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The narrow class groups of some Zp-extensions
over the rationals

by

Kuniaki Horie (Hiratsuka) and Mitsuko Horie (Tokyo)

1. Introduction. Let p be an odd prime number. Let Zp denote the ring
of p-adic integers, and B∞ the Zp-extension over the rational field Q, that
is, the unique abelian extension over Q in the complex field C such that the
Galois group Gal(B∞/Q) is topologically isomorphic to the additive group
of Zp. As is well known, the p-class group of B∞ is trivial (cf. Iwasawa [I]).
Let us choose a prime number l which is a primitive root modulo p2. It is
shown in [H1], through the study of circular units in B∞, that the l-class
group of B∞ is trivial if

p = 3 or l ≥ 3
2 log 2

(p− 1)ϕ(p− 1) log(p log p),

where ϕ denotes the Euler function. Furthermore, in case p = 5 or p = 7, the
triviality of the l-class group of B∞ is proved in [H2] by arguments similar
to and more precise than those of [H1]. In this paper, using some results of
[H1, H2], we shall first prove the following result with the help of a personal
computer.

Theorem 1. Let l be, as above, a prime number which is a primitive
root modulo p2. If p = 11 or p = 13, then the l-class group of B∞ is trivial.

Now, for any algebraic extension K of Q in C, we let O denote the ring of
algebraic integers in K, I the ideal group of K, and C+ the ideal class group
of K in the narrow sense, that is, the quotient group of I modulo the group
of principal ideals αO in I for all totally positive elements α of K; C+ is also
called the narrow class group of K. The natural homomorphism of C+ onto
the ideal class group of K induces, for every odd prime q, an isomorphism of
the q-primary component of C+ onto the q-class group of K. The 2-primary
component of C+ is called the 2-class group of K in the narrow sense or,
simply, the narrow 2-class group of K. After discussing the parity of certain
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kinds of class numbers together with a basic criterion by Washington [W1]
for such study, we shall secondly prove the following result, still with the
help of a (personal) computer in the case p = 13.

Theorem 2. When p ≤ 13, the 2-class group of B∞ in the narrow sense
is trivial.

The proof of the above theorem, as well as that of Theorem 1, is essen-
tially based upon the analytic class number formula. Most of our computa-
tions are done with Mathematica.

Remark 1. A classical theorem of Weber implies the triviality of the
narrow 2-class group of the Z2-extension over Q, Z2 being the ring of 2-adic
integers.

Remark 2. Apart from our proof of Theorem 2, when p = 11 or p = 13
so that 2 is a primitive root modulo p, assertion IV of Armitage and Fröhlich
[AF] shows that Theorem 1 implies Theorem 2.

At the end of the paper, we shall briefly explain how to show, for p ≤ 487,
the triviality of the narrow 2-class group of the subfield of B∞ with degree p.

2. Proof of Theorem 1. For each integer u ≥ 0, let Bu denote the
subfield of B∞ with degree pu, and hu the class number of Bu. Let n be
any positive integer, which will be fixed throughout the paper. Since the
prime ideal of Bn−1 dividing p is totally ramified in Bn, we know from class
field theory that hn−1 divides hn, i.e., hn/hn−1 is an integer. Now, for each
positive integer a, we denote by Ka the cyclotomic field of ath roots of unity:

Ka = Q(e2πi/a).

Let ν be the number of distinct prime divisors of (p−1)/2, and let g1, . . . , gν
be the prime powers > 1 pairwise relatively prime such that

p− 1
2

= g1 · · · gν .

Let V denote the subset of the cyclic group 〈e2πi/(p−1)〉 consisting of

eπiu1/g1 · · · eπiuν/gν

for all ν-tuples (u1, . . . , uν) of integers with 0 ≤ u1 < g1, . . . , 0 ≤ uν < gν .
It is naturally understood that V = {1} if p = 3. Taking the ring Z of
(rational) integers, let Ψ denote the set of maps

z : V → {u ∈ Z | 0 ≤ u ≤ 2l}
such that, for some ξ ∈ V ,

l - z(ξ) or z(ξ) > 0
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according to whether l > 2 or l = 2, and that

l | z(ξ′) for all ξ′ ∈ V \ {ξ}.
We put

M = max
z∈Ψ

N
(∑
ξ∈V

z(ξ)ξ − 1
)
,

where N denotes the norm map from Kp−1 = Q(e2πi/(p−1)) to Q. We easily
see that M is a positive integer.

Lemma 1. If l divides hn/hn−1, then

pn ≤M, l <
p− 1
2 log 2

log
(
pn+1

π
sin

π

p

)
.

Proof. This follows from [H1, Lemma 4] and [H2, Lemma 2].

Let p be a prime ideal of Kp−1 dividing p. Let I be the set of positive
integers a < pn+1 for which a ≡ ξ (mod pn+1) with some ξ ∈ V . Let F
denote the family of all maps from I to {0, l} and, for each a ∈ I, let Ga

denote the family of maps j : I → Z such that min(l − 2, 1) ≤ j(a) < l and
that j(b) = 0 or j(b) = l for every b ∈ I \ {a}. Given any u ∈ Z, we then let

Pa(u) =
{

(j, y) ∈ Ga × F
∣∣∣ ∑
b∈I

((pn + 1)j(b) + y(b))b ≡ u (mod pn+1)
}
,

Qa(u) =
{

(j, y) ∈ F×Ga

∣∣∣ ∑
b∈I

((pn + 1)j(b) + y(b))b ≡ u (mod pn+1)
}
.

