@) gy (),
aiEZ;
Thus I3(F(T)) =0 (mod wy—1(7T)). =

PROPOSITION 2.5. Let F(T) € A. Then there exists a unique power
series I's(F(T')) € A such that

Vs € Zy, ¥n >0, I5(F)(x*—1) = DD (F)(0) (mod p™t?).
Proof. Let (Fn(T'))n>0 be a sequence of elements in A such that
VYN >0, F(T)=Fn(T) (mod wn(T)).
Fix N > 1. Then
Vm > N, F,(T)=Fy(T) (mod wy(T)).
Therefore, by Lemma 2.4,
Vm >N, I5(Fn(T)) = Is5(Fn(T)) (mod wy—1(T)).

This implies that the sequence (I'5(Fn(T)))n>1 converges in A to some
power series G(T') € A. Observe that, for all N > 1,

G(T)=Is(Fn(T)) (mod wy—1(T)).
In particular,
G(k® — 1) = Is(Fy)(k* — 1) (mod p).

Thus, applying Lemma 2.4, we get

G(r* — 1) = D159 (Fy)(0) (mod pV).
But

DEN-1ON(F(T)) = D1 (Fy(T)) (mod (p™, wn (1))

Therefore

G(r* — 1) = D159 (F)(0) (mod p).
Now, set I'5(F(T')) = G(T) to complete the proof. =

3. Some properties of the p-adic Leopoldt transform. We need
the following fundamental result:

PROPOSITION 3.1. Let 6 € Z/(p — 1)Z, F(T) € A, and m,n € N\ {0}.
Then
I5(F(T)) =0 (mod (7", wm-1(T))) & v_sU(F(T))
=0 (mod (7", wn(T))).

Proof. A similar result has been obtained by S. Rosenberg ([6, Lemma 8]).
We begin by proving that s is a continuous Og-linear map. By Lemma 2.1,
this comes from the following assertion:
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Let F(T) € A. Let n > 1 and assume that F(7T) = 0 (mod w,(7T)). Then
I's(F(T)) =0 (mod wy—1(T)).
Indeed, let (Fn(T))n>0 be a sequence of elements in A such that
VN >0, F(T)=Fn(T) (mod wn(T)).
By the proof of Proposition 2.5,
VN >1, I5F(T))=TIs(Fn(T)) (mod wy_1(T)),

and Lemma 2.4 yields the assertion.

Now, since Iy, v_g, U are continuous Og-linear maps, it suffices to prove
the statement of the proposition for F(T') € A. Write F(T)=>"._, Bi(1+T)*
with B1,...,0, € Ok and «q,...,0p € Zy. Let I C {a,..., 0} be a set of
representatives of the classes of «aq,...,q, for the relation ~ . For = € I,

x Z 0 (mod p), set
Qg
Bz - O{erxﬁzx

(p—Dy-sUFT) = > > n80+T)™

nEpp—1 x€I, mEZ*

We get

Now observe that

Ly(F(T)) = Ty sU(FT) = Y Bawd (@) (1 4+ T)os() sl
z€l, xGZ*

Therefore I's(F(T)) = 0 (mod (7", wp—1(T))) if and only if, for all a €
{0,...,pm 1 -1},
Z Bew’(x) = 0 (mod 7").

z€l, z€Zy, log, () /log,(k)=a (mod pm—1)

Now, observe that for each a € {0,...,p™ — 1}, there exists at most one 7 €
pip—1 such that [nz], = a, and if such an n exists it is equal to w(a)w™!(z).
Therefore I's(F(T)) =0 (mod (7", wp—1(T))) if and only if

Va € {0,...,p™ — 1}, Z Bz’ =0 (mod 7™).
z€l,x€Zy, Me€Epp—1, NxT]m=0a
This last property is equivalent to y_sU(F(T")) =0 (mod (7", w,,(T))). =
Now, we can list the basic properties of [y:
PROPOSITION 3.2. Let § € Z/(p — 1)Z and F(T) € A.

