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Generating normal numbers over Gaussian integers
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Manfred G. Madritsch (Graz)

1. Introduction. When considering number systems, one is especially
interested in uniqueness, periodicity and randomness of representations. In
this paper we deal with the last property, in particular, we are concerned
with the distribution of blocks in an expansion. We will call a number normal
in a number system if every possible block of finite size occurs asymptotically
with the same frequency.

For number systems over the reals this has been studied for a very long
time. The quantitative aspect is that almost every real number is normal
with respect to the Lebesgue measure. But we still do not know whether π
or log 2 is normal in a given base q ≥ 2.

On the other hand, we know how to construct normal numbers. This
started with the construction of Champernowne who was able to show that

0.1 2 3 4 5 6 7 8 9 10 11 12 . . .

is normal in base 10. This idea was successively extended to the integer
part of polynomials over the positive integers by Davenport and Erdős [3]
(polynomials with integer coefficients), Schiffer [24] (polynomials with ra-
tional coefficients), and Nakai and Shiokawa [22] (polynomials with real
coefficients). Finally, it was shown by Madritsch et al. [20] that

0.bf(1)cbf(2)cbf(3)cbf(4)cbf(5)cbf(6)c . . .
is normal if f is an entire function of bounded logarithmic order and bxc
denotes the expansion of the integer part of x with respect to a given base
q ≥ 2.

In this paper our aim is to generalize the above mentioned construction
of normal numbers to number systems for Gaussian integers. The properties
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of these number systems have been investigated for instance by Kátai and
Szabó [14] as well as Grabner et al. [7].

2. Definitions of number systems and normality. We start by
recalling some well-known definitions pertaining to number systems, mainly
following [6].

Let b ∈ Z[i] and let D be a complete set of residue classes modulo b.
Then we call (b,D) a number system (NS) if every z ∈ Z[i] has a unique and
finite representation

z =
`−1∑
k=0

dk(z)bk,(2.1)

where dk(z) = 0 for k ≥ `. We call dk(z) ∈ D the digits of z.
Furthermore, b is called the base and D the set of digits of the NS. We

let `(z) := max{k : dk−1(z) 6= 0} denote the length of the expansion. If
D = {0, 1, . . . , |N(b)|−1} where N(b) denotes the norm of b over Q then we
call (b,D) a canonical number system (CNS).

One of the first who considered the possible bases for a CNS was Knuth
[15], who was able to show that b = −1 ± i is a base. Later this was gen-
eralized by Kátai and Szabó [14] who proved that b = −n ± i with n ∈ N
are all possible bases for the Gaussian integers. This was further generalized
to algebraic number fields and matrix number systems in a series of papers
(see for instance [1, 8, 12, 13, 17, 18, 21, 23]).

In order to define uniform distribution and normal numbers we need
an equivalent for the “reals”. Therefore we will extend our number system
onto C. By Theorem 2 in [14], every γ ∈ C has a (not necessarily unique)
representation of the shape

γ =
`(γ)∑

k=−∞
dk(γ)bk (dk(γ) ∈ D).

In this context the fundamental domain F ′ indicates the properties of this
extension. It is defined as all numbers with zero in the integer part of their
b-ary representation, i.e.,

F ′ :=
{
γ ∈ C

∣∣∣ γ =
∑
k≥1

dkb
−k, dk ∈ D

}
.(2.2)

It is known (see [8, 10]) that ⋃
a∈Z[i]

(F ′ + a) = C
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and

λ((F ′ + a) ∩ (F ′ + b)) = 0 (a, b ∈ Z[i], a 6= b),(2.3)

where λ denotes the Lebesgue measure on C.
Then we denote by

bγcb = bγc :=
`(γ)∑
k=0

dk(γ)bk

the integer part with respect to base b. This definition may be ambiguous,
but in view of (2.3), the integer part is well-defined for almost all Gaussian
integers, which suffices for our purpose (we note that one can avoid the
ambiguity by choosing always the greatest or least integer with respect to
the ordering defined below).

We fix a base b and turn to the definition of normal numbers. Let
d1 . . . dl ∈ Dl be a block of digits of length l. We denote by N (θ; d1 . . . dl;N)
the number of occurrences of this block in the first N digits of θ. Thus

N (θ; d1 . . . dl;N) := #{1 ≤ n ≤ N : d1 = dn(θ), . . . , dl = dn+l−1(θ)}.
Now we call θ normal in (b,D) if for every l ≥ 1 we have

RN (θ) = RN,l(θ) := sup
d1...dl

∣∣∣∣ 1
N
N (θ; d1 . . . dl;N)− 1

|D|l

∣∣∣∣ = o(1)(2.4)

where the supremum is taken over all blocks of length l.
By our completion of Q(i) to C we know that there can be more than

one representation for a γ ∈ C (see [10, 11, 21]). We call a γ ∈ C ambiguous
if

γ =
`(γ)∑

k=−∞
xkb

k =
`(γ)∑

k=−∞
ykb

k

with xk 6= yk for at least one k ≤ `(γ). These numbers are dealt with in the
following lemma.

Lemma 2.1 ([19, Proposition]). Let (b,D) be a CNS. Then no number
with an ambiguous representation is normal.

As we want to construct a normal number as a concatenation of digital
expansions of a certain sequence of numbers we have to give an ordering for
the Gaussian integers which will fit our purpose. We set q := N(b) where
N denotes the norm of b over Q and let τ be a bijection between D and
{0, 1, . . . , q−1} with τ(0) = 0. Then we extend τ to the Gaussian integers by
setting τ(d0+d1b+d2b

2+· · ·+dkbk) := τ(d0)+τ(d1)q+τ(d2)q2+· · ·+τ(dk)qk.
This is essentially a bijection because of the uniqueness of the representa-
tion of every Gaussian integer, i.e., τ(Z[i]) = N ∪ {0} = N0. Thus for every
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a ∈ Z[i] there exists an n ∈ N0 such that τ(a) = n. Now we pull back the
relation ≤ from N0 to Z[i] by

a ≤ b :⇔ τ(a) ≤ τ(b), a, b ∈ Z[i].

Then the formula zn := τ−1(n−1) defines an increasing sequence of elements
of Z[i].

For a function f : Z[i]→ C we define

θb(f) := θ(f) = bf(z1)cq−`(f(z1)) + bf(z2)cq−`(f(z1))−`(f(z2)) + · · · .
This is simply the concatenation of the integer parts of the function values
evaluated on the sequence {zn}n≥1 of Gaussian integers. We are now in a
position to state our main theorem.

Theorem 2.2. Let f(z) = αdz
d + · · · + α1z + α0 be a polynomial with

coefficients in C. Let (b,D) be a CNS in the Gaussian integers. Then for
every l ≥ 1,

sup
d1...dl

∣∣∣∣ 1
N
N (θb(f); d1 . . . dl;N)− 1

|D|l

∣∣∣∣� (logN)−1,

where the supremum is taken over all blocks of length l.