In the case l > 2, we put

s(u) =
∑
a∈I

( ∑
(j,y)∈Qa(u)

(−1)
P
b∈I(j(b)+y(b))+y(a)ỹ(a)

−
∑

(j,y)∈Pa(u)

(−1)
P
b∈I(j(b)+y(b))+j(a)j̃(a)

)
,

where, for each integer r relatively prime to l, r̃ denotes the positive integer
smaller than l such that rr̃ ≡ 1 (mod l); in the case l = 2, we put

s(u) =
∑
a∈I

(|Qa(u)| − |Pa(u)|),

where, for each finite set W , |W | denotes the number of elements of W .
Lemma 3 of [H2] can now be restated as follows:

Lemma 2. If there exist integers c and d satisfying

c ≡ d (mod pn), s(c) 6≡ s(d) (mod l),

then l does not divide hn/hn−1.



162 K. Horie and M. Horie

To prove Theorem 1, let us first consider the case p = 11. Take any z ∈ Ψ
and put

α =
∑
ξ∈V

z(ξ)ξ − 1, α′ =
∑
ξ∈V

z(ξ)ξ3 − 1.

Let % = eπi/5, so that V = {1, %, %2, %3, %4}. It follows that

α = z(1)− 1− z(%4) +
3∑

u=1

(z(%u) + (−1)u−1z(%4))%u,

|α|2 ∈ Z[%+ %−1], %+ %−1 =
1 +
√

5
2

.

Let A and B be the integers determined by

|α|2 = A+B(%+ %−1).

Then

A = (z(1)− 1)(z(1)− 1 + z(%3)− z(%2)) + z(%)z(%4)

+ z(%)2 − z(%)z(%3) + z(%3)2 + z(%2)2 − z(%2)z(%4) + z(%4)2,

N(α) = |αα′|2 = A2 +AB −B2 =
5A2

4
−
(
A

2
−B

)2

.

In particular, the former equation above implies A ≥ 0, because

A ≥ (z(1)− 1)2 − (z(1)− 1)2 + z(%3)2

2
− (z(1)− 1)2 + z(%2)2

2

+ z(%)2 − z(%)2 + z(%3)2

2
+ z(%3)2 + z(%2)2 − z(%2)2 + z(%4)2

2
+ z(%4)2

=
z(%)2 + z(%4)2

2
.

Hence, noting that

z(%)2 − z(%)z(%3) + z(%3)2 ≤ 4l2,

z(%2)2 − z(%2)z(%4) + z(%4)2 ≤ 4l2,

we have

N(α) <
5
4

(5(4l2))2 = 500l4.

This gives

M < 500l4.
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Let S be the set of the following pairs of integers:

(1, 2), (1, 7), (1, 13), (1, 17), (2, 2), (2, 7),

(2, 13), (2, 17), (2, 19), (2, 29), (3, 2), (3, 7),

(3, 13), (3, 17), (3, 19), (3, 29), (3, 41), (4, 7),

(4, 13), (4, 17), (4, 19), (4, 29), (4, 41), (4, 61),

(5, 7), (5, 13), (5, 17), (5, 19), (5, 29), (5, 41),

(5, 61), (5, 73), (5, 79), (5, 83), (6, 13), (6, 17),

(6, 19), (6, 29), (6, 41), (6, 61), (6, 73), (6, 79),

(6, 83), (6, 101), (7, 17), (7, 19), (7, 29), (7, 41),

(7, 61), (7, 73), (7, 79), (7, 83), (7, 101), (7, 107),

(8, 29), (8, 41), (8, 61), (8, 73), (8, 79), (8, 83),

(8, 101), (8, 107), (8, 127), (9, 61), (9, 73), (9, 79),

(9, 83), (9, 101), (9, 107), (9, 127), (9, 139), (9, 149),

(9, 151), (10, 101), (10, 107), (10, 127), (10, 139), (10, 149),

(10, 151), (10, 167), (11, 167), (11, 173).

By simple calculations, we find that the inequalities

11n < 500l4, l <
5

log 2
log
(

11n+1

π
sin

π

11

)
hold if and only if (n, l) ∈ S. Hence Lemma 1 implies that (n, l) ∈ S if l
divides hn/hn−1.

Assume now that (n, l) ∈ S. For each r in {1, 2, 3, 4}, let br denote the
integer such that

br ≡ 211nr (mod 11n+1), 0 < br < 11n+1.

Since 2 is a primitive root modulo 11n+1, we can take as p the prime ideal
of K10 = Q(%) generated by 11 and b1 − %. We then have

I = {1, b1, b2, b3, b4}.
In view of Lemma 2 and [H2, Lemma 1], it suffices for our proof to find
integers c and d which satisfy

c ≡ d (mod 11n), s(c) 6≡ s(d) (mod l).

