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A measure-theoretic approach to the invariants of
the Selberg class

by

J. KACzZOROWSKI (Poznan) and A. PERELLI (Genova)

1. Introduction. In [6] and [7] we defined and studied the invariants
of the Selberg class S (to be precise, of the extended Selberg class S*). We
refer to our survey papers [3], [5], [9] and [10] for the definitions and basic
properties of the classes S and S*. Here we recall that S* is the class of
non-identically vanishing Dirichlet series

o0

(1.1) Fls)=Y" a”(sF)

n=1

absolutely convergent for ¢ > 1, such that (s —1)™F(s) is entire of finite or-
der for some non-negative integer m and F'(s) satisfies a functional equation
of the form

(1.2) D(s) = wd(1 — s),
where f(s) = f(5), |w| = 1 and

T
= @ T] rs + 1) F(s) = 1()F (s),
j=1
say, with 7 > 0, @ > 0, A\; > 0 and Rp; > 0 (r = 0 means that there
are no I'-factors). S is the subclass of the functions F' € S* satisfying the
Ramanujan conjecture a,(F) < n® for every ¢ > 0 and having an Euler
product of type

o

log F(s) =

n=2
with b, (F) = 0 unless n = p"™, and b, (F) < n? for some 6 < 1/2.

We recall that the notlon of invariant of S* arises from the fact that the
data @, Aj, u; and w of the functional equation of a function F' € S* are not
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uniquely determined by F'(s) (due, essentially, to the multiplication formula
for the I" function). Thus, an invariant is an expression defined by means of
such data, but depending only on F'(s); invariants are denoted by I or by
I or I(F) (particularly when referred to a function F' € S*). We refer to [6]
and [7] for the meaning of several interesting invariants, such as the degree

'
dp =2) )\,
j=1
the conductor .
gr = 2m) Q2 [T AV,
j=1
the root number

i T (np+1) qr Wr/dr T 211

* —15 ("N - J
wp =we 2VF ((27T)dF> | I1 )\j

J:

and the H-invariants

j=1 "7
where B, (z) denotes the nth Bernoulli polynomial; for example, Hr(0) =dp.
Note that the root number w}. factors as

T o~ o ’LQF/dF
(13)  wi=(w]] AJ._QN"J) (e—z2<nF+1> <(2Z§dp> > = wpwp,
j=1

say, where W, is clearly an invariant, and hence w/ is an invariant as well.
We further recall that an invariant I is called numerical if I(F) € C for
every F € S* (it is easy to construct invariants which are not numerical); in
other words, a numerical invariant I is a function I : S* — C. Note that both
S and S* are multiplicative semigroups, i.e. FG € S (resp. %) if F,G € S
(resp. S*), the H-invariants are additive, i.e. Hpg(n) = Hp(n)+Hg(n), and
the conductor and w}, are multiplicative, i.e. grg = qrqe and wpg = Wpwp.
The set of functions F' € S (resp. S*) with dp = d is denoted by Sy (resp. Sfl),
and the order of the pole of F(s) at s =1 is denoted by mp.

A fundamental problem in the theory of the Selberg class is describing
the admissible values of numerical invariants, i.e. the set of values that such a
numerical invariant attains at the functions of S and S*. For some invariants
there are nice conjectures about admissible values, for example the degree
conjecture (asserting that dp € N for every F € S*) and the conductor
conjecture (asserting that ¢p € N for every F' € S). In this paper we develop
a measure-theoretic approach to this problem. In order to state the results we
need some definitions; we will refer to Kechris’ book [8] for all the definitions
and results needed from topology and measure theory.
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We denote by Rt and CT the positive real numbers and the complex
numbers with non-negative real part, respectively, and by 7! the unit circle.
A numerical invariant [ is called continuous if for every non-negative integer
r there exists a continuous function

frr :RY xR xCH)"xT! = C

such that

(1.4) I(F) = fr,(Q: A p,w)

if F € S* satisfies functional equation (1.2), where A = (\1,...,\,) and
p = (u1,...,p). Examples of continuous invariants are the H-invariants,

the conductor and the root numbers w},, w} and w/. Moreover, the real and
imaginary parts of a continuous invariant are also continuous invariants.