3. Preliminary lemmas. The first lemma will help us to rewrite the
asymptotics.

Lemma 3.1 ([20, Lemma 3.4]). Let {an}n≥1 and {bn}n≥1 be two se-
quences of reals with 0 < an ≤ bn for all n. Suppose that limn→∞ an 6= 0
and

lim
n→∞

an
bn

= 0.

Then

lim
n→∞

∑n
i=1 ai∑n
i=1 bi

= 0.

As we deal with blocks of a certain length we need information about the
connection of the norm of a Gaussian integer and the length of its expansion.
This connection is described by the following lemma.

Lemma 3.2 ([7, Proposition 2.6]). Let (b,D) be a number system in the
Gaussian integers and q := N(b). Then

|`(z)− logq|z|2| ≤ cb
for a constant cb depending only on the base b, where logq is the logarithm
in base q.

In the proof of our main result we will need the discrepancy (see [5, p. 5]
for a definition) DN (xn) of the first N elements of a sequence {xn}n≥1 of
elements in R2. The following result provides an estimate of the discrepancy.
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Lemma 3.3 (Erdős–Turán–Koksma inequality, [5, Theorem 1.21]). Let
x1, . . . ,xN be points in R2 and T an arbitrary positive integer. Then

DN (xn) ≤
(

3
2

)k( 2
V + 1

+
∑

0<‖v‖∞≤V

1
r(v)

∣∣∣∣ 1
N

N∑
n=1

e(v · xn)
∣∣∣∣),

where r(v) = (max{1, |v1|}) · (max{1, |v2|}) for v = (v1, v2) ∈ Z2.

For the transformation of an exponential sum into an integral we will
apply the following two lemmas.

Lemma 3.4 ([2, Lemma 5.4]). Suppose that F (x1, . . . , xr) is a real dif-
ferentiable function for 0 ≤ xj ≤ Pj ≤ P (j = 1, . . . , r), the function
∂F (x1, . . . , xr)/∂xj is piecewise monotone and of constant sign in each xj
(j = 1, . . . , r) for any fixed values of the other variables, and the number of
the intervals of monotonicity and constant sign does not exceed s. Moreover ,
suppose that ∣∣∣∣∂F (x1, . . . , xr)

∂xj

∣∣∣∣ ≤ δ, j = 1, . . . , r

for some 0 < δ < 1. Then
P1∑
x1=0

· · ·
Pr∑
xr=0

e(F (x1, . . . , xr))

=
P1�

0

· · ·
Pr�

0

e(F (x1, . . . , xr)) dx1 . . . dxr + θ1rsP
r−1

(
3 +

2δ
1− δ

)
for some θ1 with |θ1| ≤ 1.

Lemma 3.5 ([25, Lemma 4.2]). Let F (x) be a real differentiable function
such that F ′(x) is monotonic, and F ′(x) ≥ m > 0, or F ′(x) ≤ −m < 0,
throughout the interval [a, b]. Then∣∣∣b�

a

e(F (x)) dx
∣∣∣ ≤ 4

m
.

In the next lemma we give an application of the preceding ones.

Lemma 3.6. Let M and N be positive integers with M � N . Let F :
C→ C satisfy the conditions of Lemmas 3.4 and 3.5. Then∑

M≤|z|2<M+N

e(tr(F (z)))�
√
N

m
+

N

(logN)σ/2
+ s

3− δ
1− δ

√
N(logN)σ

for any positive real number σ. Here tr(x) denotes the trace of an element
x ∈ Z[i].
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Proof. This is a generalization of [6, Lemmas 2.1 and 2.2]. In order to
apply the two lemmas above we start by considering squares in the annulus
M ≤ |z|2 < M + N . Set Dν := {z = x + iy ∈ Z[i] : −ν ≤ x, y ≤ ν}. By
Lemma 3.4,∑

z∈Dν

e(tr(F (z))) =
ν∑

x=−ν

ν∑
y=−ν

e(tr(F (x+ iy)))

=
ν�

−ν

ν�

−ν
e(tr(F (x+ iy))) dx dy + 2θ1sν

3− δ
1− δ

.

We take the modulus in order to apply Lemma 3.5:∣∣∣∑
z∈Dν

e(tr(F (z)))
∣∣∣ ≤ ν�

−ν

∣∣∣ ν�
−ν
e(tr(F (x+ iy))) dx

∣∣∣ dy + 2θ1sν
3− δ
1− δ

≤ 2ν max
−ν≤y≤ν

∣∣∣ ν�
−ν
e(tr(F (x+ iy))) dx

∣∣∣+ 2θ1sν
3− δ
1− δ

≤ 8ν
m

+ 2θ1sν
3− δ
1− δ

.

Secondly we tessellate the annulus M ≤ |z|2 < M + N by squares of
side length

√
N/(logN)σ. We define two sets I and B to consist of the

squares which are completely inside the annulus and those which intersect
the boundary, respectively. Let CI and CB be their respective contributions
to the sum. There are O((logN)σ) squares in I and together with our con-
siderations above we get

CI �
N

m
+ s

3− δ
1− δ

√
N(logN)σ.

For the boundary we see that there are two annuli of widthO(
√
M/(logM)σ)

and O(
√

(M +N)/(logM +N)σ) that cover the boundary. By noting that
M � N we get

CB �
N

(logN)σ/2
.

This together with the estimation above yields the result.

Finally, we need an estimation for a complete exponential sum in the
Gaussian rationals.

Lemma 3.7 ([9, Theorem 1]). Let f be a kth degree polynomial with
coefficients in Q(i) and q be the least common multiple of its coefficients. If
Λ(q) is a complete set of residues modulo q, then, for any ε > 0,∑

λ∈Λ(q)

e(tr(f(λ)))� (N(q))1−1/k+ε,

where the implied constant depends only on f and ε.
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4. Properties of the fundamental domain. In this section we mainly
follow the paper of Gittenberger and Thuswaldner [6]. Let b = −n+ i be a
base of a CNS in Z[i]. Then every γ ∈ C has a unique representation of the
shape γ = α+ βb with α, β ∈ R. Thus we define the mapping

ϕ : C→ R2, α+ βb 7→ (α, β).

Since (1, b) is an integral basis we know that ϕ(Z[i]) = Z2.
In order to ease things we use our embedding from above to switch from

C to R2. Then we get the analog in R2 for the fundamental domain defined
in (2.2):

F := ϕ(F ′) =
{
γ ∈ R2

∣∣∣ γ =
∑
k≥1

dkB
−k, dk ∈ ϕ(D)

}
,

where B is the matrix corresponding to multiplication by b in R2 given by

B =
(

0 −1− n2

1 −2n

)
.

We refer the reader to [23] for more details.
Now we define for every a ∈ Z[i] the domain corresponding to the ele-

ments of F whose digit representation after the comma starts with the digits
of the expansion of a. In particular, we set

Fa = B−`(a)(F + ϕ(a)).(4.1)

As in the case of normal numbers in the reals we need an Urysohn func-
tion for this fundamental domain of numbers starting with a. In the reals we
use a lemma due to Vinogradov (cf. Lemma 2 of [26, p. 196]); in C, however,
we have to construct a corresponding version of this lemma.

