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On the Brauer–Manin obstruction for zero-cycles on curves

by

Dennis Eriksson (Tokyo) and Victor Scharaschkin (Brisbane)

1. Brauer–Manin obstruction. For the purposes of this paper, a va-
riety over a field k is a separated scheme of finite type over k. We first recall
the definition of the Brauer–Manin obstruction. Henceforth the symbols X
and U will be used to denote varieties over a field k, and in case they are
mentioned together, U is a dense open set of X.

Suppose k is perfect. Set BrX := H2
et(X,Gm). By functoriality, an L-

point (for L/k a field extension) SpecL → X defines a homomorphism
BrX → BrL. Furthermore, if L/k is finite, we can take corestriction
BrL Cores−−−→ Br k. Hence, by extending by linearity, we obtain a pairing

(1) Z0(X)× BrX → Br k.

Here Z0(X) denotes the group of zero-cycles on X. Now, let k be a number
field, and set kv to be the completion of k at a place v. For a k-variety
X, we denote X ×k kv by Xv, and X ×k k by X for a separable closure
k of k. Denote by Za

0 (X) the group
∏
v Z0(Xv). Suppose for the purposes

of the introduction that X is a connected smooth, geometrically integral
variety. In the case B is a subgroup of the unramified Brauer group BrnrX
(the Brauer group of any smooth compactification of X; it is a birational
invariant, cf. [5, Théorème 7.4]), it is possible to show that we can define a
pairing

Za
0 (X)×B → Q/Z

as follows: Given a zero-cycle (zv)v and an element α ∈ B, one obtains
elements (α(zv)v) ∈

∏
v Br kv by evaluating as in (1). By local class field

theory we have injections iv : Br kv ↪→ Q/Z and one shows that since α ∈
BrnrX, the element 〈(zv), α〉 =

∑
v iv(α(zv)) is a finite sum and thus well

defined.

2000 Mathematics Subject Classification: Primary 14H25; Secondary 14C15, 11G35.
Key words and phrases: Albanese, Brauer–Manin obstruction, curves, Suslin homol-

ogy, zero-cycles.

[99] c© Instytut Matematyczny PAN, 2008



100 D. Eriksson and V. Scharaschkin

Now, one puts, for B ⊆ BrnrX,

Za
0 (X)B = {(zv) ∈ Za

0 (X) | ∀v,deg zv = 1, 〈(zv), α〉 = 0, ∀α ∈ B}.
The corestriction map is the identity on the level of Q/Z for non-archime-
dean places (see [15, XI, Prop. 2,ii) and XIII, Théorème 1]). Using this
together with the fundamental short exact sequence of class field theory,

0→ Br k →
⊕
v

Br kv → Q/Z→ 0,

one shows that Z0(X)1, the zero-cycles of degree one, are indeed included in
the above defined set Za

0 (X)B. This follows in a way completely analogous
to the case of points (see Manin [8]). For the same reasons, the above pairing
with Br0 k, i.e. the image of Br k in BrX, is seen to be zero. If the set Za

0 (X)B

is non-empty, we say there is no obstruction associated to B for existence
of zero-cycles of degree one. Now let V be a class of smooth, geometrically
integral varieties with an assignment B = B(X) ⊆ BrnrX for any X ∈ V.
If for all X in V we have

Za
0 (X)B 6= ∅ ⇒ Z0(X)1 6= 0

then we say the Brauer–Manin obstruction is the only one to the existence
of zero-cycles of degree one associated to B. Let Br1X = ker[BrX → BrX].
The group

B(X) := ker
[
Br1X →

∏
v

Br1Xv/Br kv
]

is the group of (algebraic) locally constant elements of the Brauer group.
Whenever X is a proper geometrically integral variety, the quotient of B(X)
by the image Br0 k of Br k comes with a canonical isomorphism

B(X)/Br0(k) 'X1(Pic(X)) = ker
(

H1(k,Pic(X))→
∏
v

H1(kv,Pic(Xv))
)

via the Hochschild–Serre spectral sequence (see [18, Corollary 2.3.9, the case
M = Z]; this is an isomorphism essentially because H3(k,Gm) = 0 for local
and global fields). Here and henceforth Hi(k,M) denotes étale cohomology,
which reduces to Galois cohomology of Γk = Gal(k/k) with values in M . By
Lemma 3.5 below, B(X) ⊆ Br1(X) is unramified in the sense that it does
not depend on the choice of smooth compactification.