By using a (personal) computer, we have computed s(u) for suitable integers
u after the determination of Pa(u) and Qa(u) for all a ∈ I. When n ≥ 4 but
(n, l) 6= (4, 61), the computations show that

s(1) = 1, s(1 + 11n) = −1.

Furthermore,

s(1) = 0, s(1 + 3 · 113) = −1, if (n, l) = (3, 2);

s(1) = 1, s(1 + 3 · 113) = −2, if (n, l) = (2, 2).
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Results for the other cases of (n, l) are given in the following table:

(n, l) s(1) s(1 + 11n) (n, l) s(1) s(1 + 11n)

(4, 61) −21 −48 (2, 19) 69 61

(3, 41) −31 −36 (2, 17) 21 −3

(3, 29) 24 17 (2, 13) −45 21

(3, 19) 5 52 (2, 7) 25 −22

(3, 17) 5 −5 (1, 17) −257 203

(3, 13) −5 −29 (1, 13) −56 12

(3, 7) 1 −2 (1, 7) −23 −32

(2, 29) −36 103 (1, 2) −2 −9

We thus obtain the conclusion for p = 11.
Let us next deal with the case p = 13. Take any z ∈ Ψ and put

α =
∑
ξ∈V

z(ξ)ξ − 1, α′ =
∑
ξ∈V

z(ξ)ξ7 − 1.

Clearly, N(α) = |αα′|2. Let % = ie2πi/3, so that

V = {1, %, %2,−%3, %4,−%5}, −%3 = i, %4 = e2πi/3, i%4 = %.

Let further

a1 = z(1)− 1 + z(%2), a2 = z(%2) + z(%4),

a3 = z(i) + z(−%5), a4 = z(%) + z(−%5).

Then
α = a1 + a2%

4 + a3i+ a4i%
4,

α′ = a1 + a2%
4 − a3i− a4i%

4.

We therefore see that

N(α) = |(a1 + a2%
4)2 + (a3 + a4%

4)2|2

≤ (|a1 + a2%
4|2 + |a3 + a4%

4|2)2

= (a2
1 − a1a2 + a2

2 + a2
3 − a3a4 + a2

4)2.

Since a2
1 − a1a2 + a2

2 < 16l2 and a2
3 − a3a4 + a2

4 ≤ 16l2, it follows that

N(α) < (32l2)2 = 210l4.

Hence we have
M < 210l4.
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On the other hand, let S be the set of the following pairs of integers:

(1, 2), (1, 7), (1, 11), (2, 2), (2, 7), (2, 11),

(2, 37), (3, 2), (3, 7), (3, 11), (3, 37), (3, 41),

(3, 59), (4, 7), (4, 11), (4, 37), (4, 41), (4, 59),

(4, 67), (4, 71), (5, 7), (5, 11), (5, 37), (5, 41),

(5, 59), (5, 67), (5, 71), (5, 97), (6, 11), (6, 37),

(6, 41), (6, 59), (6, 67), (6, 71), (6, 97), (7, 37),

(7, 41), (7, 59), (7, 67), (7, 71), (7, 97), (7, 137),

(7, 149), (8, 37), (8, 41), (8, 59), (8, 67), (8, 71),

(8, 97), (8, 137), (8, 149), (8, 163), (8, 167), (9, 59),

(9, 67), (9, 71), (9, 97), (9, 137), (9, 149), (9, 163),

(9, 167), (9, 193), (9, 197), (10, 137), (10, 149), (10, 163),

(10, 167), (10, 193), (10, 197), (11, 223), (11, 227), (11, 241).

Simple calculations show that (n, l) ∈ S if and only if

13n < 210l4, l <
6

log 2
log
(

13n+1

π
sin

π

13

)
.

Lemma 1 therefore implies that (n, l) ∈ S if l divides hn/hn−1.
Suppose (n, l) to be in S. Let b1 be the integer such that

b1 ≡ 213n (mod 13n+1), 0 < b1 < 13n+1.

For each r ∈ {2, 3, 4, 5}, let br denote the integer such that

br ≡ (−b1)r (mod 13n+1), 0 < br < 13n+1.

Since 2 is a primitive root modulo 13n+1, we take as p the prime ideal of
K12 = Q(%) generated by 13 and b1 − %. We then see that

I = {1, b1, b2, b3, b4, b5}.

By Lemma 2 and [H2, Lemma 1], it suffices to find integers c and d which
satisfy

c ≡ d (mod 13n), s(c) 6≡ s(d) (mod l).

Using a computer as in the case p = 11, we have computed s(u) for suit-
able integers u. When n ≥ 4 but (n, l) 6= (5, 71), (5, 67), (4, 71), (4, 41), the
computations yield

s(1) = 1, s(1 + 13n) = −1.
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Results for the other cases of (n, l) are given in the following tables:

(n, l) s(1) s(1 + 13n)

(5, 71) −48 −1

(5, 67) −31 −1

(4, 71) 181 −8

(4, 41) 12 −1

(3, 59) 84 −133

(3, 41) 13 −80

(3, 37) 143 −9

(3, 11) −9 3

(2, 37) 14 266

(2, 11) −107 55

(2, 7) 6 −34

(1, 11) 16 101

(1, 7) 48 4

(n, l) s(1) s(1 + 5 · 13n)

(3, 7) 1 0

(3, 2) 0 −5

(2, 2) 1 2

(1, 2) 13 26

Thus our proof is completed.