For a ∈ D this has been done by Gittenberger and Thuswaldner in
Section 3 of [6]. As the generalization of their construction to the case of
a ∈ Z[i] runs along the same lines, we only state the corresponding results
and leave their proofs to the reader.

Lemma 4.1 ([6, Lemma 3.1]). For all a ∈ Z[i] and all k ∈ N there exists
an axis-parallel tube Pk,a with the following properties:

(1) ∂Fa ⊂ Pk,a for all k ∈ N,
(2) λ2(Pk,a) = O(µk/|b|2k),
(3) Pk,a consists of O(µk) axis-parallel rectangles with 1 < µ < |b|2, each

of which has Lebesgue measure O(|b|−2k).

Here we denote by λ2 the usual Lebesgue measure on R2.

Gittenberger and Thuswaldner [6] define, for every pair (k, a), suitable
axis-parallel polygons Πk,a. Then they show that d(Πk,a, ∂Fa) < c|b|−k for
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a constant c > 0, where d(·, ·) denotes the Hausdorff metric, and set

Pk,a := {z ∈ R2 | ‖z −Πk,a‖∞ ≤ 2c|b|−k}.(4.2)

As in [6] we denote by Ik,a the interior of Πk,a and define

fa(x, y) =
1
∆2

∆/2�

−∆/2

∆/2�

−∆/2

ψa(x+ x̄, y + ȳ) dx̄ dȳ,(4.3)

where

∆ := 2c∆|b|−k(4.4)

with c∆ > 0 a constant and

ψa(x, y) =


1 if (x, y) ∈ Ik,a,
1/2 if (x, y) ∈ Πk,a,
0 otherwise.

Now fa is the desired Urysohn function for Fa in R2. The Fourier analysis
of this function yields

Lemma 4.2 ([6, Lemma 3.2]). Let fa(x, y) =
∑

m,nC(m,n)e(mx + ny)
be the Fourier expansion of fa. Then

C(m,n) =
{
|b|−2`(a), m = n = 0,
µkc(m)c(n), otherwise,

(4.5)

where

c(t)�
{

1, t = 0,
min(|t|−1, ∆|t|−2), otherwise.

(4.6)

As the proof of this lemma runs along the same lines as that of [6, Lem-
ma 3.2] we omit it.

The coefficient C(0, 0) will correspond to the main term and all others
contribute to the error term. One of our main tools will be Weyl sums which
will be discussed in the next section.

5. The Weyl sum. Throughout this section we denote by f a polyno-
mial with coefficients in C. Thus

f(z) = αdz
d + αd−1z

d−1 + · · ·+ α1z.

The following generalization of Lemma 2 of Nakai and Shiokawa [22] will
play a crucial rôle in the proof of Theorem 2.2.

Proposition 5.1. Let G > 0 and N ≥ 2. Let s be an integer with
1 ≤ s ≤ d, let Hi,Ki (i = s + 1, . . . , d) be any positive constants, and let
H∗s , K∗s be constants such that
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H∗s ≥ 23(s+2) + 2s+3(G+ max
s<i≤d

Hi) + s
d∑

i=s+1

Ki,

K∗s ≥ 23(s+2) + 2s+3(G+ max
s<i≤d

Hi) + 2s
d∑

i=s+1

Ki.

Suppose that there are Gaussian integers ai and qi (s < i ≤ d) such that

1 ≤ |qi|2 ≤ (logN)Ki and
∣∣∣∣αi − ai

qi

∣∣∣∣ ≤ (logN)Hi

qiN i/2

but there exist no Gaussian integers as and qs with (as, qs) = 1 such that

1 ≤ |qs|2 ≤ (logN)K
∗
s and

∣∣∣∣αs − as
qs

∣∣∣∣ ≤ (logN)H
∗
s

qsN s/2
.(5.1)

Then ∣∣∣ ∑
|z|2≤N

e(tr(f(z)))
∣∣∣� N(logN)−G.

To prove the proposition we need two lemmas. The first deals with ap-
proximation by Gaussian integers.

Lemma 5.2 ([4, Theorem 4.5]). Given any z = x + iy ∈ C and N ∈ N,
there exist Gaussian integers a and q with 0 < |q|2 ≤ N such that∣∣∣∣z − a

q

∣∣∣∣ < 2
|q|
√
N
.

Furthermore we need a lemma which considers the case where s = d,
the degree of the polynomial f , i.e., the leading coefficient is already well
approximable.

Lemma 5.3 ([6, Proposition 2.1]). Let (h, q) = 1 and

g(x) =
h

q
xd + αd−1x

d−1 + · · ·+ α1x+ α0

where (logN)H ≤ |q|2 ≤ Nd(logN)−H . Then∣∣∣ ∑
|z|2<N

e(tr(g(z)))
∣∣∣� N(logN)−G with H ≥ 2d+2G+ 23(d+2).

In order to apply Lemma 5.3 recursively, we need a tool to rewrite it.

Lemma 5.4 ([16, Lemma 26]). Let f1 and f2 be functions defined on a
finite set M . Then∑

x∈M
e(f1(x) + f2(x)) =

∑
x∈M

e(f1(x)) + 2πθ
∑
x∈M
|f2(x)|

for some θ with |θ| ≤ 1.



72 M. G. Madritsch

Corollary 5.5. Let g(x) = αdx
d + αd−1x

d−1 + · · ·+ α1x+ α0 ∈ C[X].
If there exist h, q ∈ Z[X] such that (h, q) = 1 and∣∣∣∣αd − h

q

∣∣∣∣ ≤ (logN)H

|q|Nd/2

with (logN)H ≤ |q| ≤ Nd/2(logN)−H and H ≥ 2d+1G+ 23(d+2)−1, then∣∣∣ ∑
|z|2<N

e(tr(g(z)))
∣∣∣� N(logN)−G.

Proof. This easily follows from∣∣∣∣αd − h

q

∣∣∣∣ ≤ (logN)H

|q|Nd/2
≤ N−d/2

together with Lemmas 5.4 and 5.3 and∣∣∣ ∑
|z|2<N

e(tr(g(z)))
∣∣∣ ≤ ∣∣∣∣ ∑

|z|2<N

e

(
tr
(
h

q
zd + αd−1z

d−1 + · · ·+ α0

))∣∣∣∣
+
∑
|z|2<N

∣∣∣∣tr((αd − h

q

)
zd
)∣∣∣∣

� N(logN)−G +N1/2.

Now we can start the proof of Proposition 5.1.

Proof of Proposition 5.1. This proof mainly follows the ideas of Nakai
and Shiokawa in their proof of Lemma 2 in [22].

We consider the different possibilities for s. If s = d, there is nothing to
prove, as this is exactly the case of Corollary 5.5.

Let s < d. We denote by k the least common multiple of qs+1, . . . , qd.
We have k ∈ Z[i] because the Gaussian integers are a unique factorization
domain. We denote by Q the integer such that |k|2Q ≤ N < |k|2(Q+ 1). By
our assumptions we have

1 ≤ |k|2 ≤ (logN)K with K =
d∑

i=s+1

Ki

and
N(logN)−K � Q� N/|k|2.