(1) I's : A — A is a surjective and continuous O -linear map.
(2) Ty(F(T)) = Iyy_sU(F(T)).



p-adic Leopoldt transform of a power series 357

(3) For all a € Z,

L5(F(1+T) — 1)) = W(a)(1 + T)er( /08 (%) 15 (F(T)).
(4) Let £’ be another topological generator of 1+ pZy, and let I's be the

p-adic Leopoldt transform associated to k' and 6. Then
TH(F(T)) = Ty(F)(1+ )55 1),

(5) wI5(F(T))) = py—sU(F(T))) and

VN >1,  MNIG(F(T)) =" & My—sU(F(T))) = p.
Proof. Assertions (1)—(4) come from the fact that I'5, y_s, U are contin-

uous and that these assertions are true for pseudo-polynomials. Assertion
(5) is a direct application of Proposition 3.1. =

Let us recall the following remarkable result due to W. Sinnott:

PROPOSITION 3.3 ([8, Proposition 1]). Let ri(T),...,rs(T) € Fo(T) N
Fo[[T]]. Let c1,...,cs € Zy \ {0} and suppose that

> (14 T)% —1) =0.
i=1
Then
Ya € Z,, > r((1+T)% —1) €T,
¢;=a (mod Q*)
Let us give a first application of this result:
PROPOSITION 3.4. Let § € Z/(p — 1)Z and F(T) € K(T) N A.
(1) If 9 is odd or § =0, then
WI5(F(T))) = p(U(F(D) + (-1)°U(F(1+T)~" = 1))).
(2) If d is even and 6 # 0, then
uI5(F(T) = p(UF(T)) + UF((1+T)~" = 1)) = 2U(F)(0))-

Proof. The case 6 = 0 has already been obtained by Sinnott ([7, Theo-

rem 1]). We prove (1); the proof of (2) is quite similar. Observe that (1) is
a consequence of Proposition 3.2 and the equality

p(y-s(F(T))) = w(F(T) + (-1)°F((1 +T)~" = 1)).
To prove this equality, observe that for any r(T') € A,
Y-s(r(T)) = (=1)°y_s(r(1+T)~" = 1)).
Thus
2y 5(F(T)) = v-5(F(T) + (-1)°F((1 + T)~" = 1)).
We can assume that F(T) + (=1)°F((1+T)~' — 1) # 0. Write
F(T)+ (-1)°F(1+T)"' = 1) = a™G(T),
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where m € N and G(T) € A\ wA. Note that G(T) € K(T'). We have to
prove that v_5(G(T)) # 0 (mod 7). Suppose that y_s(G(T)) = 0 (mod 7).
By Proposition 3.3, there exists ¢ € Ok such that

G(T) + (-1)°G(1+T)™t = 1) = ¢ (mod 7).
But we must have ¢ = 0 (mod 7). Since
G(T) = (~1)PG((1+ )" — 1),
we get G(T') =0 (mod 7), which is a contradiction. =

LEMMA 3.5. Let F(T) € Fo(T) NFy[[T]]. Then F(T) is a pseudo-poly-
nomial if and only if (1 4+ T)"F(T') € Fy[T| for some integer n > 0.

Proof. Assume that F(T) is a pseudo-polynomial. We can suppose that
F(T) # 0. Write

T
F(T)=) a(l+T)%,
i=1
where c1,...,¢, € Fy, ai,...,a, € Zy and a; # a; for i # j. Since F(T') €
Fy(T) there exist m,n € N\ {0} with m > max{v,(a; — a;) : i # j} such
that
(79" — T)1" F(T) € F,[T].
Thus