3. Some lemmas. In this section we give some preliminary results for
the proof of Theorem 2. Let t be the positive integer such that 2t is the
highest power of 2 dividing p−1. Let k be the subfield of Kp with degree 2t,
whence k is an imaginary abelian extension over Q. For each integer u ≥ 0,
we denote by h−u the relative class number of the composite kBu.

Lemma 3. The class number of Bn in the narrow sense is odd if and
only if h−n is odd.

Proof. Let p be the unique prime ideal of Bn dividing p. Since kBn is
an abelian 2-extension over Bn and since no prime ideal of Bn other than p
is ramified in kBn but p is fully ramified in kBn, a well-known argument
of [I] tells us that the class number of kBn is odd if and only if the class
number of Bn in the narrow sense is odd (cf. the proof of Washington [W2,
Theorem 10.4]). On the other hand, kBn is a cyclic extension over Q so that,
by Hasse [H, Satz 45], the indivisibility 2 - h−n means that the class number
of kBn is odd. Therefore, the lemma follows.

Remark 3. As is seen from the above proof, Lemma 3 still holds even
if one replaces Bn by any intermediate field of the extension kBn/Bn.

Let X be the set of primitive Dirichlet characters of order 2t with con-
ductor p, so that all Dirichlet characters in X are odd. Let Y be the set of
primitive Dirichlet characters of order pn with conductor pn+1. Since kBn
does not contain i and since the unit indices of kBn and kBn−1 are equal
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to 1, the analytic class number formula implies that

(1)
h−n
h−n−1

= p̌
∏
χ∈X

∏
ψ∈Y

(
− 1

2pn+1

pn+1∑
a=1

χψ(a)a
)
,

where p̌ = p or p̌ = 1 according to whether p − 1 is a power of 2 or not
(cf. [H, §36, (3)]). Furthermore, the right hand side of (1) is known to be an
integer: h−n−1 |h−n (cf. [H, Satz 32]).

Let R be a set of positive integers smaller than p such that

R ∩ {p− a | a ∈ R} = ∅, R ∪ {p− a | a ∈ R} = {1, . . . , p− 1}.

Given any integer u ≥ 0, let Ru denote the set of integers b for which
bp−1 ≡ 1 (mod pu+1), 0 < b < pu+1, and b ≡ a (mod p) with some a ∈ R.
It then follows that |Ru| = |R| = (p − 1)/2, because, for each a ∈ R, there
exists a unique b ∈ Ru with b ≡ a (mod p). Obviously, R0 = R. Take any
positive integer m ≤ (n+ 1)/2:

n ≥ 2m− 1 ≥ 1, i.e., n−m+ 1 ≥ m ≥ 1.

For each integer a not divisible by p, let a∗ denote the integer such that

a∗ ≡ a (mod pn−m+1), 0 < a∗ < pn−m+1,

and let a∗ denote the integer such that

aa∗ ≡ 1 (mod pm), 0 < a∗ < pm.

To state the following lemma, we note that, for any ψ ∈ Y, ψ(1 + pn−m+1)
is a primitive pmth root of unity.

Lemma 4. Let ψ be a Dirichlet character in Y. Assume that 2p−1 6≡ 1
(mod pm+1), i.e., Kpm contains the decomposition field of 2 for the abelian
extension KpB∞/Q, and that , for some integer c not divisible by p, the
algebraic number ∑

b∈Rn−m

ψ(c)−1ψ((bc)∗)
ψ(1 + pn−m+1)(bc)∗ − 1

is relatively prime to 2. Then the integer h−n /h
−
n−1 is odd.

Proof. Let χ be any Dirichlet character in X. We put

Θ = − 1
2pn+1

pn+1∑
a=1

χψ(a)a, ω = ψ(1 + pn−m+1).

The field in C generated by the images of χ and ψ over Q is K2tpn and, by
[H, Satz 32], (ω − 1)Θ is an algebraic integer. Let T denote the trace map
from K2tpn to K2tpm . The argument in the first part of [W1, §IV] then shows
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that

T(ψ(c)−1Θ) = pn−m
∑

b∈Rn−m

ψ(c)−1χψ((bc)∗)
ω(bc)∗ − 1

(cf., in particular, [W1, (**)]). Let i be the integral ideal of K2tpm generated
by eπi/2

t−1 − 1, so that, in K2tpn ,

χψ((bc)∗) ≡ ψ((bc)∗) (mod i)

for each b ∈ Rn−m. Therefore,

T(ψ(c)−1(ω − 1)Θ) ≡ pn−m(ω − 1)
∑

b∈Rn−m

ψ(c)−1ψ((bc)∗)
ω(bc)∗ − 1

(mod i).

We see as well that i is the product of all prime ideals of K2tpm dividing 2.
Hence, by the assumption, any prime ideal of K2tpm dividing 2 does not
divide (ω−1)Θ; indeed, it remains prime in K2tpn . Thus the norm of (ω−1)Θ
for K2tpn/Q is an odd integer. We can now deduce from (1) that h−n /h

−
n−1

is odd.