Let X be a smooth quasi-projective variety defined over a perfect field k.
Denote the semi-Albanese variety of X by SAlb0

X . There is a certain torsor
SAlb1

X under SAlb0
X , universal with respect to morphisms from X to torsors

under semiabelian varieties (see Definition 3.1). The period, P = PX , of X is
defined as the order of [SAlb1

X ] in H1(k,SAlb0
X). In Theorem 4.2 of Section 4

we give another characterization of the period in terms of Suslin homology
(see Appendix). The index I = IX of a variety X over a field k is defined to
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be the least positive degree of a zero-cycle on X with respect to k. Define the
generic period P̃ as the supremum of PU over all open non-empty subsets
U of X. Note that PU | IU and it is well known that the index of an open
subset of X is the same as that of X (see [3, “Complément”]). Thus we see
that all PU are bounded by I, so the supremum exists. Moreover, P̃ | I.

Our first result is a stronger version of a theorem originally due to
S. Saito [13] (stronger, because here we only need the conjecturally finite
group B(C)/Br0 k as opposed to the whole Brauer group). S. Saito’s theorem
has also been reproved by Colliot-Thélène in [2].

Theorem 1.1. Let C be a smooth connected projective curve over a
number field k, let A be its Jacobian, and assume that X1(A) is finite.
Then the obstruction associated to B(C) for zero-cycles of degree one is the
only one:

if Za
0 (C)B(C) 6= ∅ then I = 1.

We have an obvious corollary which does not involve the group Za
0 (see

introduction):

Corollary 1.2. Let C be as above and keep the same assumptions.
Then if C has no Brauer–Manin obstruction associated to B(C) for rational
points, then C has a zero-cycle of degree one, i.e.

if C(Ak)B(C) 6= ∅ then I = 1.

For general projective, smooth, geometrically integral k-varieties Colliot-
Thélène (see [2]) has conjectured that the Brauer–Manin obstruction is the
only obstruction to the existence of global zero-cycles of degree one on X.
In §3, we shall prove a very weak version of this conjecture.

Theorem 1.3. Let X be a projective, smooth geometrically integral va-
riety over a number field k. Denote by A the Albanese variety of X and
assume that

X1(A) = ker
[
H1(k,A)→

⊕
v

H1(kv, A)
]

is finite. If Za
0 (X)B(X) 6= ∅ then P̃X = 1.

Thus the Brauer–Manin obstruction is the only obstruction to the generic
period being 1. The proof makes use of semi-Albanese torsors, and thus de-
pends in an essential way on a result due to Harari and Szamuely
[7, Theorem 1.1].

Remark 1.4. We note that PU can indeed be larger than PX for U
open in X. For example, if X is a proper curve of genus 0, then via the
anti-canonical embedding it can be written as a conic in P2:

X : aX2 + bY 2 = cZ2.
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Hence the index is either 1 or 2, and it is 1 exactly when we have a rational
point. Now, removing two points at infinity, we obtain

U : ax2 + by2 = c,

which is a torsor under a torus. Because PU divides I, it is either 1 or 2, and
because the torsor is trivial exactly when PU is 1, we see that PU = I. Hence
in this case we have P̃ = I. However, since the Albanese of X is trivial, PX
is certainly 1. In general one can show that for smooth curves over any field,
the two invariants P̃ and I are the same.

To the authors’ knowledge, not very much is known about the quotient
I/P̃ , but in general it is not always 1. For arbitrary varieties, even over a
number field, the invariants are not equal. Indeed, one can construct varieties
with rational points exactly when they have a zero-cycle of degree one,
without B-obstruction and without rational points. O. Wittenberg informs
the first author that the del Pezzo surface of degree 4

vw = x2 − 5y2, (v + w)(v + 2w) = x2 − 5z2,

examined by Birch and Swinnerton-Dyer in [1] provides such an example.
In this example, by Theorem 1.3, I = 2 and P̃ = 1.