Now, since Z[i] is a Euclidean domain, for every s ∈ Z[i] there exist
unique q, r ∈ Z[i] with |r|2 < |k|2 such that s = qk + r. Thus there exists a
complete residue system R modulo k with

R ⊂ {z ∈ Z[i] : |z| ≤ |k|}.
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We use this system to tessellate the open disc D := {z : |z|2 < N} with
translates of R. Let

T := {t ∈ Z[i] : (R+ tk) ∩D 6= ∅},
I := {t ∈ T : R+ tk ⊂ D}.

As there are O(
√
N) points on the circumference and O(|k|) points in R we

get ∑
|z|2≤N

e(tr(f(z))) =
∑
t∈I

∑
r∈R

e(tr(f(tk + r))) +O(
√
N |k|).

As in the proof of Lemma 2 of Nakai and Shiokawa in [22] we want to
perform Abel summation. Therefore we need an ordering on I. For x, y ∈ I,
define

x ≺ y :⇔
{ |x| < |y| or

(|x| = |y| and arg(x) < arg(y)).

By the polar representation of every complex number, this ordering is well
defined. Furthermore, we let σ : N → I be a bijection such that σ(1) = 0,
σ(|I|) = max I (maximum with respect to ≺), and define

σ(x) ≺ σ(y) :⇔ x < y.

Let M = |I|. Then∑
|z|2≤N

e(tr(f(z))) =
M∑
n=1

∑
r∈R

e(tr(f(σ(n)k + r))) +O(
√
N |k|).(5.2)

Now we are ready to perform Abel summation and define for short

ψr(x) =
d∑

i=s+1

γi(xk + r)i, γi = αi −
ai
qi
,

ϕr(x) =
s∑
i=1

αi(xk + r)i, Tr(`) =
∑̀
n=1

e(tr(ϕr(σ(n)))).

By the linearity of the trace tr we get

(5.3)
M∑
n=1

∑
r∈R

e(tr(f(σ(n)k + r)))

=
∑
r∈R

M∑
n=1

e
(

tr
( d∑
i=1

αi(σ(n)k + r)i
))

=
∑
r∈R

M∑
n=1

e
(

tr
( s∑
i=1

αi(σ(n)k + r)i +
d∑

i=s+1

αi(σ(n)k + r)i
))
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=
∑
r∈R

M∑
n=1

e

(
tr
(
ϕr(σ(n)) +

d∑
i=s+1

(
γi +

ai
qi

)
(σ(n)k + r)i

))

=
∑
r∈R

e

(
tr
( d∑
i=s+1

ai
qi
ri
)) M∑

n=1

e(tr(ϕr(σ(n)) + ψr(σ(n))))

=
∑
r∈R

e

(
tr
( d∑
i=s+1

ai
qi
ri
)) M∑

n=1

e(tr(ψr(σ(n))))(Tr(n)− Tr(n− 1))

=
∑
r∈R

e

(
tr
( d∑
i=s+1

ai
qi
ri
))[

e(tr(ψr(σ(M + 1))))Tr(M)

+
M∑
n=1

(e(tr(ψr(σ(n))))− e(tr(ψr(σ(n+ 1)))))Tr(n)
]

�
∑
r∈R

[
|Tr(M)|+

M∑
n=1

|e(tr(ψr(σ(n))))− e(tr(ψr(σ(n+ 1))))| |Tr(n)|
]
.

As the trace is a linear functional we get

d

dx
tr(f(x)) = tr

(
df

dx

)
.

Noting that tr(a) � |a| for a ∈ C and |σ(n) − σ(n + 1)| � N1/2 for 1 < n
≤M , we apply the mean-value theorem to get

|e(tr(ψr(σ(n))))− e(tr(ψr(σ(n+ 1))))| � |k|
d∑

i=s+1

|γi|N i/2−1 � |k| (logN)H

N

where H = max{Hi : i = 1, . . . , s}. Thus

(5.4)
M∑
n=1

∑
r∈R

e(tr(f(σ(n)k + r)))�
∑
r∈R

[
|Tr(M)|+ |k| (logN)H

N

M∑
n=1

|Tr(n)|
]
.

If we can show that

|Tr(n)| � N

|k|(logN)G+H
(5.5)

then we are done. We may assume that

(5.6) n� N

|k|(logN)G+H
.
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We split the estimation of Tr(n) according to whether or not there exist
a and q with (a, q) = 1 such that

(logN)H
′ ≤ |q|2 ≤ N s(logN)−H

′
(5.7)

and ∣∣∣∣ksαs − a

q

∣∣∣∣ ≤ |q|2,
with H ′ = 23(s+2) + 2s+3(G+H) + sK.

• Suppose there exist such a and q. Then by the definition of H ′ together
with (5.6) we get

(log n)h
′ ≤ |q|2 ≤ ns(log n)−h

′
,

where h′ = 23(s+2) + 2s+2(G+H). Thus an application of Lemma 5.3
yields

|Tr(n)| � n(log n)−(G+H) � N

|k|(logN)G+H
.

• On the contrary, if there are no such a and q then by Lemma 5.2 there
must exist a and q with (a, q) = 1 and |q|2 ≤ N s(logN)−H

′
. Thus by

(5.7) we get

1 ≤ |q|2 ≤ (logN)−H
′

and
∣∣∣∣ksαs − a

q

∣∣∣∣ ≤ (logN)−H
′/2

|q|N s/2
.

Then, however,
|ksq|2 ≤ (logN)H

′+sK ≤ (logN)K
∗
s ,

and thus ∣∣∣∣αs − a

ksq

∣∣∣∣ ≤ (logN)H
∗
s

|k|s|q|N s
,

which contradicts the assumption on αs.

Thus we have shown (5.5). Together with (5.2) and (5.4) we get∑
|z|2≤N

e(tr(f(z)))�
∑
r∈R

[
|Tr(M)|+ |k| (logN)H

N

M∑
n=1

|Tr(n)|
]

+
√
N |k|

�
∑
r∈R

[
N

|k|(logN)G+H
+

1
(logN)G

M

]
+
√
N |k|

� N

(logN)G
,

and the proposition is proven.

Now we have enough tools to proceed to the proof of the main theorem.
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6. Proof of Theorem 2.2. The proof of Theorem 2.2 will occupy the
rest of the paper. We split it into several parts.

(1) We start in Section 6.1 by defining several useful parameters, and
we show some connections between them.

(2) Then in Section 6.2 we rewrite the problem into one of estimating
an exponential sum. This sum is finally transfered into one of type
as in Proposition 5.1 or Lemma 5.3.

(3) We consider these sums according to the b-adic length of their ar-
guments. Those of middle length, considered in Section 6.3, pose no
problem. By “middle” we mean that there exists an upper and a
lower bound for the b-adic length of the expansion. For those ar-
guments with a long or short expansion we have to use different
methods in Sections 6.4 and 6.5, respectively.

(4) Finally, we put everything together and get the result.

Throughout the proof we fix N and the block d1 . . . dl. Furthermore, we
set

a :=
l∑

i=1

dib
l−i(6.1)

for abbreviation.