For technical reasons, it is convenient to work with a slightly more gen-
eral class than S*, denoted by S* and consisting of the Dirichlet series (1.1),
absolutely convergent for ¢ sufficiently large and satisfying exactly the same
meromorphic continuation and functional equation axioms of S*. Clearly, S
is a multiplicative semigroup with identity 1 and S, S* are subsemigroups
of S*. Note that the definitions and the main properties pertaining to S*
carry over to S¥. In particular, it is easy to see that Conrey-Ghosh’s [1] re-
sult that the y-factors v(s) of F'(s) are uniquely determined up to a constant
factor (see also Theorem 8.1 of [5]) holds for S* as well, and the invariant
theory of S* carries over to S,

Let T = {I;}cs with J C N be a countable family of continuous invari-
ants and, for F,G € S*, write

L L0 =L@ $5 1 JanlD) - a(@)]_

QI(F7G):;W1+|[j(F) L(G)] 20 1 4 |an(F) — an(G)]

n=1

It is easy to check that o7 is a metric on S¥ (recall that if d(x, y) is a metric
then so is d'(z,y) = d(x,y)/(1 + d(z,y)), and the proof for o7 is similar). We
define the Z- Borel sets to be the Borel sets of the metric space (S*, p7), and
we denote by B(Z) the set of the Z-Borel sets. We recall that a topological
space X is o-compact if

oo
X=JKn
n=1
with compact sets K, satisfying K,, C K,+1. Our first result is

THEOREM 1. LetZ be a countable family of continuous invariants. Then
(8%, 07) is a o-compact metric space and S,S* € B(T).

Theorem 1 is a basic topological result from which the following measure-
theoretic consequences are deduced.
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THEOREM 2. LetZ be a countable family of continuous invariants. Then
I(B) is Lebesgue measurable for every B € B(Z) and every I € T.

In particular, from Theorems 1 and 2 we see that I(S) and I(S*) are
Lebesgue measurable for every continuous invariant I. We remark that the
measurability of I(B) in Theorem 2 is obtained via Lusin’s theorem (see
Theorem 21.10 of [8]), and therefore I(B) is in fact measurable for every
o-finite Borel measure, although we will only consider the Lebesgue measure
in this paper.

B =8 or B = S are probably the most interesting cases of Theorem 2,
and can be proved by starting directly from a single invariant I (instead of
a family Z containing I); the same remark applies to most cases where a
specific set and invariant are involved. However, the definition of the metric
by means of a family of invariants allows a convenient and wider choice
of Borel sets, and hence a larger range of applications of our results. In
fact, for example, adding a continuous invariant I to a family Z we have
B(Z) C B(ZTU{I}). As an illustration we state the following simple corollary
(examples are given later on).

COROLLARY 1. Let Iy be a continuous invariant and B € B(ly). Then
I(B) is Lebesgue measurable for every continuous invariant I.

The condition that B is a Borel set in Theorem 2 can be relaxed if we
assume more about the invariants of the family Z. Given B € B(Z), let G
be the subsemigroup of S* generated by B; we say that G is an Z-Borel
generated semigroup.

THEOREM 3. Let T be a countable family of continuous invariants such
that every I € T is additive or multiplicative. Then I(G) is Lebesgue mea-
surable for every I-Borel generated semigroup G and every I € T.

In analogy with Corollary 1, here is a corollary illustrating the usefulness
of the family Z.

COROLLARY 2. Let Iy be an additive or multiplicative continuous invari-
ant, B € B(ly), and G the semigroup generated by B. Then I(G) is Lebesgue
measurable for every additive or multiplicative continuous invariant 1.

Of course, the set B in Corollaries 1 and 2 can be intersected with S
or S*, and the conclusions still hold.