We may omit ψ(c)−1 in the statement of Lemma 4, while we should note
that ψ(c′)−1ψ((bc′)∗) is a pmth root of unity for any (b, c′) ∈ Rn−m×Z with
p - c′. Further, not only do we have {a∗ | a ∈ Rm−1} = {b∗ | b ∈ Rn−m}
but also R may be replaced, from the start, by the set of positive integers
a′ < p such that a′a ≡ 1 (mod p) for some a ∈ R. Thus Lemma 4 gives us
the following.

Lemma 5. Let ζ be any primitive pmth root of unity. Assume that 2p−1 6≡
1 (mod pm+1) and that , for each map f from Rm−1 to the set of non-negative
integers smaller than pm, ∑

a∈Rm−1

ζf(a)

ζa − 1

is relatively prime to 2. Then h−n /h
−
n−1 is odd.

Let us give one more result.

Lemma 6. Let ζ be any primitive pmth root of unity , u any integer ,
N any positive integer , and µ any map from {1, . . . , N} to Z. Assume
that 2p−1 6≡ 1 (mod pr+1) with a positive integer r < m and that

N∑
c=1

ζµ(c) ≡ 0 (mod l)

with a prime ideal l of Kpr dividing 2. Then∑
c′

ζµ(c′) ≡ 0 (mod l),



Narrow class groups of Zp-extensions 169

where c′ ranges over all positive integers not exceeding N such that µ(c′) ≡ u
(mod pm−r).

Proof. Let T be the trace map from Kpm to Kpr . By the hypothesis,
l remains prime in Kpm and so

T
( N∑
c=1

ζµ(c)−u
)
ζu ≡ 0 (mod l).

However, for each positive integer c ≤ N ,

T (ζµ(c)−u) = pm−rζµ(c)−u or T (ζµ(c)−u) = 0

according to whether µ(c) ≡ u (mod pm−r) or not. Thus the lemma is
proved.

4. Proof of Theorem 2. To prove Theorem 2, we suppose that p ≤ 13,
and hence 2p−1 6≡ 1 (mod p2). The integer m of the preceding section will
still be used. For each integer u ≥ 0, let Cu denote the ideal class group
of Bu in the narrow sense. Then the ideal class group of B∞ in the narrow
sense is canonically isomorphic to the direct limit of Cu for all integers u ≥ 0
with respect to the natural homomorphisms Cu → Cu′ for all (u, u′) ∈ Z×Z
with 0 ≤ u ≤ u′. On the other hand, k is an abelian 2-extension over Q in
which no prime number other than p is ramified. This fact implies by [W2,
Theorem 10.4] that the class number of k is odd, whence h−0 , the relative
class number of k, is odd. Therefore, by Lemma 3, it suffices to prove that
h−n /h

−
n−1 is always odd.

When p = 3 or p = 5, the assertion 2 -h−n /h−n−1 is part of more general
results in [W1] but is proved very simply as follows. For p = 3, letting m = 1
and R = R0 = {1}, we obtain the assertion immediately from Lemma 5 (cf.
[W1, §IV]). For p = 5, we let m = 1 and R = {1, 2}. Let ζ be any primitive
5th root of unity. Then, for any map f from R = R0 to {0, 1, 2, 3, 4},

(ζ − 1)
∑
a∈R

ζf(a)

ζa − 1
= ζf(1)(1 + ζf(2)−f(1)(ζ4 + ζ2 + 1)).

Since 2 remains prime in K5, we easily see that the above algebraic integer
is relatively prime to 2. Hence Lemma 5 implies that h−n /h

−
n−1 is odd (cf.

[W1, Proposition 3]).
Let us deal with the case p = 7. Take {1, 2, 4} as R so that R1 =

{1, 18, 30}. We let m = 2 first, and remark that Q(
√
−7) is the decomposi-

tion field of 2 for K7/Q. Let ζ be any primitive 49th root of unity. Then∑
a∈R1

ζf(a)

ζa − 1
= ζf(1)

(
1

ζ − 1
+
ζf(18)−f(1)

ζ18 − 1
+
ζf(30)−f(1)

ζ30 − 1

)
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for any map f : R1 → {0, . . . , 48}. Assume now that
1

ζ − 1
+

ζc1

ζ18 − 1
+

ζc2

ζ30 − 1
is not relatively prime to 2 with integers c1, c2 in {0, . . . , 48}, that is,∑

a∈Q0

ζa +
∑
a∈Q1

ζa +
∑
a∈Q2

ζa

is not relatively prime to 2, where

Q0 = {0, 18, 30, 48}, Q1 = {c1, c1 + 1, c1 + 30, c1 + 31},
Q2 = {c2, c2 + 1, c2 + 18, c2 + 19}.