6.1. Defining parameters and explaining relations between them. Let m
be the unique positive integer such that∑

n≤m−1

`(f(zn)) < N ≤
∑
n≤m

`(f(zn)),(6.2)

where zn := τ−1(n − 1) for n ≥ 1. Furthermore, we denote by M the
maximum norm and by J the maximum length of the (b,D)-ary expansion
of bf(zn)c for 1 ≤ n ≤ m, i.e.,

M := max
n≤m
|zn|2, J := max

n≤m
`(f(zn)).

These will be of central interest for us.
Now we will use Lemma 3.2 to connect m and M . We get

|log|b|2 max
n≤m
|zn|2 − `(max

n≤m
zn)| = |log|b|2 M − `(zm)|

= |log|b|2 M − blog|b|2 mc| ≤ c,
M �� m,

where �� means both � and �.
For the connection of M and J we note that |f(z)| �� |z|d. Thus by

Lemma 3.2 we get
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|log|b|2 max
n≤m
|f(zn)|2 − J |�� |log|b|2 max

n≤m
|zn|2d − J |

= |log|b|2 M
d − J |,(6.3)

M �� |b|2J/d ≤ c.

Finally, we get the following relation between M and N :

N = mJ +O(m) = c0M logqM +O(M),

where c0 is a positive constant depending on d and b.
Next we want to split the sum on the right of (6.2) into parts where

f(zn) has the same b-ary length. So let Il, Il+1, . . . , IJ ⊂ {1, . . . ,m} be such
that

n ∈ Ij :⇔ `(f(zn)) ≥ j.

To estimate the size of these subsets we define Mj (j = l, l+ 1, . . . , J) to be
the least integer such that any z ∈ C of norm greater than or equal to Mj

has length at least j, i.e.,

Mj := max
`(z)<j

|z|2 = max
n<|b|2(j−1)

|zn|2.

By the same arguments as in (6.3) we get Mj �� |b|2j/d. Furthermore, we
set

Xj := M −Mj .(6.4)

6.2. Rewriting the problem. With the help of the parameters defined
above we can easily rewrite our problem. Let N (f(zn)) be the number of
occurrences of the block d1 . . . dl in the b-ary expansion of the integer part
of bf(zn)c. Then∣∣∣N (θq(f); d1 . . . dl, N)−

∑
n≤m
N (f(zn))

∣∣∣ ≤ 2lm.

Thus it suffices to show that∑
n≤m
N (f(zn)) =

N

|D|l
+O

(
N

logN

)
.(6.5)

In order to count the occurrences of d1 . . . dl in bf(zn)c properly, we
introduce the indicator function of Fa (where a is as in (6.1) and Fa is
defined in (4.1)),

Ia(z) = I(z) =
{

1, z ∈ Fa,
0, otherwise.

Writing f(zn) in (b,D)-ary expansion for a fixed n ∈ {1, . . . ,m}, i.e.,

f(zn) = arb
r + ar−1b

r−1 + · · ·+ a1b+ a0 + a−1b
−1 + · · · ,
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with ai ∈ D for i = r, r − 1, . . . , we see that

I(b−j−1f(zn)) = 1 ⇔ d1 . . . dl = aj−1 . . . aj−l.

As every Ij (l ≤ j ≤ J) consists of exactly those f(zn) whose (b,D)-ary
expansion has length at least j, we get∑

n≤m
N (f(z)) =

∑
l≤j≤J

∑
n∈Ij

I
(
f(zn)
bj+1

)
.

For every j there may be elements z ∈ Z[i] with |z|2 < Mj but `(z) ≥ j.
By Lemma 3.2, they are only finitely many. Now by Lemma 3.1 we get∑

n∈Ij

1 =
∑
|zn|<Mj

1 +
∑

Mj≤|zn|2<M

1 ∼
∑

Mj≤|zn|2<M

1.

Therefore we can assume that there are no z with `(z) ≥ j and |z|2 < Mj .
In order to estimate I(z) we use our considerations of Section 4. Noting

that Fa can be covered by a set Ik,a and an axis-parallel tube Pk,a (cf. (4.2)),
we have to consider how often the sequence

{
b−j−1f(zn)

}
n∈Ij

hits each
of these sets. The first one, Ik,a, is characterized by the Urysohn function
fa(x, y) (cf. (4.3)) and for the axis-parallel tube Pk,a we define

Ej := #
{
n ∈ Ij : ϕ

(
f(zn)
bj+1

)
∈ Pk,a

}
.

Thus for every j ∈ {l, l + 1, . . . , J} we get∑
n∈Ij

I
(
f(zn)
bj+1

)
=
∑
n∈Ij

fa

(
ϕ

(
f(zn)
bj+1

))
+O(Ej).(6.6)

We consider both terms on the right hand side of (6.6) separately. Start-
ing with fa, by Lemma 4.2 we get

fa

(
ϕ

(
f(zn)
bj+1

))
= |b|−2`(a) +

∑
0 6=v∈Z2

C(v1, v2) e
(

v · ϕ
(
f(zn)
bj+1

))
,

where v = (v1, v2) and C(·, ·) is defined as in (4.5). We split the sum into
those v with ‖v‖∞ ≤ ∆−1 and the rest. For ‖v‖∞ > ∆−1 we apply (4.6)
and estimate the e(·) function trivially to get

(6.7)
∑
n∈Ij

fa

(
ϕ

(
f(zn)
bj+1

))

� Xj

|b|2l
+Xjµ

k∆2 + µk
∑

0<‖v‖∞≤∆−1

1
r(v)

∑
n∈Ij

e

(
v · ϕ

(
f(zn)
bj+1

))
.

To estimate Ej we use the Erdős–Turán–Koksma inequality (Lemma 3.3).
By Lemma 4.1 we can split the tube Pk,a into a family Rj of µk rectangles.
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As the discrepancy is defined on a rectangle (cf. [5, p. 5]), by Lemma 3.3 we
get

(6.8) Ej �
∑
R∈Rj

Xjλ2(R) +XjDXj ({xn})

� Xj

∑
R∈Rj

(
λ2(R) +

2
H + 1

+
∑

0<‖h‖∞≤H

1
r(v)

∣∣∣∣ 1
Xj

∑
n∈Ij

e

(
v · ϕ

(
f(zn)
bj+1

))∣∣∣∣).
By the property (3) of Pk,a described in Lemma 4.1 and possible over-

lappings of the rectangles in Rj we get∑
R∈Rj

λ2(R)�
(
µ

|b|2

)k
.

Thus (6.8) simplifies to

Ej � Xj

((
µ

|b|2

)k
+

µk

H + 1
(6.9)

+
µk

Xj

∑
0<‖v‖∞≤H

1
r(v)

∑
n∈Ij

e

(
v · ϕ

(
f(zn)
bj+1

)))
.