T '
Do+ D) T =N (14 T) " € Fy[T).
i=1 i=1
Observe that
e a,+¢""" £aj+qm" foralli,je{l,....r}
e a;+q¢"=a;+q" & 1=j.
Write
T '
S+ T) T =N (1 4 Tt Z bi(1+T)
i=1 i=1
where by,...,0 € Fy, di,...,di € N, d; # dj for each i # j. Then, by
Lemma 2.2, for each i € {1,...,r}, there exists j; € {1,...,t} such that
¢ = dj; and a; + ¢" = dj,. In particular, a; + ¢" € N for all i. Therefore
(1+T)I"F(T) € Fy[T]. m

Let us give a second application of Proposition 3.3:

PROPOSITION 3.6. Let § € Z/(p —1)Z and F(T) € Fo(T) NF [[T]]. Sup-
pose that there exist r € {0,...,(p—3)/2}, c1,..., ¢ € Zp \ {0}, G1(T),. ..,
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G (T) € Fo(T) NF[[T]] and a pseudo-polynomial R(T) € Fy[[T]] such that

-
Ts(F(T)) = R(T) + Y Gi((1+T)% - 1).
i=1
Then there exists an integer n > 0 such that
(L+D)(F(T)+ (-1)°F(1+ 1)~ = 1)) € Fy[T].

Proof. Note that if 7,17’ € p,_1, then n = 1’ (mod Q*) & n =17 or
n = —n'. Since r < (p —1)/2, by Proposition 3.3, there exists n € y,_1 such
that

PR +T)"—1)+ TnéF((l +T)™" —1) is a pseudo-polynomial.
Therefore

F(T) + (—=1)°F((1 + T)~! — 1) is a pseudo-polynomial.

It remains to apply Lemma 3.5. u

Let F(T) € A. We say that F(T) is a pseudo-rational function if it is the
quotient of two pseudo-polynomials. For example, for all a € Z,, and b € Zj,

(1+T7)*—1)/((14+T)"—1) is a pseudo-rational function. We finish this
section by giving a generalization of [8, Theorem 1]:

_ THEOREM 3.7. Let 6 € Z/(p — 1)Z and F(T') € Fy(T) NFy[[T]]. Then
I's(F(T)) is a pseudo-rational function if and only if there exists some in-
teger n > 0 such that

(1L+T)"(U(F(T)) + (~1)°U(F((1 +T) "' = 1)) € Fy[T].

Proof. Let R(T) € F,[[T]). Let ai1,...,a, € Zy and c1,...,¢, € Fy.
Observe that, by Proposition 3.2,

(Z ci(1+ T)‘”)fa(R(T» = Fa(i ¢ R((1+T) " — 1)).
=1

i=1
Assume that I';(F(T)) is a pseudo-rational function. Then, by the above
remark, there exist ci,...,¢, € Fy and ay,...,ar € Zp, a; # a; for i # j,
such that

T
ﬁﬁ_(sU( Z GF((1+T)~" — 1)) is a pseudo-polynomial.
i=1
This implies, again by Proposition 3.1, that

7_5U< Z i F((1+T)" — 1)) is a pseudo-polynomial.
i=1
Set

G(T) =U(F(T) + (-1)°U(F((L+T)~" = 1)) € Fo(T) NF[[T]].
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Now, by Proposition 3.3, there exist dy,...,d; € Fy, b1,...,b € Zp, b; # b;
for i # 4, M,...,m € pp—1, with ;% = n;x% (mod Q*) for all i, j, and
nikb # nj/ibj for i # j, such that

!
Z d;G((1+ T)"i“bi — 1) is a pseudo-polynomial.
i=1
Fori=1,...,1, write
nmb" = mfiblxi,
where z; € Q*NZy, and x; # x; for i # j. Since G(T)=(-1)°G((1+T)"'-1),

we can assume that x1,...,xz; are positive. Now, we see that

l
Z d;G((1+T)* — 1) is a pseudo-polynomial.
=1
Therefore, there exist Ny,...,N; € N\ {0}, N; # Nj for i # j, such that

Z d;G((1 +T)™i —1) is a pseudo-polynomial.
i=1
Now, by Lemma 3.5, there exists some integer N > 0 such that

(1+7T) <ZdG (1+T)N ))ewqm.
Write
P(T)

1+ 1)"QT)’
where n>0, P(T), Q(T) €F,[T], Q(—1)#£0, and (P(T), (1 + T)"Q(T)) =1.