It is useful to treat the elements of Q0 ∪ Q1 ∪ Q2 modulo 7; for each pair
(u,w) in {0, . . . , 6} × {0, 1, 2}, we put

Qw(u) = {a ∈ Qw | a ≡ u (mod 7)}.
Since the cardinality of each Qw(u) is 0 or 1, the above assumption implies
by Lemma 6 that

2∑
w=0

|Qw(u)| 6= 1, i.e.,
2∑

w=0

|Qw(u)| ∈ {0, 2, 3}

for every integer u in {0, . . . , 6}. This condition is satisfied only when c1 ≡ 5
(mod 7) and c2 ≡ 4 (mod 7), and then

Q0(0) = {0}, Q1(0) = {c1 + 30}, Q1(1) = {c1 + 31}, Q2(1) = {c2 + 18},
Q0(2) = {30}, Q2(2) = {c2 + 19}, Q0(4) = {18}, Q2(4) = {c2},
Q1(5) = {c1}, Q2(5) = {c2 + 1}, Q0(6) = {48}, Q1(6) = {c1 + 1}.
In particular, we see from Lemma 6 that neither 1 + ζc1+30 nor ζ48 + ζc1+1

is a unit, which means that

1 = ζc1+30, ζ48 = ζc1+1;

but these equalities obviously contradict each other. We therefore find that∑
a∈R1

ζf(a)

ζa − 1

is relatively prime to 2 for any map f : R1 → {0, . . . , 48}. Hence, by
Lemma 5, h−n /h

−
n−1 is odd whenever n ≥ 2m− 1 = 3.

We next let m = 1, still with R = {1, 2, 4}. Let ψ be a primitive Dirichlet
character of order 49 with conductor 73, and put ω = ψ(50). Then ω is a
primitive 7th root of unity. In the case n = 2, putting c = 172 = (1 + 73)/2,
we have

ψ(c)−1ψ(c∗) = ψ(2)ψ(25) = ω, ψ(c)−1ψ((18c)∗) = ψ(18) = 1,
ψ(c)−1ψ((30c)∗) = ψ(30) = ω4,
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so that ∑
b∈R1

ψ(c)−1ψ((bc)∗)
ω(bc)∗ − 1

= − 1
ω2 + 1

.

Therefore Lemma 4 shows that h−2 /h
−
1 is odd. In the case n = 1, noting that

ω = ψ7(8), we have ∑
b∈R

ψ7(b∗)
ωb∗ − 1

= − ω3

ω + 1

and hence Lemma 4 shows as well that h−1 /h
−
0 is odd. The conclusion for

p = 7 is thus proved.
Assertion IV of [AF] implies that, if hn is odd and the order of 2 modulo

p is even, then hn is also the class number of Bn in the narrow sense. Hence,
as already remarked in the introduction, the conclusion of Theorem 2 follows
from Theorem 1 when p = 11 or p = 13; nonetheless, for this case, we shall
give another proof of Theorem 2 without using Theorem 1 but along the
same lines as in the case p ≤ 7.

We now suppose that p = 11. Let R = {1, 2, 4, 5, 8} and let ξ be any
primitive 11th root of unity. Let us consider the congruence

(2)
1

ξ − 1
+

4∑
w=1

ξcw

ξ2w − 1
≡ 0 (mod 2)

with integers c1, c2, c3, c4 in {0, . . . , 10}. Since

3∏
w=0

(ξ2
w

+ 1) ≡
10∑
a=5

ξa (mod 2),

ξc1
3∏

w=1

(ξ2
w

+ 1) ≡ ξc1+5 + ξc1+7 + ξc1+9 (mod 2),

we find that (2) is equivalent to the congruence

10∑
a=5

ξa+ξc1+5+ξc1+7+ξc1+9+ξc2 +ξc2+1+ξc2+4+ξc2+8+ξc3 +ξc3+8+ξc4

≡ 0 (mod 2).

Hence, setting c2 = 0, . . . , c2 = 10 successively in the above, we see without
difficulty that (2) holds if and only if

(3) (c1, c2, c3, c4) = (5, 8, 6, 7) or (c1, c2, c3, c4) = (7, 6, 1, 8).

Now, let m = 2. Let ζ be a primitive 112th root of unity such that
ζ11 = ξ, and note that R1 = {1, 27, 81, 112, 118}. Then, for any map f :
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R1 → {0, . . . , 120},∑
a∈R1

ζf(a)

ζa∗ − 1
= ζf(1)

(
1

ζ − 1
+

4∑
w=1

ζf(ŵ)−f(1)

ζŵ − 1

)
,

where (1̂, 2̂, 3̂, 4̂) = (112, 81, 118, 27). We assume that there exist integers d1,
d2, d3, d4 in {0, . . . , 120} satisfying

(4)
1

ζ − 1
+

4∑
w=1

ζdw

ζŵ − 1
≡ 0 (mod 2).

For each w ∈ {0, 1, 2, 3, 4}, define a set Qw of non-negative integers as fol-
lows. Let Q0 denote the set of ∑

b∈R1\{1}

ε(b)b

for all maps ε : R1 \ {1} → {0, 1}. If w ≥ 1, let Qw denote the set of

dw +
∑

b∈R1\{ŵ}

ε(b)b,

for all maps ε : R1 \ {ŵ} → {0, 1}. Given any u ∈ {0, . . . , 120}, we then put

Q1
w(u) = {a ∈ Qw | a ≡ u (mod 11)},

Q2
w(u) = {a ∈ Qw | a ≡ u (mod 112)}.

Direct computations show that the cardinality of each Q2
w(u) is 0 or 1, and

that the cardinality of each Q1
w(u) does not exceed 2, whence
4∑

w=0

|Q1
w(u)| ≤ 10.