As both exponential sums in (6.7) and (6.8) are of the same shape, we
define for short

S(v, j) :=
∑
n∈Ij

e

(
v · ϕ

(
f(zn)
bj+1

))
.(6.10)

Plugging (6.7), (6.9), and (6.10) in (6.6) and subtracting the main part
we get

(6.11)
∣∣∣∣∑
n∈Ij

I
(
f(zn)
bj+1

)
− Xj

|b|2l

∣∣∣∣� Xj

(
µk∆2 +

2µk

H + 1
+
(
µ

|b|2

)k)

+
∑

0<‖v‖∞≤∆−1

µk

r(v)
S(v, j) +

∑
0<‖v‖∞≤H

µk

r(v)
S(v, j).

In order to transfer the exponential sum from Z2 to Z[i] we use the same
idea as Gittenberger and Thuswaldner in [6, p. 335]. Thus let

τ(z) := (tr(z), tr(bz))t = Ξϕ(z),

where Ξ = V V t and V is the Vandermonde matrix

V =
(

1 1
b b

)
.
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Then

v · ϕ
(
f(z)
bj+1

)
= vΞ−1τ

(
f(z)
bj+1

)
= tr

(
(ṽ1 + bṽ2)

f(z)
bj+1

)
,

where (ṽ1, ṽ2) := vΞ−1. Thus (6.10) transfers to

S(v, j) =
∑
n∈Ij

e

(
tr
(

(ṽ1 + bṽ2)
f(zn)
bj+1

))
(6.12)

�
∑

Mj≤|z|2<Mj+Xj

e

(
tr
(

(ṽ1 + bṽ2)
f(z)
bj+1

))
,

where we have used the fact that |Ij | �� Xj together with the definition
of Xj in (6.4).

We assume that k andH are such that∆−1, H � logN , which is possible
since ∆ depends on k (cf. (4.4)). The values of k and H are chosen later
depending on j.

In the following subsections we want to consider the different sums
S(v, j) according to the size of j. We therefore consider separately the three
intervals

l ≤ j ≤ l + Cl log logN,(6.13)
l + Cl log logN < j ≤ J − Cu log logN,(6.14)
J − Cu log logN < j ≤ J,(6.15)

where Cl and Cu are sufficiently large constants.

6.3. A first estimation of S(v, j). We start with the j satisfying (6.14).
Assume first that there are two Gaussian integers a and q such that

(6.16)

∣∣∣∣ ṽ1 + bṽ2
bj

αd −
a

q

∣∣∣∣ ≤ 1
|q|2

,

(logXj)H ≤ |q|2 ≤ Xd
j (logXj)−H ,

with G = 3 and H = 2d+2G+ 23(d+2). Then we apply Lemma 5.3 to get

S(v, j)� Xj(logXj)−G.

Now we show that (6.16) holds for all j satisfying (6.14). Indeed, other-
wise by Lemma 5.2 there are a, q ∈ Z[i] such that

(a, q) = 1, 1 ≤ |q|2 ≤ Xd
j (logXj)−H ,∣∣∣∣ ṽ1 + bṽ2

bj
αd −

a

q

∣∣∣∣ ≤ (logXj)H

|q|Xd/2
j

≤ 1
|q|2

.

We distinguish two cases depending on the size of |q|2. Assume first that
2 ≤ |q|2 ≤ (logXj)H . Then
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bj

αd

∣∣∣∣ > 1
|q|
− 1
|q|2
≥ 1

2|q|
� (logXj)−H

and therefore

|b|j � |(ṽ1 + bṽ2)αd|(logXj)H � (logN)(logXj)H ,

which contradicts (6.14) for Cl sufficiently large.
We denote by ‖z‖ the distance of the norm of z over Q to the nearest

integer, i.e.,
‖z‖ := min

n∈Z
| |z|2 − n|.

Now if |q|2 = 1 then q = 1 and ‖(ṽ1 + bṽ2)(b−j)αd‖ < Xd
j (logXj)−2H . If

|(ṽ1 + bṽ2)(b−j)αd|2 >
√

2/2 then

|b|2j � |(ṽ1 + bṽ2)αd| � logN,

which contradicts (6.14) for Cl sufficiently large.
On the other hand, if |(ṽ1 + bṽ2)b−jαd| <

√
2/2 we get

|(ṽ1 + bṽ2)b−jαd|2 = ‖(ṽ1 + bṽ2)b−jαd‖ < Xd
j (logXj)−2H ,

which implies that

|b|2j � |(ṽ1 + bṽ2)αd|2Xd
j (logXj)−2H ,

contradicting our assumption on Cu in (6.14).
Thus for j such that (6.14) holds we get

S(v, j)� Xj(logXj)−G.(6.17)

Plugging this into (6.11) yields

(6.18)
∣∣∣∣∑
n∈Ij

I
(
f(zn)
bj+1

)
− Xj

|b|2l

∣∣∣∣� Xj

(
µk∆2 +

µk

V + 1
+
(
µ

|b|2

)k
+

µk

(logXj)3
{ ∑

0<‖v‖∞≤∆−1

+
∑

0<‖v‖∞≤V

} 1
r(v)

)
.

Now we can choose k and H so that ∆−1, H � logN as claimed in our
assumption above. For j as in (6.14) together with the definition of ∆ in
(4.4) we set

k := Ck log logXj , H := µk logXj , ∆−1 =
(logXj)Ck log|b|

2c∆
,(6.19)

for Ck an arbitrary constant. Furthermore we define Cµ > 1 to be such that

Cµµ = |b|2.
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Then for j as in (6.14) we get

(6.20)
∣∣∣∣∑
n∈Ij

I
(
f(zn)
bj+1

)
− Xj

|b|2l

∣∣∣∣
� Xj((logXj)−1 + (logXj)−2(log logXj)2)� Xj

j
.

We will prove the same estimate for smaller and larger j.

6.4. Estimating the exponential sum for long b-ary expansions. We now
concentrate on values of j satisfying (6.15).

In this case we start with the same assumptions for ∆−1 and H as above,
i.e., ∆−1, H � logN . For every j such that (6.16) holds, by Lemma 5.3 we
get

S(v, j)� Xj(logXj)−G.

If (6.16) does not hold, then for every j in (6.15) with |b|j/d � Xj � |b|J/d,

0� |ṽ1 + bṽ2| |b|−j/2d � |f ′(z)| � |ṽ1 + bṽ2| |b|J−j−j/2d(6.21)

� |ṽ1 + bṽ2| |b|−j/2d(logN) eC2 .

We use the inequalities (6.21) to apply Lemma 3.6 with

F = tr
(

(ṽ1 + bṽ2)
f(zn)
bj+1

)
,

m = |ṽ1 + bṽ2| |b|−j/d, and δ = |ṽ1 + bṽ2| |b|−j/d(logN) eC2 . Thus for j as in
(6.15) and for σ = 2G we get

S(v, j)�
√
Xj

|ṽ1 + bṽ2| |b|−j/d
+

Xj

(logXj)σ/2
+ s

3− δ
1− δ

√
Xj(logXj)σ(6.22)

�
√
Xj |b|j/d

|ṽ1 + bṽ2|
+

Xj

(logXj)G
.