Let A(T), B(T) € F4[T] be such that

AT) | B(T)
A+T) Q)
Then there exists M > 0 such that

(1+7) (Zd i; 11§>€Fq[T].
But (1+7,Q((1+ 1) Z—l))zlforze{l,...,l}. Therefore
!
-1
z; 1+T l_liqu[T].
Q

(T) > 1. Write
B(T) = ¢(T)Q(T) + r(T),

G(T) =

G(T) =

Now assume that degp
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where ¢(T),r(T) €Fy[T] and degp r(T') <degy Q(T'). Observe that r(T") #0.

Hence

(1+1T)
Zd GEEL 1_1)) e F,[T).

Recall that —degy is a dlscrete valuation on Fy(T'). Since N; # N for i # j
and dy,...,d; € Fy, we get

(14 T)Ni —1)
degT<Zd TT T~ 1_1)><0,

which is a contradiction. Thus (1 +T)"G(T) € Fy[T]. =

4. Application to Kubota—Leopoldt p-adic L-functions. Let 8 be
a Dirichlet character of the first kind, 8 # 1 and 6 even. We denote by
f(T,0) the Iwasawa power series attached to the p-adic L-function L,(s, 0)
(see [9, Theorem 7.10]). Write
0 = Xw5+1

where x is of conductor d > 1 with d # 0 (mod p), and § € Z/(p — 1)Z. Set
k=14 pd and K = Qp(x). We define
e x(@(1+ 1)
F(T) ===
x(T) 1—(14+1)?
Let us give the basic properties of F\ (T):

LEMMA 4.1.
(1) Ifd > 2, then F\(T) €

(2) If d=1, then Wa(FX(T)) eANforallaceZ/(p—1)Z, a # 1.
(3) U(FX(T)) B(T) = x(p) (1 + T)° = 1).
(4) If d > 2, then F ((L+T)"1 = 1) = eF\(T), where ¢ = 1 if x is odd

and e = —1 if x is even.
(5) If d=1, then F,(1+T)™' —1)=-1—F(T).
Proof. (1), (4) and (5) are obvious.
(2) For d = 1, we have

1+17)°
B(T)=—1+ Z1— (g—l—T)B)
Set
G(T) = (1= (1 +T))va(F(T)).
Note that
— (14T

s T)w 7~ (mod wy(T)).

Vn € pp-1,
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Therefore

p—1
(p-DGET) = Y n* 'Y (1+T)" (mod wi(T)).
a=0

Thus
p—1
p-DGT)= D 7n* D (1+T7)" (mod wi(T)).
NEMp—1 b=0

Since a # 1, we get G(T') = 0 (mod wi(T)). Therefore v4(F\(T)) € A.
(3) For d = 1, we have

p—1 a
Ur () = St D

Now, let d > 2. Set g9 = pd and kK = 1 + pd. Note that
am1 X(a)(1+T)°

= F(T) — B (L +T) - 1),

FX(T) =

1—(1+T)w
Therefore
U(Fx(T)) = 201,020 (moap) X(@) (1 + 1)
1—(1+T)w
But

B(T) = x(p) B (L +T)" = 1)
a1 X(@)(1+T)*
1— (1 +1)w

and the lemma follows easily. m

Yoy x(a)(1 + 1)
1—(1+T)w0

x(p)

LEMMA 4.2. Assume that d > 2. The denominator of F\(T') is ¢p4(1+T)
where ¢q(X) is the dth cyclotomic polynomial, and the same is true for

B(T).