Furthermore, 2 remains prime in K112 , and (4) is equivalent to
4∑

w=0

∑
a∈Qw

ζa ≡ 0 (mod 2),

which, together with Lemma 6, gives
4∑

w=0

∑
a∈Qw(u)

ζa ≡ 0 (mod 2).

Therefore, in view of the form of the 112th cyclotomic polynomial, we obtain
4∑

w=0

|Q2
w(u)| ≡ 0 (mod 2).
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Consequently,

4∑
w=0

|Q1
w(u′)| ≡ 0 (mod 2) for every u′ ∈ {0, . . . , 10}.

This implies that
4∑

w=0

∑
a∈Qw

ξa ≡ 0 (mod 2),

that is,

1
ξ − 1

+
4∑

w=1

ξdw

ξ2w − 1
=

1
ξ − 1

+
4∑

w=1

ξdw

ξŵ − 1
≡ 0 (mod 2).

Hence it follows from (2) that there exist integers c′1, c′2, c′3, c′4 in {0, . . . , 10}
satisfying

dw = 11c′w + cw for every w ∈ {1, 2, 3, 4}.

Therefore, by (4),

(5)
1

ξ − 1
+

4∑
w=1

ξc
′
wT

(
ζcw

ζŵ − 1

)
≡ 0 (mod 2);

here T denotes the trace map from K112 to K11, so that

T

(
1

ζ − 1

)
=

11
ξ − 1

and, for each positive integer a ≤ 10,

T

(
ζa

ζ − 1

)
= T

(a−1∑
b=0

ζb +
1

ζ − 1

)
=

11ξ
ξ − 1

.

Since (3) is equivalent to (2), let us first consider the case (c1, c2, c3, c4) =
(5, 8, 6, 7). In this case, (5) is written as

1
ξ − 1

+
ξc
′
1−2

ξ2 − 1
+

ξc
′
2+1

ξ4 − 1
+

ξc
′
3

ξ8 − 1
+

ξc
′
4−3

ξ5 − 1
≡ 0 (mod 2).

Hence, again by the equivalence of (2) and (3),

(c′1, c
′
2, c
′
3, c
′
4) = (7, 7, 6, 10) or (c′1, c

′
2, c
′
3, c
′
4) = (9, 5, 1, 0).

We thus deduce that

(d1, d2, d3, d4) = (82, 85, 72, 117) or (d1, d2, d3, d4) = (104, 63, 17, 7).
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However,

1
ζ − 1

+
ζ82

ζ112 − 1
+

ζ85

ζ81 − 1
+

ζ72

ζ118 − 1
+

ζ117

ζ27 − 1

≡
( ∏
a∈R1

1
ζa − 1

)∑
b

ζb (mod 2),

1
ζ − 1

+
ζ104

ζ112 − 1
+

ζ63

ζ81 − 1
+

ζ17

ζ118 − 1
+

ζ7

ζ27 − 1

≡
( ∏
a∈R1

1
ζa − 1

)∑
b′

ζb
′

(mod 2),

where b ranges over the integers

0, 3, 4, 5, 7, 14, 16, 23, 25, 26, 29, 32, 33, 36, 37, 38, 39, 42, 43, 47, 48, 49, 50, 58, 62, 63,

64, 65, 67, 68, 71, 73, 75, 76, 79, 82, 84, 85, 86, 90, 92, 93, 95, 96, 101, 102, 106, 107,

and b′ ranges over the integers

0, 2, 11, 13, 15, 17, 19, 20, 21, 27, 30, 31, 32, 36, 41, 42, 43, 44, 45, 46, 51, 53, 55,

57, 60, 62, 64, 68, 69, 72, 74, 75, 77, 79, 80, 82, 88, 89, 90, 92, 97, 102, 104, 107.

We are therefore led to a contradiction, whence the case (c1, c2, c3, c4) =
(5, 8, 6, 7) does not occur. In the case (c1, c2, c3, c4) = (7, 6, 1, 8), as (5) means

1
ξ − 1

+
ξc
′
1−1

ξ2 − 1
+

ξc
′
2−3

ξ4 − 1
+

ξc
′
3−1

ξ8 − 1
+

ξc
′
4+2

ξ5 − 1
≡ 0 (mod 2)

and as (2) is equivalent to (3), it follows that

(c′1, c
′
2, c
′
3, c
′
4) = (6, 0, 7, 5) or (c′1, c

′
2, c
′
3, c
′
4) = (8, 9, 2, 6),

so that

(d1, d2, d3, d4) = (73, 6, 78, 63) or (d1, d2, d3, d4) = (95, 105, 23, 74);

but we have
1

ζ − 1
+

ζ73

ζ112 − 1
+

ζ6

ζ81 − 1
+

ζ78

ζ118 − 1
+

ζ63

ζ27 − 1

≡
( ∏
a∈R1

1
ζa − 1

)∑
b

ζb (mod 2),

1
ζ − 1

+
ζ95

ζ112 − 1
+

ζ105

ζ81 − 1
+

ζ23

ζ118 − 1
+

ζ74

ζ27 − 1

≡
( ∏
a∈R1

1
ζa − 1

)∑
b′

ζb
′

(mod 2),
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where b ranges over the integers
0, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 16, 17, 18, 22, 23, 25, 28, 29, 30, 31, 35, 42, 46, 49, 50, 51, 52,

53, 54, 55, 56, 57, 58, 60, 61, 63, 65, 66, 68, 73, 74, 75, 81, 82, 83, 86, 90, 93, 94, 97, 98, 99,

100, 104, 105, 106, 109,

and b′ ranges over the integers
3, 10, 12, 13, 14, 18, 19, 20, 22, 24, 25, 26, 27, 30, 32, 34, 46, 50, 51, 55, 56, 57, 62, 64, 65, 66,

68, 69, 71, 78, 80, 81, 82, 83, 85, 86, 90, 92, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 109.