Of particular interest are the subsemigroups G of S¥ such that I(G)
is Lebesgue measurable for an invariant I (not necessarily continuous). In
such a case, G is called an I-measurable semigroup. In view of Theorem 3,
a first class of examples of such semigroups is given by the Z-Borel gen-
erated semigroups with all I € Z additive or multiplicative. Another class
of examples (not disjoint from the previous one) is provided by Theorem 2
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and consists of the Z-Borel semigroups, that is, the Z-Borel sets which are
semigroups themselves. Explicit examples of measurable semigroups are as
follows. First of all, by Theorem 1, S and S* are I-measurable for every
continuous . Other examples of semigroups I-measurable for every contin-
uous [ are Sy and Sg. In fact, these sets are semigroups and Corollary 1
can clearly be applied. We recall (see [1] and [4]) that Sp = {1} and S(ﬁ)
is a certain set of Dirichlet polynomials. Moreover, thanks to Corollary 2,
the following are examples of semigroups I-measurable for every additive or
multiplicative continuous I. Recalling that d denotes the degree, GP™, gen-
erated by d='({1}) NS = &y, is the semigroup generated by the Riemann
zeta function and the shifted Dirichlet L-functions (see [4]). GV, generated
by d1({1}) NSt = Slﬁ, can also be explicitly described (see [4]). Finally, we
also mention G(?), generated by d~*({2}) N St = Sg.

In the case of I-measurable semigroups G with I additive or multiplica-
tive we can say more about u(I(G)), where p denotes the Lebesgue measure.
Indeed, we have the following simple 0-1 laws for additive and multiplicative
invariants.

THEOREM 4. Let G be an I-measurable semigroup. If I is additive and
real-valued, then either p(I1(G)) = 0 or I(G) contains a half-line. If I is
multiplicative and takes values in T (resp. RT), then either u(I(G)) = 0 or
I(G) =T" (resp. I(G) contains a half-line).

As is clear from the above discussion, Theorem 4 is closely related to
Theorems 2 and 3. In fact, from Theorems 2—4 we easily deduce the following
consequences. In view of the degree conjecture, the first part of Theorem 4
is particularly interesting in the case of the degree d, where p(d(S%)) =0 is
expected. Examples of measurable semigroups G with p(d(G)) = 0 are Sp,
Sg, GP and G,

The most interesting special case of the second part of Theorem 4 is the
conductor ¢, and the conductor conjecture suggests that p(q(S)) = 0. For
example, it follows from the characterization of the functions of degree 0
and 1 of S and S* (see [4]) that

1(a(S0)) = u(g(Sh) = u(a(GP™)) = u(g(GY)) = 0.

However, probably ¢(S*) contains a half-line. In fact, in view of Hecke’s the-
ory for the groups G(\) (see Hecke’s book [2]), already ¢(G?)) will probably
contain a half-line.

Another interesting multiplicative invariant is the root number w/. de-
fined by (1.3). In view of [4] we have pu(w/(S1)) = 0, while o' (GM) = T,
Moreover, since the weight k in Hecke’s theory with A > 2 is arbitrary, it is
very likely that /(G®?) = T
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We finally remark that in all known or conjectural cases, if the set of
values of a continuous invariant has O-measure, then it is countable. We
therefore state the following conjecture, clearly related to Theorem 4.

CONJECTURE. Let I be a continuous invariant and G be an I-measurable
semigroup. If I is additive or multiplicative with values in R™, then either
I(G) is countable or it contains a half-line.

A similar conjecture can be made for multiplicative continuous invariants
with values in T; in this case, either I(G) is countable or I(G) = T*.

2. Proofs. In order to prove Theorem 1 we need three lemmas.

LEMMA 1. Let Z be a countable family of continuous invariants. Then
for every n = 1,2,... and every I € I, the functions F +— an(F) and
F +— I(F) are continuous with respect to the metric or.