Proof. Let ¢ € ug. If ¢ is not a primitive dth root of unity, then, by |9,
Lemma 4.7], we have

Recall that

d a
(= B+

and (14+T)—1=]]¢n(1+7T).
nld

Therefore the denominator of F\ (T') is ¢4(1 +T).
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If ¢ is a primitive dth root of unity, then, by [9, Lemma 4.8], we have

d
S x(@)¢" # 0 (mod 7)

a=1

for any prime 7 of K (u4). Hence the denominator of Fy(T') is ¢q(1 +T). m

LEMMA 4.3. The derivative of v_s(F\(T)) is not a pseudo-polynomial
modulo .

Proof. We first handle the case d > 2. By (3) and (4) of Lemma 4.1, and
Lemma 4.2, we get

Vn >0, (14 1)U F(T) + (~1) UR 1L+ 1) —1)) ¢ F,[T].

Thus by Proposition 3.6, ¥_sU(F\(T)) is not a pseudo-polynomial. But
observe that U = DP—1. Thus D%_5(F,(T)) is not a pseudo-polynomial.
For d =1, set

F(T) = F(T) = 2R (1 +T)* 1) =1 — >—.

Observe that:

« B(1+T) 1 —1)=1- F(T),

o U(F(T)) = Fy(T) = Fx((1+T)P —1).

P

Therefore, as in the case d > 2, ¥_sU(F\(T)) is not a pseudo-polynomial.

Thus neither is ¥_;U (Fy(T)), and one can conclude as in the case d > 2. u

LEMMA 4.4.

[sU~-s(Fy(T)) = f<1+1T - 1,9).

Proof. We consider the case d = 1; the case d > 2 is quite similar. Set
T =¢e? —1. We get
B
BM)= Y rz
n>0,n=1+4 (mod p—1) )
Thus, by [9, Theorem 5.11], we get
Vk €N,k =6 (mod p—1), DFy_sU(Fy)(0) = Ly(—Fk,0).
But, by Proposition 2.5, for s € Z, we have

T5y_sU(Fy) (k5 —1) = lim DF(9) U (F,)(0) = Ly(—s,0) = f(x~°—1,0),

n—1

and the lemma follows. =

We can now prove our main result:
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THEOREM 4.5.

(1) f(T,0) is not a pseudo-rational function.

(2) M(f(T,0)) < (pT_ltb(d))d)(p*l), where ¢ is Euler’s totient function.

Proof. (1) Suppose that f(7,0) is a pseudo-rational function. Then so
are f(ﬁ -1, 0) and I'sy_sU(F\(T)). Recall that if d > 2 then, by Propo-
sition 3.2, I's F\(T") = I's7_sU (F\(T)).

We first deal with the case d > 2. By Theorem 3.7, there exists an integer
n > 0 such that

(1 +T)"(U(F(T)) + (~1)°T(F((1+T)~T = 1)) € F[T).

This is a contradiction by Lemmas 4.1(3)—(4) and 4.2.
For d = 1, we work with
P 1
2

Then, by Proposition 3.2, I'sy_sU(F,(T)) is a pseudo-rational function. We
get a contradiction as in the case d > 2.

(2) Our proof is inspired by a method introduced by S. Rosenberg ([6]).
We first deal with the case d = 1. Note that we can assume that A\(f(7,6))
> 1. Now, by Lemma 4.3,

#(7-5(Fx(T))) = 0.
Furthermore,
Y-5(Fy)(0) = 0 (mod 7).
Therefore, by Lemma 4.1(3),
A(Y=sU (Fx(T))) = Av-s(F(T)))-
Hence we have to evaluate A(y_s(Fy(T))). Set F(T) = —1/T. Since 9 is
odd, we have

V-s(Fx(T)) = 75 (F(T)).
Observe that F((1+T)' —1) = 1 — F(T). Let S C pp—1 be a set of
representatives of y,_1 /{1, —1}. We have

(p— Dy-s(F(T) =2 n  F(A+T)"—1) = > n°.

nes nes
Set
(1) = ([T +1)7=1))3-5(F(D)).
nes
Then
o u(G(T) =0,
o AMG(T)) = (p = 1)/2+ Ay-5(F(T)).
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For 8 C S, set t(S") =3, cg ©. We can write
GT) = 3 as(+ 1),
S'cS
where agr € O . Define
N = max{v,(t(S") — ¢(S")) : §', 8" C S, t(S") # t(S")}.
Observe that if ¢(S") # t(S”), then
D) <IN, ) 0 (H(S7) = H(S™)))-

-1 #(p—1)
PN < <p> .