Furthermore, in [20], O. Wittenberg relates the generic period to more
classical invariants. He shows among other things that for a smooth proper
geometrically integral variety X over a number field k such that X(Ak) 6= ∅
and the Tate–Shafarevich group of the Picard variety of X over k is finite,
there is an equivalence between the following statements (see ibid., Theo-
rem 3.3.1):

(a) X(Ak)B 6= ∅;
(b) the elementary obstruction (see [18, Definition 2.3.5]) of X vanishes;
(c) the generic period P̃ is 1.

Remark 1.5. In [11] it is claimed but not proved that over a global
field k and a principally polarized abelian variety A over k, there is the
Cassels–Tate pairing (defined in [11])

X1(A)×X1(A)→ Q/Z,

which is perfect modulo maximal divisible subgroups. Having such a result
in the function field case is exactly what is lacking to prove that the Brauer–
Manin obstruction associated to B is the only one for abelian varieties over
function fields. If we would have this one could extend Theorem 1.1 to any
global field. In a personal communication B. Poonen informs the first author
that to his knowledge there is no written proof of this fact in the function
field case.
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2. A short proof of S. Saito’s theorem. In this section we give
our proof of Theorem 1.1. We let C be a geometrically integral, smooth
projective curve over a number field k, without any B(C)-obstruction to
zero-cycles of degree one. Also suppose that X1(A) is finite, where A is
the Jacobian variety Pic0

C/k of C. Recall that there is a uniquely defined
morphism p : C → Pic1

C/k, where Pic1
C/k is a torsor under A, and that

the morphism is universal with respect to morphisms into torsors under
abelian varieties. See Theorem 3.2 for the statement of the existence over
a perfect field (well known for curves) and a reference for the proof, or the
discussion in [16, Chapter V, Section 23] for the case of a general field. By
functoriality of the pairings, if C has no B(C)-obstruction to the existence
of zero-cycles of degree one, then Pic1

C/k does not have any obstruction
associated to B(Pic1

C/k) for zero-cycles of degree one. By the following lemma

this implies that Pic1
C/k(Ak)B 6= 0.

Lemma 2.1. Let k be a number field and X a smooth geometrically in-
tegral variety over k such that X has a point in every completion kv of k.
Then X(Ak)B 6= ∅ if and only if Za

0 (X)B 6= ∅.
Proof. One direction is trivial and we prove the other one. It is well

known that if X as in the statement of the lemma has a point locally
everywhere, there is an adelic point Q = (Qv)v ∈ X(Ak). A restriction-
corestriction argument shows that iv(α(zv)) = deg(zv)iv(α(Qv)) for any
zero-cycle zv on Xv, for α locally constant (i.e. in B(X)). Hence we can
replace all zero-cycles of degree one with the adelic point Q, which will be
orthogonal to B(X).

Going back to the situation preceding the lemma, in view of a result
of Manin, by finitude of X1(A), Pic1

C/k has a k-rational point (see The-
orem 6.2.3 of [18] for a proof, or the original article of Manin [8]).

Denote by CH0(X) the usual 0th Chow group of a variety X, that is,
the full group of zero-cycles modulo rational equivalence, and recall that K
denotes a separable closure of K. We now record the following general (well
known) fact:

Lemma 2.2 ([10, Prop. 2.5]). Let X be a smooth, proper and geometri-
cally integral variety over a global field K and assume that X has a zero-cycle
of degree one locally everywhere. Then Pic(X) ' Pic(X)ΓK . If X is a curve,
then in particular , CH0(X) = Pic(X) surjects onto the K-points of the Pi-
card scheme PicX/K(K) = Pic(X)ΓK .

Proof. We include a proof for completeness. The Hochschild–Serre spec-
tral sequence provides us with the exact sequence

0→ Pic(X)→ Pic(X)ΓK → BrK
j→ BrX.
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If X has a K-point, this point splits the map j and so j is injective. By a
restriction-corestriction argument the same stays true ifX has a zero-cycle of
degree one. Global class field theory tells us that the map BrK →

⊕
v BrKv

is injective. The condition that we have a zero-cycle locally everywhere
implies that

⊕
v BrKv →

⊕
v BrXv is injective, and one concludes that

Pic(X)→ Pic(X)ΓK must be surjective, and hence bijective.