Proof. Given a sequence Fy, — Fy in (8%, o) we have o7(Fy,, Fy) — 0,
hence, in particular,

an(F) —an(F) ()~ ()
1+ |an(Fm) = an(Fo) 14 |1i(Fn) = 1;(Fo)|
whence a,(Fy,) — an(Fp) and I;(Fy,) — 1;(Fp). =
For R > 2 integer, let S*(R) be the set of F' € S* such that

|an(F)]

1 oo
r<R S <QN<R |gl<R mp<R ) 5= <R

— 0,

n=1
and R
|F(s)] < elI™  for |s| > 2.

Clearly, S¥(R) C S¥(R+1) and
(2.1) St = | ] S*(R).
R=2
LEMMA 2. Let Z be a countable set of continuous invariants. Then for
R=2,3,..., S%R) is a compact subset of (S*, o7).

Proof. Let F,, € S®%(R), m = 1,2,.... By the compactness of closed
bounded intervals of R, there exists a subsequence, which for ease of notation
we still denote by (Fy,), such that r,, = 19 < R and mp, = mg < R for
every m, and the sequences (Qnm), (Ajm), (1jm), (wm) and (a,(Fy,)) are
convergent to Qo, Aj o, /45,0, wo and a, o, respectively, all satisfying the above
bounds. For ¢ > R we put

> a

0

FO(S) — Z mn, ,
n=1 n
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which is well defined since as m — oo,

(22) Z |an m Z ‘an0|

Our aim now is to prove that Fy € Sﬁﬁ(R) and F,(s) — Fo(s) as m — oo,
with respect to the metric g7, thus showing that Sﬁﬂ(R) is compact.

We first prove that Fy € S*(R). By the definition of S#(R) and the
choice of mg the functions

Hp,(s) = (s —1)™F,(s)
are entire of order < R. Moreover, by the functional equation, for ¢t € R we
have
[V (R + it)|
IVF,, (1 — R +1it)|
< co(R)([t| +2)* )

for some constants ¢;(R), j = 0, 1, hence by the Phragmén-Lindel6f theorem
we get

[Hi(1 = R+it)| < (R+[t)h"

|Fo (R + it)|

|Hpn (0 +it)] < co(R)(Jt] +2)®),  5>1—R.
Hence there exists a subsequence of (H,,(s)) which converges to
Hoy(s) = (s — 1)™ Fp(s)
uniformly over compact sets in o > 1 — R; note that 1?6 (s) is meromorphic
for 0 > 1 — R with at most a pole of order < R at s = 1. But (H,,(s))
is convergent to (s — 1) Fy(s) for o > R, thus Fy(s) = Fy(s) for o > R,

giving a meromorphic continuation of Fy(s) to ¢ > 1 — R with at most a
pole of order < R at s = 1. Writing

70
= Q5 [T T Njos + wi0),
j=1
we have
ro
Yo(s) = Lm ym(s), ym(s) =@y, HF(/\j,ms + tjm)

m—o0
j=1

uniformly over compact sets of C not containing the poles of the ~,,(s)’s,

and for 1 — R < o < R the function Fy(s) satisfies the functional equation
(2.3) Y0(8)Fo(s) = woo(s)Fo(s).

This provides a meromorphic continuation of Fy(s) to C. Moreover, the
bound

(2.4) |Fo(s)| < eI, || > 2,
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follows by a limiting process from the same bounds for the F,,(s)’s. Thus,
Fy € S%(R) in view of (2.2)-(2.4).

Finally, since the I; are continuous invariants and an,(Fp,) — an(Fo),
from (1.4) we have for every positive ¢

1 |I;(Fy) — I;(F 1 an(Ep) — an(F,
e~ 23 R il S 2

29 1+ |1j(Fm) — Ii(Fo)l

JjeJ n=1

S Z |f1j,T0(Qm)AM)p’muwm) _ffj,ro(QOaA();H(th”
JjE€JN[1,N]

N
€
+ ; an(Fn) = an(Fo)| + 5 <€

for N and m > mg(N) sufficiently large, so o7(Fy,, Fo) — 0 and the lemma
follows. m

LEMMA 3. Let I be a countable set of continuous invariants. Then
S,S* € B(T).