Plugging this into (6.11) yields

(6.23)
∣∣∣∣∑
n∈Ij

I
(
f(zn)
bj+1

)
− Xj

|b|2l

∣∣∣∣� Xj

(
µk∆2 +

2µk

H + 1
+
(
µ

|b|2

)k

+
µk

Xj

{ ∑
0<‖v‖∞≤∆−1

+
∑

0<‖v‖∞≤H

} 1
r(v)

(√
Xj |b|j/d

|ṽ1 + bṽ2|
+

Xj

(logXj)3

))
.

Now we set

k := max
(

1,
1
2 logXj + log 4C2

∆ −
j
d log|b|

logCµ

)
, H := µk logXj , ∆−1 =

|b|k

2c∆
.
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This yields

µk∆2 =
|b|j/d√
Xj

, µk ≤ |b|2k �
(

Xj

|b|2j/d

) log|b|
logCµ

,

(
µ

|b|2

)k
=

1
Ckµ
� |b|

j/d√
Xj

.

Furthermore,

|ṽ1 + bṽ2| = |(1, b)(v1, v2)tΞ−1| � |(v1, v2)t| �
√
v1v2.

Putting all this in (6.23) yields

(6.24)
∣∣∣∣∑
n∈Ij

I
(
f(zn)
bj+1

)
− Xj

|b|2l

∣∣∣∣
�
√
Xj |b|j/d +

Xj

j
+
(

Xj

|b|2j/d

) log|b|
logCµ

(
√
Xj |b|j/d +Xj(logXj)−3)

for j as in (6.15).

6.5. Iterative estimation for short b-ary expansions. We finally consider
the case of j satisfying (6.13). This will be the hardest part, as by our
assumptions on H and ∆−1 we have

|ṽ1 + bṽ2| �� |b|j .
We adopt the idea of Nakai and Shiokawa [22, p. 278ff] applying Proposi-
tion 5.1 iteratively. If there is no such s as assumed in that proposition, we
will apply Lemmas 3.6 and 3.7.

By the assumption j ≤ l + Cl log logN we get

|b|j ≤ (logN)Cl log|b|+o(1).(6.25)

We define g to be the polynomial

g(z) :=
ṽ1 + bṽ2

bj
f(z)

with coefficients

βi =
ṽ1 + bṽ2

bj
αi, i = 0, 1, . . . , d.(6.26)

Now we start the application of Proposition 5.1. We assume first that
1 ≤ s ≤ d. Then we set

Hd = H∗d + C1 log |b|+ 1, H∗d = 23(d+2) + 2d+3G

and define H∗r , Hr, and hr (1 ≤ r < d) inductively by

H∗r = 23(r+2) + 2r+3(G+Hr+1) + 2r
d∑

i=r+1

Hr,

Hr = H∗r + 2(C1 log |b|+ 1),
hr = H∗r + C1 log |b|+ 1.
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Let j be such that l ≤ j ≤ l + Cl log logN and there are coprime pairs
(ad, qd), . . . , (as+1, qs+1) of Gaussian integers such that

1 ≤ |qr|2 ≤ (logXj)2hr and
∣∣∣∣αr − ar

qr

∣∣∣∣ ≤ (logXj)hr

|qr|Xr/2
j

(s < r ≤ d),

but there is no pair (as, qs) such that

1 ≤ |qs|2 ≤ (logXj)2hs and
∣∣∣∣αs − as

qs

∣∣∣∣ ≤ (logXj)hs

|qs|Xs/2
j

.

We denote the set of all such j by Js.
For every j ∈ Js we have

1 ≤ |bjqr| ≤ (logXj)2Hr and
∣∣∣∣βr − (ṽ1 + bṽ2)ar

bjqr

∣∣∣∣ ≤ (logXj)Hr

|bjqr|Xr/2
j

for s < r ≤ d, but there is no pair (As, Qs) of coprime Gaussian integers
such that

1 ≤ |Qs| ≤ (logXj)2H
∗
s and

∣∣∣∣βr − As
Qs

∣∣∣∣ ≤ (logXj)H
∗
s

|Qs|Xs/2
j

,

since, if there were such As and Qs, we would get

1 ≤ |(ṽ1 + bṽ2)Qs|2 ≤ (logXj)2H
∗
s+t ≤ (logXj)2hs ,

and together with (6.25),∣∣∣∣αs − bjAs
ṽ1 + bṽ2Qs

∣∣∣∣ ≤ (logXj)H
∗
s+C1 log|b|+1

|(ṽ1 + bṽ2)Qs|Xs/2
j

≤ (logXj)hs

|(ṽ1 + bṽ2)Qs|Xs/2
j

,

which contradicts the assumption that j ∈ Js.
Thus an application of Proposition 5.1 with Hi, H∗i and Ki = 2Hi,

K∗i = 2H∗i yields
S(v, j)� Xj(logXj)−G

for all j ∈ J1 ∪ · · · ∪ Jd.
Now we denote by J0 all positive integers j with l ≤ j ≤ l+C1 log logN

and j /∈ J1 ∪ · · · ∪ Jd. It remains to estimate S(v, j) for such j. To this end,
we will apply Lemmas 3.6 and 3.7.

For j ∈ J0 there exist coprime pairs (ar, qr) of Gaussian integers such
that

1 ≤ |qr|2 ≤ (logXj)2hr and
∣∣∣∣αr − ar

qr

∣∣∣∣ ≤ (logXj)hr

|qr|Xr/2
j

(1 ≤ r ≤ d).

We set Ωr = αr − ar/qr for r = 1, . . . , d, and a = gcd(a1, . . . , ad) and
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q = lcm(q1, . . . , qd). Furthermore, we define cr by

ar
qr

=
a

q
cr (r = 1, . . . , d).

Then we can rewrite the exponential sum as follows:

S(v, j) =
∑
n∈Ij

e

(
tr
(

(ṽ1 + bṽ2)
f(zn)
bj+1

))

=
∑

λ∈r(bj+1q)

e

(
tr
(

v̂a

bj+1q

d∑
k=1

ckλ
k

))

×
∑
µ

∃n∈Ij :µq+λ=zn

e

(
tr
(

v̂

bj+1

d∑
k=1

Ωk(µq + λ)k
))

,

where r(bj+1q) denotes a complete system of residues modulo bj+1q and
v̂ := ṽ1 + bṽ2.

We first consider the second sum. Let R0 = (bj+1q) · {α + βi : 0 ≤ α, β
≤ 1} and let T0 be the set of translation vectors such that R0 tiles Z2, i.e.,
T0 := {(bj+1q)z : z ∈ Z[i]}. Furthermore we set

T := {t ∈ T0 : (R0 + t) ∩ {zn : n ∈ Ij} 6= ∅}.(6.27)

Then it is clear that |T | � Xj |bj+1q|−2. Furthermore, let T denote the area
covered by the translates corresponding to T , i.e.,

T :=
⋃
t∈T

(R0 + t).

For a fixed λ ∈ R0 ∩ Z[i] we get

∑
µ

∃n∈Ij :µq+λ=zn

e

(
tr
(

v̂

bj+1

d∑
k=1

Ωk(µq + λ)k
))

≤
∑
µ∈T

e

(
tr
(

v̂

bj+1

d∑
k=1

Ωk(µq + λ)k
))

.

