A note on a multiplicative hybrid problem

by

Olivier Bordellès (Aiguilhe)

1. Introduction and result. In what follows, $e(x)=e^{2 \pi i x},[x]$ is the integer part of $x, \psi(x)=x-[x]-1 / 2$ and N is a natural number large enough.

In 1987, Iwaniec and Sárközy [5] dealt with the following problem: Let S_{1} and S_{2} be subsets of $\left.] N, 2 N\right] \cap \mathbb{Z}$. If $\left|S_{1}\right| \gg N$ and $\left|S_{2}\right| \gg N$, then they proved that there exist integers $n_{1} \in S_{1}, n_{2} \in S_{2}$ and b such that

$$
n_{1} n_{2}=b^{2}+O\left((b \log b)^{1 / 2}\right) .
$$

The following generalization was considered by Zhai ($[9,10]$): Let $k \geq 4$ be an integer and S_{1}, \ldots, S_{k} be subsets of $\left.] N, 2 N\right] \cap \mathbb{Z}$. If $\left|S_{i}\right| \gg N$ for $i=1, \ldots, k$, then there exist integers $n_{1} \in S_{1}, \ldots, n_{k} \in S_{k}$ and b such that

$$
\begin{equation*}
n_{1} \cdots n_{k}=b^{k}+O\left(b^{k-3 / 2}\right) . \tag{1}
\end{equation*}
$$

That result can easily be related to the following multi-dimensional lattice point problem. Let $0<\delta \leq 1 / 4$ be any small real number and define

$$
\mathcal{R}_{k}=\mathcal{R}_{k}(N, \delta):=\left|\left\{\left(n_{1}, \ldots, n_{k}, b\right) \in \prod_{i=1}^{k} S_{i} \times \mathbb{Z}:\left|\left(n_{1} \cdots n_{k}\right)^{1 / k}-b\right| \leq \delta\right\}\right|
$$

and suppose there exist $\beta_{k} \geq 0$ and $0 \leq \theta_{k}<k$ such that

$$
\begin{equation*}
\mathcal{R}_{k}=2 \delta\left|S_{1}\right| \cdots\left|S_{k}\right|+O\left(N^{\theta_{k}}(\log N)^{\beta_{k}}\right) . \tag{2}
\end{equation*}
$$

Then using $\left|S_{i}\right| \geq a_{i} N$ (with $a_{i}>0$) and setting $A_{k}:=\min _{1 \leq i \leq k} a_{i}$, we have

$$
\mathcal{R}_{k} \geq 2 \delta\left|S_{1}\right| \cdots\left|S_{k}\right|-c_{k} N^{\theta_{k}}(\log N)^{\beta_{k}} \geq 2 \delta A_{k}^{k} N^{k}-c_{k} N^{\theta_{k}}(\log N)^{\beta_{k}}
$$

with $c_{k}>0$ depending only on k. Now taking $\delta=c_{0} N^{\theta_{k}-k}(\log N)^{\beta_{k}}$ with $c_{0}>2^{-1} c_{k} A_{k}^{-k}$ gives $\mathcal{R}_{k}>0$, which implies that, if N is sufficiently large, then there exist integers $n_{1} \in S_{1}, \ldots, n_{k} \in S_{k}$ and b such that

$$
\begin{equation*}
n_{1} \cdots n_{k}=b^{k}+O\left(b^{\theta_{k}-1}(\log b)^{\beta_{k}}\right) . \tag{3}
\end{equation*}
$$

2000 Mathematics Subject Classification: 11L07, 11N99, 11B99.
Key words and phrases: ψ-function, exponential sums, multi-dimensional exponent pairs.