We have a natural identification PicC/k =
∐
n∈Z PicnC/k, where PicnC/k

denotes (cf. [12, Section 1.2]) for n > 0 the nth Baer sum of torsors, for
n = 0 the trivial torsor and for negative n it is defined by twisting the sum
−n times by the automorphism given by multiplication by −1. This comes
with a natural map deg : PicC/k(k) → Z, sending an element in PicnC/k(k)
to n ∈ Z, and the following diagram is commutative:

CH0(C) //

deg

��

PicC/k(k)

deg

��
Z Z

Since the upper horizontal map is a bijection under the hypothesis that
there is a zero-cycle of degree one in every completion kv, we see that deg
is surjective whenever deg is, and thus with the assumption that we have
an adelic zero-cycle of degree one orthogonal to B(C), we see that the index
is 1 and Theorem 1.1 is proved.

3. Brauer–Manin obstruction and generic periods. In this section
we give the proof of the main theorem, Theorem 1.3, roughly as follows. After
recalling the definition of the semi-Albanese torsor we first show that under
the right conditions the period is equal to 1 (Lemma 3.4). We then recall
that the group of locally constant elements is invariant under restriction
to Zariski open sets (Lemma 3.5), and finally put this together to prove
Theorem 1.3. The main technical tool is a recent result on the Hasse principle
for semiabelian varieties by Harari and Szamuely [7].

First, let U be a quasi-projective, smooth, geometrically integral variety
over a field k. Recall that a semiabelian variety is a commutative group
variety which is an extension of an abelian variety by a torus. Suppose we
are given a k-morphism p : U → S1 where S1 is a torsor under a semi-
abelian variety S0 over k, with the following universal property: Given any
k-morphism m : U → T 1, where T 1 is a torsor under a semiabelian variety
T 0 over k, there is a unique k-morphism f1 : S1 → T 1 such that h ◦ p = f1,
and a unique k-morphism of algebraic groups f0 : S0 → T 0 such that f1

is f0-equivariant. This clearly determines the quadruple (U, S0, S1, p), if it
exists, up to unique isomorphism.



Brauer–Manin obstruction 105

Definition 3.1. A quadruple (U, S0, S1, p) as above is a semi-Albanese
torsor of U , and S0 is called the semi-Albanese variety of U .

Suppose that k is perfect. The following is a formal consequence of the
existence of a semi-Albanese torsor over an algebraically closed field [17,
Theorem 7] and the descent theory of [16, p. 112, 4.22], which was already
remarked in [12]:

Theorem 3.2. Let U be a quasi-projective smooth variety over a perfect
field k. Then a semi-Albanese torsor exists.

Remark 3.3. If X is also proper the semi-Albanese variety is the Al-
banese variety of X, and the semi-Albanese torsor is an “Albanese torsor”,
i.e. it is universal with respect to morphisms into torsors under abelian va-
rieties. In this case it is desirable to write it as Alb1

X instead. In general,
if Xc denotes a smooth compactification of X, then if H1(Xc,OXc) = 0,
the abelian variety part of the semi-Albanese variety of X is trivial and the
semi-Albanese torsor is a torsor under a torus and is universal with respect
to morphisms to torsors under tori.

Lemma 3.4. Let V be a torsor under a semiabelian variety S which is
an extension of an abelian variety A by a torus T , defined over a number
field k, and suppose that X1(A) is finite. Then the obstruction associated to
B(V ) for zero-cycles of degree one is the only one for rational points on V .
That is, if Za

0 (V )B(V ) 6= ∅ then V (k) 6= ∅.
Proof. Since V is a torsor under an abelian group and has a zero-cycle

of degree one locally everywhere, it actually has a kv-rational point for ev-
ery place v and we can apply Lemma 2.1. The statement we now want to
prove is well known for rational points whenever S is an abelian variety (see
[18, Theorem 6.2.3] for a proof, or the original article of Manin [8]) or a
torus (see [18, Theorem 6.2.1]). The result for B(V ) in the case of arbitrary
S is due to Harari and Szamuely, [7].

We record the following lemma of invariance of B under restriction to
open subsets.

Lemma 3.5 ([14, Lemma 6.1] or [6, Theorem 2.1.1]). Let k be a number
field and let X be a smooth proper geometrically integral variety over k.
Suppose U is a non-empty Zariski open set in X. Then

B(U) = B(X).