Now we want to apply Lemma 3.5 together with the idea in the proof of
Lemma 3.6. Therefore we set

Fλ(x, y) := e

(
tr
(

v̂

bj+1

d∑
k=1

Ωk((x+ iy)q + λ)k
))

.
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Then

∂Fλ(x, y)
∂x

�� ∂Fλ(x, y)
∂y

� v̂

|b|j
d∑

k=1

k|q| (logXj)Hk

qkX
k/2
j

X
(k−1)/2
j

� v̂

|b|j
X
−1/2
j |q|(logXj)H

∗
1 .

As in the proof of Lemma 3.6 we first consider a single square. Set
Dν := {z = x + iy ∈ Z[i] : −ν ≤ x, y ≤ ν}. An application of Lemma 3.5
yields∑

x+iy∈Dν

Fλ(x, y) =
ν∑

x=−ν

ν∑
y=−ν

Fλ(x, y) =
ν�

−ν

ν�

−ν
Fλ(x, y) dx dy +O(ν).

Now we again want to split T into squares. Note that we have assumed
that |Ij | = Xj and thus we can consider Ij as an annulus {z ∈ C : Mj ≤
|z|2 < M}. Thus we choose a σ > 0 and tessellate T by squares of side
length

√
|T |/(log |T |)σ. Then we can glue all squares in the interior of T

together and estimate their contribution on the boundary to the error term.
Thus we get∑

x+iy∈T
Fλ(x, y) =

� �

T
Fλ(x, y) dx dy +O

(
|T |

(log |T |)σ/2

)
.

Putting everything together yields

S(v, j) =
∑
n∈Ij

e

(
tr
(

(ṽ1 + bṽ2)
f(zn)
bj+1

))

=
∑

λ∈r(bjq)

e

(
tr
(
νa

bjq

d∑
k=1

ckλ
k

)){� �
T
Fλ(x, y) dx dy +O

(
|T |

(log |T |)σ/2

)}

=
∑

λ∈r(bjq)

e

(
tr
(
νa

bjq

d∑
k=1

ckλ
k

))
1

|bj+1q|2
� �

Mj≤|z|2<M

G(z) dz +O
(

Xj

(logXj)σ

)
,

where

G(z) := e

(
tr
(

v̂

bj+1

d∑
k=1

Ωkz
k

))
.

Finally, we define rationals Ri/Q ∈ Q(i) for i = 1, . . . , d by
Ri
Q

=
v̂

bj
aci
q
.

Thus estimating the integral trivially and noting that

N(v̂Q) = N(bj+1Riqi/ai)�� N(bj+1Riα
−1
i )�� N(bj+1Ri)� N(bj+1)
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we get, by an application of Lemma 3.7,

S(v, j) =
∑
n∈Ij

e

(
tr
(

(ṽ1 + bṽ2)
f(zn)
bj+1

))
(6.28)

� |b
jq|2

N(Q)
(N(Q))1−1/d+ε Xj

|bjq|2
+

Xj

(logXj)σ

� Xj((N(v̂−1bj+1))−1/d+ε + (logXj)−σ).

Plugging this into (6.11) yields

(6.29)
∣∣∣∣∑
n∈Ij

I
(
f(zn)
bj+1

)
− Xj

|b|2l

∣∣∣∣
� Xj

(
µk∆2 +

2µk

H + 1
+
(
µ

|b|2

)k
+ µk

{ ∑
0<‖v‖∞≤∆−1

+
∑

0<‖v‖∞≤H

} 1
r(v)

((N(v̂−1bj+1))−1/d+ε

+ (logXj)−σ)
)
.

Now we set σ, k, and H to the same values as in (6.19) and get, together
with (4.4),

σ := G, k := Ck log logXj , H := µk logXj , ∆−1 =
(logXj)Ck log|b|

2c∆
,

for Ck an arbitrary constant.
We note that

|ṽ1 + bṽ2| = |(1, b)(v1, v2)tΞ−1| � |(v1, v2)| � r(v).

At this point we have to distinguish two cases according to the size of d.

• d = 1: By noting that ∆−1, H � logN we get∑
0<‖v‖∞≤logN

1
r(v)

(N(v̂−1bj+1))−1+ε �
∑

0<‖v‖∞≤logN

|ṽ1 + bṽ2|
|b|(2−ε)(j+1)/d

� (logN)4

|b|2j/d
.

• d ≥ 2: In this case

r(v)−1 � |ṽ1 + bṽ2|−1 � |ṽ1 + bṽ2|−2/d.
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This together with ∆−1, H � logN yields∑
0<‖v‖∞≤logN

1
r(v)

(N(v̂−1bj+1))−1/d+ε �
∑

0<‖v‖∞≤logN

1
|b|(2−ε)(j+1)/d

� (logN)2

|b|2j/d
.

Therefore in any case∑
0<‖v‖∞≤logN

1
r(v)

(N(v̂−1bj+1))−1/d+ε � (logN)4

|b|2j/d
.

Putting this all in (6.29) yields

(6.30)
∣∣∣∣∑
n∈Ij

I
(
f(zn)
bj+1

)
− Xj

|b|2l

∣∣∣∣
� Xj

(
(logXj)−1 +

(logN)4 logXj

|b|2j/d

)
� Xj

j
+Xj

(logN)5

|b|2j/d
.

6.6. Putting all together. Now we have reached the final state of the
proof. In order to finish we will put (6.20), (6.24), and (6.30) together and
consider the corresponding intervals, which are described in (6.14), (6.15),
and (6.13), respectively. Thus∑

l≤j≤J

∣∣∣∣∑
n∈Ij

I
(
f(zn)
bj+1

)
− Xj

|b|2l

∣∣∣∣� S1 + S2 + S3,(6.31)

where

S1 =
∑
l≤j≤J

Xj

j
,

S2 =
∑

l≤j≤l+Cl log logN

Xj
(logN)5

|b|2j/d
,

S3 =
∑

J−Cu log logN≤j≤J

√
Xj |b|j/d

+
(

Xj

|b|2j/d

) log|b|
logCµ

(
√
Xj |b|j/d +Xj(logXj)−3).

We easily get
S1 �M.

The second sum is a bit more delicate and simplifies to

S2 �
∑

l≤j≤l+Cl log logN

M
(logN)5

|b|2j/d
�M

(logN)5

|b|
2
d
(Cl log logN)

�M,
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where we have assumed that Cl ≥ 5. For the third sum we have to work a
little more to get

S3 �
∑

J−Cu log logN≤j≤J

√
M |b|j/d +

(
M

|b|2j/d

) log|b|
logCµ

(
√
M |b|j/d +M)

�
√
M |b|J/d +

(
M

|b|2J/d

) log|b|
logCµ

(
√
M |b|J/d +M)�M.

Putting this in (6.31) yields∑
l≤j≤J

∣∣∣∣∑
n∈Ij

I
(
f(zn)
bj+1

)
− Xj

|b|2l

∣∣∣∣�M � N

logN

and the main theorem is proven.
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