If δ is sufficiently small, it is easy to see that \mathcal{R}_{k} counts the number of integer points close to the hypersurface $x_{k+1}=\left(x_{1} \cdots x_{k}\right)^{1 / k}$ with $x_{i} \in S_{i}$ $(i=1, \ldots, k)$. In the one-dimensional case, upper bounds of such numbers can be obtained by using results dealing with divided differences (see [2, 4]). In the general case, estimate (2) can be attained by using exponential sums methods. In his work [9, 10], Zhai used a double large sieve inequality for bilinear forms first established by Bombieri and Iwaniec (see [1, 3, 7]). In this paper, we treat the resulting sums coming from the error term of (2) by making use of multi-dimensional exponent pairs introduced by Srinivasan (see $[8,6]$). This leads to the following improvement of (1):

Theorem 1.1. Let $k \geq 2$ be an integer, N be a large natural number, and S_{1}, \ldots, S_{k} be subsets of $\left.] N, 2 N\right] \cap \mathbb{Z}$. If $\left|S_{1}\right| \gg N, \ldots,\left|S_{k}\right| \gg N$, then there exist integers $n_{1} \in S_{1}, \ldots, n_{k} \in S_{k}$ and b such that

$$
n_{1} \cdots n_{k}=b^{k}+O\left(b^{k-5 / 3+r(k)}\right)
$$

where $r(k)=2(9 k+7) /\left(3\left(9 k^{2}-3 k+10\right)\right)$.
Although this result is valid for $k \geq 2$, it only improves on (1) as soon as $k \geq 5$.
2. Proof of Theorem 1.1. Clearly we have

$$
\begin{aligned}
\mathcal{R}_{k}= & 2 \delta\left|S_{1}\right| \cdots\left|S_{k}\right| \\
& +\sum_{\left(n_{1}, \ldots, n_{k}\right) \in S_{1} \times \cdots \times S_{k}}\left\{\psi\left(\left(n_{1} \cdots n_{k}\right)^{1 / k}-\delta\right)-\psi\left(\left(n_{1} \cdots n_{k}\right)^{1 / k}+\delta\right)\right\} .
\end{aligned}
$$

The following result will be useful:
Lemma 2.1. Let $d, N \geq 1$ be integers, $\left.\left.\mathcal{D}_{d} \subset(] N, 2 N\right] \cap \mathbb{Z}\right)^{d}, X \geq 1$, and let $\alpha_{1}, \ldots, \alpha_{d}$ be nonzero real numbers satisfying

$$
u \sum_{i=1}^{d} \alpha_{i}+\sum_{i=1}^{d} \alpha_{i} \varepsilon_{i} \neq 1+u+v
$$

for any pair (u, v) of nonnegative integers and any $\left(\varepsilon_{1}, \ldots, \varepsilon_{d}\right) \in\{0,1\}^{d}$. Let $\Delta \in \mathbb{R}, s_{d}=\alpha_{1}+\cdots+\alpha_{d}$ and $\left(l_{0}, l_{1}\right)$ be an exponent pair of dimension d. Suppose that

$$
\begin{equation*}
N^{l_{1}-l_{0}\left(s_{d}-1\right)} \geq X^{l_{0}} . \tag{4}
\end{equation*}
$$

Then

$$
\sum_{\left(n_{1}, \ldots, n_{d}\right) \in \mathcal{D}_{d}} \psi\left(X n_{1}^{\alpha_{1}} \cdots n_{d}^{\alpha_{d}} \pm \Delta\right) \ll\left(X^{l_{0}} N^{l_{0}\left(s_{d}+d-1\right)+1-l_{1}}\right)^{d /\left(1+d l_{0}\right)} .
$$

Proof. The starting point is the well-known inequality

$$
-\frac{1}{2 H}+\sum_{h \in \mathbb{Z}^{*}} c_{h} e(-h x) \leq \psi(x) \leq \frac{1}{2 H}-\sum_{h \in \mathbb{Z}^{*}} c_{h} e(h x)
$$

where $x \in \mathbb{R}, H$ is any positive integer at our disposal and

$$
c_{h}:=\frac{H}{2 \pi i h} \int_{0}^{1 / H} e(-h t) d t
$$

so that

$$
\left|c_{h}\right| \leq \frac{1}{2 \pi} \min \left(\frac{1}{|h|}, \frac{H}{h^{2}}\right)
$$