We now turn to:

Proof of Theorem 1.3. Let X be as in the theorem. Let U be an open set
of X, and let p : U → SAlb1

U be its semi-Albanese torsor. Since by the above
lemma, B(U) = B(X), and elements of these groups are locally constant,



106 D. Eriksson and V. Scharaschkin

U has no B(U)-obstruction for zero-cycles of degree one. By functoriality
of the Brauer–Manin pairing, the same holds true for SAlb1

U . Because of
the finiteness assumption on X1(A), Lemma 3.4 implies that the torsor is
trivial, and so PU , the period for U , is 1. This is true for any open U in X,
and hence the generic period is 1.

Remark 3.6. Suppose now that U is a torsor under a torus, and X a
smooth compactification thereof. If X has no B(X)-obstruction associated
to zero-cycles of degree one, by Theorem 1.3 the period of U is 1 (this
rests only on [18, Theorem 6.2.1] and does not utilize the full result of [7]).
But then it has a point and we recover a result by Colliot-Thélène and
Sansuc saying that the Brauer–Manin obstruction is the only one for smooth
compactifications of k-torsors under tori (see [18, Theorem 6.3.1], and the
remark afterwards saying that we only need to consider locally constant
elements). In any case, the generic period contains more information than
the period associated to the mere X. An interesting question (suggested
by Colliot-Thélène) would be to calculate the generic period of (a smooth
compactification of) a non-abelian algebraic group and compare it to its
index.

4. Alternative description of the period. In this section we give
an additional description of the period as the cokernel of a map deg :
h0(X)Γk → Z. Suppose k is perfect. The semi-Albanese scheme of X →
Spec k is the k-group scheme

SAlbX/k =
∐
n∈Z

SAlbnX

where SAlbnX is defined as at the end of Section 2. In [12, 1.2], Ramachan-
dran shows that this is a group scheme with various functorial and univer-
sal properties. We mimic his approach: We have an obvious Γk-equivariant
map X(k) → SAlb1

X(k), and we define a map from the group Z0(X) of
zero-cycles to the k-points of the semi-Albanese scheme to be the unique
group homomorphism whose restriction to X(k) is the above map. Taking
Galois invariants gives a homomorphism of groups Z0(X) → SAlbX/k(k).
By naturality and the fact that S(A1

k) = S(k) for semiabelian varieties S
we see that this map factors over the Suslin homology group h0(X)
(see Appendix for definition of Suslin homology and argue as in [19, Lem-
ma 3.1]).

Hence, there is a canonical homomorphism h0(X) → SAlbX/k(k) such
that the restriction to degree 0 is the generalized Albanese map (which
we will refer to simply as the “Albanese map”) of [19], and the structural
morphism X → Spec k induces the following commutative diagram (where
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the exactness on the left of the first line is our definition of h0(X)0):

0 // h0(X)0

��

// h0(X) //

��

h0(k) = Z

0 // SAlb0
X(k) // SAlbX/k(k) // SAlbk/k(k) = Z

Definition 4.1. Let X be a quasi-projective smooth variety over a per-
fect field k. We define

SX = #{coker deg : h0(X)Γk → Z}.

Theorem 4.2. Let X be a quasi-projective, smooth geometrically inte-
gral variety over a field of characteristic 0. Then SX = PX .

Proof. By the preceding remarks we have the following commutative
diagram of Galois modules with exact rows:

0 // h0(X)0 //

p

��

h0(X) //

��

Z // 0

0 // SAlb0
X(k) // SAlbX/k(k) // Z // 0

Here p is the Albanese map (loc. cit.). Taking Galois cohomology gives the
diagram

h0(X)Γk

��

// Z // H1(k,h0(X)0)

p

��
SAlbX/k(k) // Z // H1(k, SAlb0

X(k))

The image of 1 in H1(k,SAlb0
X) is represented by the cocycle σ 7→ xσ0 − x0

for x0 ∈ SAlb1
X(k), i.e. it is the class of the semi-Albanese torsor. Now,

the generalized theorem of Roitman can be formulated as saying that under
the conditions of the theorem, the Albanese map h0(X)0

p−→ SAlb0
X/k(k)