Thus

2
But, by Lemma 2.2, A\(G(T)) < p™*!. Thus, by Proposition 3.2, we get

MF(T, 0)) :A(f(HlT — 1,9>> <pN < (pgly(pl).

Now, we consider the general case, i.e. d > 2. Again we can assume that
A(f(T,6)) > 1. Thus as in the case d = 1, we get
Ay=sU(F(T))) = My-s(Fy(T))).
Now, since d > 2, we have degp F\ (T) < 0, and, by Lemma 4.2, we can
write od)-1
a=0 Ta(l + T)a
Pa(1+1T) ’

where 7, € Ok for a € {0,...,¢(d) — 1}. Let again S C p,—1 be a set of
representatives of y,_1/{1, —1}. By Lemma 4.1,

(p = Dy=s(B(T)) = 2) 0 "B (1 +T)" —1).
nes

FX(T) = Z

Set

G(T) = (TT ¢a(@ + 7)) )7-5(F(T)).

nes
We have

é(d)—1
G(T): Z Z Z Z bsl’d(l—i-T)m]—’_Z"'GS’d’i/n/,

a=0 neSS'CS\{n} d=(d,y),rcs’: dy€{0,...6(d)}

where bsr g € Opg. Note that again p(G(T)) = 0, and ANG(T)) =
)\(7—5(FX(T))) NOW7 for CL?b € {Oa .- a¢(d) - 1}’ n,n2 S Sa Sl - S \ {771}7
and Sy C S\ {12}, set

Vi=am+ Y dm—bnp— Y _ dpn,
neSt nES?
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where d,, € {0,...,¢(d)} for allp € Sy, and d}, € {0,...,¢(d)} for all n € Sy.
If 91 = no then we can write

V=(a-bm+ Z Uy 1),
nes’
where |u,| € {0,...,¢(d)} and |S'| < (p — 3)/2.
If 1 # mo, we can write
V =a'n +bn+ Z Un1),
nes’
where |d|, |V|, |uy| € {0,...,¢(d)}, and S| < (p — 5)/2. Therefore, if V # 0,

we get
1 $(p—1)
prV) < (1)2 ¢(d)> .

Now, we can conclude as in the case d =1. =
Let E be a number field and let E,/E be the cyclotomic Z,-extension.
For n > 0, let A,, be the p-Sylow subgroup of the ideal class group of the

nth layer in E./E. Then, by [9, Theorem 13.13], there exist u,(E) € N,
Ap(E) € N and v,(E) € Z such that for all sufficiently large n,

|An| = pMP(E)Pn‘i‘)\p(E)”‘FVp(E).

Recall that it is conjectured that p,(E) = 0; this has been proved by B. Fer-
rero and L. Washington ([3]) if F is an abelian number field.

COROLLARY 4.6. Let F' be an abelian number field of conductor N. Write
N =p™d, where m € N and d > 1, d # 0 (mod p). Then

_ ¢(p—1)+1
) <2 o)

Proof. Set g, = p™*1d for n > 0. Then F' C Q(ug,, ). It is not difficult to

deduce that (see the arguments in the proof of Theorem 7.15 in [9])
)\p(F) S )\p((@(lu(hn>)'
But A\ (Q(£g,n)) = Ap(Q(pg,)), and, by [9, Proposition 13.32 and Theorem
7.13],
M Q) €2 >0 MF(T0).
0 even, 0#1, fglqo

It remains to apply Theorem 4.5. u

Note that the bound of the last corollary is certainly far from being sharp
even in the case p = 3 (see [4]).
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