Now summing on \mathcal{D}_{d} gives

$$
\begin{aligned}
\sum_{\left(n_{1}, \ldots, n_{d}\right) \in \mathcal{D}_{d}} & \psi\left(X n_{1}^{\alpha_{1}} \cdots n_{d}^{\alpha_{d}} \pm \Delta\right) \\
& \ll \frac{N^{d}}{H}+\sum_{h=1}^{\infty} \min \left(\frac{1}{h}, \frac{H}{h^{2}}\right)\left|\sum_{\left(n_{1}, \ldots, n_{d}\right) \in \mathcal{D}_{d}} e\left(h X n_{1}^{\alpha_{1}} \cdots n_{d}^{\alpha_{d}}\right)\right|
\end{aligned}
$$

and using the exponent pair $\left(l_{0}, l_{1}\right)$ gives

$$
\begin{aligned}
\left|\sum_{\left(n_{1}, \ldots, n_{d}\right) \in \mathcal{D}_{d}} e\left(h X n_{1}^{\alpha_{1}} \cdots n_{d}^{\alpha_{d}}\right)\right| & \ll \prod_{j=1}^{d}\left(X h N^{s_{d}-1}\right)^{l_{0}} N^{1-l_{1}} \\
& \ll(X h)^{d l_{0}} N^{d\left\{l_{0}\left(s_{d}-1\right)+1-l_{1}\right\}}
\end{aligned}
$$

so that
$\sum_{\left(n_{1}, \ldots, n_{d}\right) \in \mathcal{D}_{d}} \psi\left(X n_{1}^{\alpha_{1}} \cdots n_{d}^{\alpha_{d}} \pm \Delta\right) \ll \frac{N^{d}}{H}+\sum_{h \leq H} h^{-1}(X h)^{d l_{0}} N^{d\left\{l_{0}\left(s_{d}-1\right)+1-l_{1}\right\}}$

$$
+H \sum_{h>H} h^{-2}(X h)^{d l_{0}} N^{d\left\{l_{0}\left(s_{d}-1\right)+1-l_{1}\right\}}
$$

and since $l_{0} \leq(2 d+2)^{-1}$ (see [8, Definition 2]) we have $-2+d l_{0} \leq-3 / 2$ and hence

$$
\sum_{\left(n_{1}, \ldots, n_{d}\right) \in \mathcal{D}_{d}} \psi\left(X n_{1}^{\alpha_{1}} \cdots n_{d}^{\alpha_{d}} \pm \Delta\right) \ll \frac{N^{d}}{H}+(X H)^{d l_{0}} N^{d\left\{l_{0}\left(s_{d}-1\right)+1-l_{1}\right\}}
$$

Taking $H=\left[\left(X^{-l_{0}} N^{l_{1}-l_{0}\left(s_{d}-1\right)}\right)^{d /\left(1+d l_{0}\right)}\right]$ gives the desired result.
To produce exponent pairs, one often uses A-B processes as described in [8] to transform a given exponent pair into a new one. For example, Theorem 4 of [8] (see also Theorem 1 of [6]) states that, if $\left(\lambda_{0}, \lambda_{1}\right)$ is an exponent pair of dimension d, then so is

$$
\begin{equation*}
\left(l_{0}, l_{1}\right)=\left(\frac{\lambda_{0}}{2\left(1+d \lambda_{0}\right)}, \frac{\lambda_{0}+\lambda_{1}}{2\left(1+d \lambda_{0}\right)}\right) \tag{5}
\end{equation*}
$$

For our purpose, it will be convenient to regard these processes as linear transformations on projective space. To this end, set

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 d & 0 & 2
\end{array}\right)
$$

Then

$$
A\left(\begin{array}{c}
\lambda_{0} \\
\lambda_{1} \\
1
\end{array}\right)=\left(\begin{array}{c}
\lambda_{0} \\
\lambda_{0}+\lambda_{1} \\
2\left(1+d \lambda_{0}\right)
\end{array}\right)
$$

from which we easily derive (5). In a similar way, if we set

$$
B=\left(\begin{array}{ccc}
0 & -1 & \frac{1}{2} \\
-1 & -1 & 1 \\
0 & -2 d & d+2
\end{array}\right)
$$

then Theorem 6 of [8] (or Theorem 2 of [6]) implies that the pair $\left(l_{0}, l_{1}\right)$ derived from the transformation

$$
B\left(\begin{array}{c}
\lambda_{0} \\
\lambda_{1} \\
1
\end{array}\right)
$$

is an exponent pair of dimension d provided $\lambda_{1}-\lambda_{0} \leq 1 /(3 d)$. Now define

$$
\Gamma=B A=\left(\begin{array}{ccc}
d-1 & -1 & 1 \\
2(d-1) & -1 & 2 \\
2 d(d+1) & -2 d & 2(d+2)
\end{array}\right) .
$$