is surjective with uniquely divisible kernel. This is the main theorem of
Spiess and Szamuely [19]. It is established for a smooth connected variety
X admitting a smooth projective connected compactification over an arbi-
trary algebraically closed field of characteristic p (for p ≥ 0) and states that
the Albanese map is an isomorphism on the prime-to-p torsion subgroups.
Since we are in characteristic 0, the smooth projective compactification is
provided by Hironaka. Finally, because for a uniquely divisible Galois mod-
ule M , Hi(k,M) = 0 for i > 0, the rightmost vertical homomorphism is an
isomorphism, which finishes the proof.
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A. Appendix—Suslin homology, h0. In this section we recall some
basic properties of the Suslin homology group h0. Let X and Y be any sep-
arated schemes of finite type over a field k. If Y is connected, an elementary
finite correspondence from Y to X over k is an integral closed subscheme
Z of X ×k Y , finite and surjective over Y . A finite correspondence between
X and Y is a formal Z-linear sum of elementary finite correspondences,
and we denote the group of such as Cor(Y,X). Any closed subscheme Z
of X ×k Y finite and surjective over Y defines a finite correspondence by
associating to it the correspondence

∑
niZi,red where the sum is over irre-

ducible components Zi of Z such that Zi,red is surjective over Y , and ni is
the geometric multiplicity of Zi,red in Z (compare [9, Construction 1.3]). If
Y =

∐
α Yα is the decomposition of Y into its connected components, one

defines Cor(Y,X) =
⊕

α Cor(Yα, X). Note that the set of finite correspon-
dences from Spec k to X, Cor(Spec k,X), is just the group of zero-cycles
on X.

If P is a k-point of Y and Z is a closed subscheme of X ×k Y , denote
by Z(P ) the scheme-theoretic fiber of Z over X = X ×k P . Consider the
points 0 and 1 of A1

k and define a map Cor(A1
k, X)→ Cor(Spec k,X) by

Z 7→ Z(0)− Z(1).

We define h0(X), the 0th Suslin homology of X, to be the group of zero-
cycles on X modulo the group generated by the finite correspondences com-
ing from A1

k to X in the above sense. We note the following properties, which
are not difficult to show.

Proposition A.1. Let X,Y be two separated schemes of finite type over
a field k. Then the following holds:

(a) Let CH0(X) be the 0th Chow group. If the structural morphism X →
Spec k is proper , then there is a map h0(X) → CH0(X) which is
moreover an isomorphism.

(b) h0 is covariantly functorial with respect to morphisms f : X → Y .
(c) The degree map mapping a zero-cycle

∑
niPi to

∑
ni[k(Pi) : k]

factors over h0(X) → h0(k) = Z where the map h0(X) → h0(k)
is given by the structural morphism X → Spec k.

For lack of a specially tailored reference, we include the following proofs:

Proof. Let V be a dimension 1 integral closed subscheme of X ×k P1
k

which is dominant on the second factor. Then [V (0)]− [V (1)] is a zero-cycle
on X and it follows as in [4, Proposition 1.6] that rational equivalence on
zero-cycles is generated by the relation determined by all such V . Now, if
Z ⊆ X×kA1 is an elementary finite correspondence, its closure Z̃ in X×kP1

k
defines such an object. This shows there is always a map h0(X)→ CH0(X).
Suppose X → Spec k is moreover proper. A closed integral subscheme Z̃ ⊆
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X ×k P1
k which is dominant over P1

k is proper over Spec k by virtue of X
being proper, and if Z̃ is moreover of dimension one it is finite over P1

k. As
such it determines a closed integral subscheme Z ⊆ X ×k A1

k which is a
finite elementary correspondence from A1

k to X. This is inverse to the above
operation and proves (a).

Now, let f : X → Y be a morphism of separated schemes of finite
type over a Noetherian base S. If Z ⊆ X is a closed integral subscheme,
finite and surjective over S, then the schematic image f(Z) is a closed in-
tegral subscheme of Y , finite and surjective over S (see [9, Lemma 1.4]).
If Y is connected, the pushforward is defined as f∗(Z) = df(Z) where d =
[k(Z) : k(f(Z))], which is finite, and the definition for general Y is similar.
The above rule thus assigns a homomorphism f∗ : Cor(V,X) → Cor(V, Y )
to a separated scheme V of finite type over S. Putting S = A1

k or Spec k we
obtain pushforwards on Cor(A1

k,−) respectively Cor(Spec k,−), and they
clearly respect the obvious compatibility conditions for restricting to the
points 0 and 1, so we obtain a homomorphism

f∗ : h0(X)→ h0(Y ).

The last point is now a consequence of the definition of the degree map.
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