Proof. From the well known formula for the abscissa of absolute conver-
gence of Dirichlet series we see that a function F' € S* belongs to S* if and
only if for every ¢ > 0 and N € N, N > N(e),

D lan(F)| < N

n<N

Therefore, for e > 0 and N € N we consider the function fy. : S S R
defined by

fne(F) = # Z |an(F)].

n<N

Since F' — a,(F') is continuous with respect to oz, fn(F') is also continuous
with respect to oz. Moreover, S* can be characterized as

(2.5) = U N fxi(o.1)),
eeQt M=1N=M

where QF denotes the positive rational numbers. Since 5 ([0, 1]) is a closed
subset of S*, (2.5) shows that S* is a Borel subset, of S#.
In order to deal with S we first consider

SF1)={FeS&:a(F)=1} =S na; ({1}).
In view of the first part of the lemma, Sﬁ(l) is a Borel subset of S#. For
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F € 8%1) let o1 (F) > 1 be such that
oo
F
ZM <1l foro>o1(F).
nO’
n=2

Then for o > o1 (F) the function log F(s) is well defined, and by Taylor’s
expansion we have

log F(s) = Z bnéf)
n=2

with

£2(n) _1\ym+1
() =3 TS (B) e, ()
m=1

n1>2,...,nm=>2
n1Nm=n

where (2(n) denotes the total number of prime factors of n. Thus the func-
tions F — b,(F), n =2,3,..., are continuous on S*(1) with respect to o7.
In order to deal with the Euler product axiom, for (n,m) =1 we put

Inm(F) = an(F)am(F) — anm (F),
and for 0 < 1/2 we write
hng(F) = n79|bn(F)’3

note that b,(F) < n? for some § < 1/2 is equivalent to |b,(F)| < n? for
some 0 < # < 1/2 and n > n(f). Moreover, in order to deal with the
Ramanujan conjecture axiom, for every € > 0 we define

lne(F) =n"¢%lan(F)|.

The three functions g m(F), hng(F), I, -(F) are continuous on S*(1) with
respect to o7, and S can be characterized as

s=smn N sh@nn U U N ko

(n,m)=1 0<6<1/2 m=1n=m

(250)
n M U Nk K,

ccQt+ K=1 n=1
and the result follows as for S*, thus proving the lemma. u
Theorem 1 follows at once from (2.1) and Lemmas 2 and 3. =

To prove Theorem 2, let I € Z, B € B(Z) and S*¥(R) be as in (2.1).
Writing

(2.6) Br = BN S*(R),
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we see that By, is a Borel set of the compact metric space (S¥(R), or). More-
over, by Proposition 4.2 of [8], (S¥(R), o7) is a Polish space (see Definition
3.1 of [8]). Hence, by Theorem 13.7 (see also p. 85) of [8], Br is analytic
(in Suslin’s sense, see Definition 14.1 of [8]). Therefore, by Proposition 14.4
of [8], I(BR) is analytic as well since I is continuous from (S*(R), o7) to C
(and hence is a Borel map, see pp. 70-71 of [8]) and C is obviously a Polish
space. Finally, by Theorem 21.10 of [8], I(Bpg) is Lebesgue measurable, and

hence
= |J I(Bg)
R=2

is Lebesgue measurable as well. »

The proof of Corollary 1 is very simple. Let I be a continuous invariant
and Z = {Iy, I}. Since B € B(lp), it follows that B € B(Z), hence I(B) is
Lebesgue measurable by Theorem 2.

We need two lemmas for the proof of Theorem 3. We recall that a topo-
logical semigroup (G, -) is a semigroup where the multiplication - from G x G
to G is continuous.

LEMMA 4. Let T be a countable family of continuous invariants and
suppose that every I € T is additive or multiplicative. Then (S’m,gz) s a
topological semigroup.