We have the following result:
Lemma 2.2. Let $\left(\lambda_{0}, \lambda_{1}\right)$ be an exponent pair of dimension d such that

$$
\begin{equation*}
d\left(3 \lambda_{1}-2 \lambda_{0}\right) \leq 2 . \tag{6}
\end{equation*}
$$

Then the pair $\left(l_{0}, l_{1}\right)$ derived from the transformation

$$
\Gamma\left(\begin{array}{c}
\lambda_{0} \\
\lambda_{1} \\
1
\end{array}\right)
$$

is an exponent pair of dimension d satisfying (6) with $\left(\lambda_{0}, \lambda_{1}\right)$ replaced by $\left(l_{0}, l_{1}\right)$.

Proof. By (5) the pair

$$
\left(\mu_{0}, \mu_{1}\right)=\left(\frac{\lambda_{0}}{2\left(1+d \lambda_{0}\right)}, \frac{\lambda_{0}+\lambda_{1}}{2\left(1+d \lambda_{0}\right)}\right)
$$

is an exponent pair of dimension d and condition (6) ensures that $\mu_{1}-\mu_{0}$ $\leq 1 /(3 d)$, which proves the first part of the lemma by using

$$
B\left(\begin{array}{c}
\mu_{0} \\
\mu_{1} \\
1
\end{array}\right)=\Gamma\left(\begin{array}{c}
\lambda_{0} \\
\lambda_{1} \\
1
\end{array}\right)
$$

Furthermore,

$$
d\left(3 l_{1}-2 l_{0}\right)=2-\frac{d\left(8 \lambda_{0}-3 \lambda_{1}\right)+8}{2\left\{\lambda_{0} d(d+1)-\lambda_{1} d+d+2\right\}}
$$

and using (6) we have

$$
\begin{aligned}
d\left(8 \lambda_{0}-3 \lambda_{1}\right)+8 & \geq-2+8=6 \\
\lambda_{0} d(d+1)-\lambda_{1} d+d+2 & \geq(d+1)\left(-1+3 d \lambda_{1} / 2\right)-\lambda_{1} d+d+2 \\
& =\frac{1}{2}\left(3 \lambda_{1} d^{2}+\lambda_{1} d+2\right)>0
\end{aligned}
$$

so that $d\left(3 l_{1}-2 l_{0}\right) \leq 2$ as asserted.
An easy induction gives the following corollary:
Corollary 2.3. For every positive integer h, the pair $\left(l_{0}, l_{1}\right)$ derived from the transformation

$$
\Gamma^{h}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

is an exponent pair of dimension d. In particular, for the first values of h, the following pairs are exponent pairs of dimension d:

h	$\left(l_{0}, l_{1}\right)$
1	$\left(\frac{1}{2 d+4}, \frac{1}{d+2}\right)$
2	$\left(\frac{3 d+1}{2\left(3 d^{2}+7 d+8\right)}, \frac{3 d+2}{3 d^{2}+7 d+8}\right)$

REmARK. The first exponent pair above has already been given by Srinivasan (see [8, Theorem 9]).

Corollary 2.4. Let $k \geq 2$ be an integer and $\Delta \in \mathbb{R}$. If $N \geq 2^{1 / k+3 /(3 k-2)}$ and $\left|S_{i}\right| \gg N$ for $i=1, \ldots, k$ then

$$
\sum_{\left(n_{1}, \ldots, n_{k}\right) \in S_{1} \times \cdots \times S_{k}} \psi\left(\left(n_{1} \cdots n_{k}\right)^{1 / k} \pm \Delta\right) \ll N^{k-2 / 3+r(k)}
$$

where $r(k)$ is defined in Theorem 1.1.
Proof. Write the sum on the left-hand side as

$$
\sum_{n_{k} \in S_{k}} \sum_{\left(n_{1}, \cdots, n_{k-1}\right) \in S_{1} \times \cdots \times S_{k-1}} \psi\left(X\left(n_{1} \cdots n_{k-1}\right)^{1 / k} \pm \Delta\right)
$$

where $X=n_{k}^{1 / k}$ and apply Lemma 2.1 with $d=k-1, \mathcal{D}_{k-1}=S_{1} \times \cdots \times S_{k-1}$ and $\alpha_{i}=1 / k(i=1, \ldots, k-1)$ so that $s_{k-1}=1-1 / k$. The number

$$
u \sum_{i=1}^{k-1} \alpha_{i}+\sum_{i=1}^{k-1} \alpha_{i} \varepsilon_{i}-(1+u+v)
$$

is equal to

$$
\frac{1}{k}\left(\sum_{i=1}^{k-1} \varepsilon_{i}-u\right)-1-v
$$

and is clearly nonzero for every pair (u, v) of nonnegative integers and every $\varepsilon_{i} \in\{0,1\}$. Furthermore, since $n_{k} \leq 2 N$, we see that hypothesis (4) is satisfied as soon as $N^{l_{1}} \geq 2^{l_{0} / k}$, so that Lemma 2.1 implies that

$$
\begin{aligned}
& \quad \sum_{\left(n_{1}, \ldots, n_{k}\right) \in S_{1} \times \cdots \times S_{k}} \psi\left(\left(n_{1} \cdots n_{k}\right)^{1 / k} \pm \Delta\right) \\
& \ll \sum_{n_{k} \in S_{k}} n_{k}^{\frac{(k-1) l_{0}}{k\left\{1+(k-1) l_{0}\right\}}} N^{\frac{(k-1)\left\{l_{0}(k-1-1 / k)+1-l_{1}\right\}}{1+(k-1) l_{0}}} \ll N^{1+\frac{(k-1)\left\{(k-1) l_{0}+1-l_{1}\right\}}{1+(k-1) l_{0}}}
\end{aligned}
$$

and the desired result follows by using the $(k-1)$-dimensional exponent pair

$$
\left(l_{0}, l_{1}\right)=\left(\frac{3 k-2}{2\left(3 k^{2}+k+4\right)}, \frac{3 k-1}{3 k^{2}+k+4}\right)
$$

of Corollary 2.3.
Now Theorem 1.1 follows at once from Corollary 2.4 and (3).
Acknowledgments. I am indebted to Dr. Wenguang Zhai for translating his paper [10] into English for me. I also express my gratitude to the referee for his careful reading of the manuscript.

References

[1] E. Bombieri and H. Iwaniec, On the order of $\zeta\left(\frac{1}{2}+i t\right)$, Ann. Scuola Norm. Sup. Pisa 13 (1986), 449-472.
[2] M. Filaseta and O. Trifonov, The distribution of fractional parts with application to gap results in number theory, Proc. London Math. Soc. 73 (1996), 241-278.
[3] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333.
[4] M. N. Huxley et P. Sargos, Points entiers au voisinage d'une courbe plane de classe C^{n}, Acta Arith. 69 (1995), 359-366.
[5] H. Iwaniec and A. Sárközy, On a multiplicative hybrid problem, J. Number Theory 26 (1987), 89-95.
[6] G. Kolesnik, On the estimation of multiple exponential sums, in: Recent Progress in Analytic Number Theory (Durham, 1979), Vol. 1, Academic Press, 1981, 231-246.
[7] P. Sargos and J. Wu, Multiple exponential sums with monomials and their applications in number theory, Acta Math. Hungar. 87 (2000), 333-354.
[8] B. R. Srinivasan, The lattice point problem of many-dimensional hyperboloids III, Math. Ann. 160 (1965), 280-311.
[9] W.-G. Zhai, On a multiplicative hybrid problem, Acta Arith. 71 (1995), 47-53.
[10] -, On a multiplicative hybrid problem II, J. Shandong Univ. Nat. Sci. Ed. 31 (1996), 164-166.

2 allée de la combe
43000 Aiguilhe, France
E-mail: borde43@wanadoo.fr