Proof. We have to prove that the usual multiplication in S* is continu-
ous with respect to the metric g7. Let I € 7 and write * for the sum (resp.
product) if I is additive (resp. multiplicative). Let F,,, — Fy and G, — Gy
be two convergent sequences in (S*, p7). Since the functions in Lemma 1
are continuous, we see that as m — oo,

I(F,Gn) = I(Fy) x I(Gr) — I(Fo) x [(Go) = I(FoG)
for every I € T, and
an(FnGm Zad n/d Zad (Fo)a n/d(GO) = an(FoGo)
dn dln

for every n € N. Hence F,,G,, — FyGy with respect to o7, and the lemma
follows. m

Recalling that Bp is defined by (2.6), we have

LEMMA 5. LetZ be a countable family of continuous invariants, let B €
B(Z) with 1 € B, and G be the semigroup generated by B. Then

G = G GBJ’;.

R=2 k=1
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Proof. The inclusion D is obvious. To prove the opposite inclusion, given
F € G we have F(s) = H§:1 F;(s) with some k& € N and F; € B. Then
F; € S¥(R;) for some R;, hence writing R = max{Ry,..., Ry} we have
{F1,...,Fx} C Bg. Therefore F € B%, and the lemma follows. u

In order to prove Theorem 3, we first note that clearly {1} € B(Z), and
we may always assume that G is generated by a set B € B(Z), where 1 € B
(in fact, if B is an Z-Borel set then B U {1} is an Z-Borel set as well and
generates the same semigroup). The proof of Theorem 3 now follows the
lines of the proof of Theorem 2, hence we only give a sketch. Bg is a Borel
set of the Polish space (S*(R), o7), hence it is analytic in Suslin’s sense.
Moreover, by Lemma 4, multiplication is a continuous function, therefore
B"lf2 is also analytic. Since the invariant I is continuous, (BE) is analytic as
well, and hence Lebesgue measurable. Thus, by Lemma 5, I(G) is Lebesgue
measurable. m

The proof of Corollary 2 is similar to the proof of Corollary 1. m

Given a set A C R, A + A denotes as usual the set of real numbers of
the form a + a’ with a,a’ € A. In order to prove the first part of Theorem 4
we recall that if A is measurable with u(.A) > 0, then A + A contains an
open interval; see Exercise 19 of Ch. 9 of Rudin [11]. Suppose now that
u(I(G)) > 0. Since G is a semigroup and [ is additive, we have

I(G) + I(G) C I(G),

hence there exists an interval (a,b) C I(G). Therefore, again since G is
a semigroup, for every positive integer k we have (ka,kb) C I(G). Thus
I(G) contains arbitrarily long intervals. Let Fy € G with I(Fp) # 0 and let
Uy C I(G) be an interval of length > |I(Fp)|. Then

o0

U ®I(Fo) + Uo) C I(@),

k=1
and such a union is a half-line, thus proving the first part of Theorem 4.

The second option of the second part of Theorem 4 follows at once
from the first part. In fact, let I be multiplicative with values in R™. Write
log I(G) = {log I(F') : F € G}. The function F' — log I(F) is a real-valued
additive continuous invariant. Moreover, if u(I(G)) > 0 then p(log I(G)) > 0
as well, so log I(G) contains a half-line by the first part of Theorem 4, and
hence I(G) contains a half-line too.

In order to prove the first option of the second part of Theorem 4, we
first remark that a variant of the above mentioned exercise reads as follows.
Let A C T! and write AA = {ad’ : a,a’ € A}; if A is measurable and
pu(A) > 0, then AA contains an arc. Suppose now that u(I(G)) > 0 and
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argue as in the first part. Since I is multiplicative we have

H(GI(G) C I(G),
thus I(G) contains an arc. Hence there exists Iy € G such that I(Fp) =
e¥™% with 0y ¢ Q, therefore the set {I(F{)}ren is dense in T1. But then

o
T = | I(FI(G) C 1(G),

k=1

and Theorem 4 is proved. m
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