We thus conclude from the above contradiction that (4) is not satisfied by
any 4-tuple (d1, d2, d3, d4) of integers in {0, . . . , 120}. Hence, in virtue of
Lemma 5, h−n /h

−
n−1 is odd if n ≥ 3.

We next let m = 1, R = {1, 2∗, 4∗, 8∗, 16∗} = {1, 3, 6, 7, 9}, and so R1 =
{1, 3, 9, 40, 94}. Let ξ be any primitive 11th root of unity as before, and let
ψ be a primitive Dirichlet character of order 121 with conductor 113 such
that ξ = ψ(122) = ψ11(12). When n = 2,∑

b∈R1

ψ(b∗)
ξb∗ − 1

=
1

ξ − 1
+
ψ(94)
ξ2 − 1

+
ψ(3)
ξ4 − 1

+
ψ(40)
ξ8 − 1

+
ψ(9)
ξ5 − 1

.

Furthermore, whether n = 1 or not,∑
b∈R

ψ11(b)
ξb∗ − 1

=
1

ξ − 1
+
ψ11(6)
ξ2 − 1

+
ψ11(3)
ξ4 − 1

+
ψ11(7)
ξ8 − 1

+
ψ11(9)
ξ5 − 1

.

We know, however, that ψ(3) = 1. Hence, by the equivalence of (2) and (3),
Lemma 4 shows that h−n /h

−
n−1 is odd even if n = 2 or n = 1.

We finally deal with the case p = 13. Let R = {1, 2, 3, 4, 6, 8}, let ξ1
be a primitive 13th root of unity, and let U denote the set of the following
5-tuples of integers:

(5, 6, 5, 1, 4), (3, 7, 1, 2, 4), (4, 7, 1, 3, 4), (5, 7, 2, 3, 4),

(5, 7, 5, 1, 5), (3, 6, 1, 2, 5), (4, 6, 1, 3, 5), (5, 6, 2, 3, 5),

(10, 0, 5, 6, 5), (9, 10, 7, 6, 5), (9, 0, 5, 7, 5), (10, 10, 7, 7, 5),

(12, 8, 0, 2, 6), (2, 6, 1, 2, 6), (12, 9, 0, 3, 6), (11, 9, 0, 4, 6),

(9, 10, 8, 6, 6), (10, 10, 8, 7, 6), (12, 10, 0, 3, 7), (11, 10, 0, 4, 7),

(9, 9, 8, 6, 7), (10, 9, 8, 7, 7), (3, 4, 0, 10, 7), (2, 4, 0, 11, 7),

(8, 9, 8, 6, 8), (5, 11, 9, 6, 8), (5, 12, 9, 7, 8), (4, 12, 9, 8, 8),

(3, 5, 0, 10, 8), (2, 5, 0, 11, 8), (2, 6, 0, 12, 8), (12, 8, 1, 12, 8),

(9, 7, 9, 1, 9), (8, 7, 9, 2, 9), (5, 0, 9, 7, 9), (4, 0, 9, 8, 9),

(10, 8, 1, 11, 9), (11, 8, 1, 12, 9), (9, 8, 9, 1, 10), (8, 8, 9, 2, 10),

(5, 11, 8, 3, 10), (8, 9, 9, 3, 10), (10, 7, 1, 11, 10), (11, 7, 1, 12, 10),

(2, 11, 7, 2, 11), (3, 11, 8, 2, 11), (4, 11, 8, 3, 11), (2, 10, 4, 4, 11),

(10, 7, 2, 11, 11), (11, 4, 4, 11, 11), (11, 7, 2, 12, 11), (10, 4, 4, 12, 11),

(2, 10, 7, 2, 12), (3, 10, 8, 2, 12), (4, 10, 8, 3, 12), (2, 11, 4, 4, 12).
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Using a computer, we can check that integers c1, c2, c3, c4, c5 in {0, . . . , 12}
satisfy

1
ξ1 − 1

+
5∑

w=1

ξ2
wcw

1

ξ2
w

1 − 1
≡ 0 (mod 2)

if and only if (c1, c2, c3, c4, c5) belongs to U .
Now, let m = 3. Let ζ be a primitive 133th root of unity such that

ζ13 = ξ2, with ξ2 a primitive 169th root of unity such that ξ13
2 = ξ1. We

note that 2 remains prime in K133 , R2 = {1, 418, 1160, 1161, 1540, 1958},
and for any map f : R2 → {0, . . . , 133 − 1},∑

a∈R2

ζf(a)

ζa − 1
= ζf(1)

(
1

ζ − 1
+

5∑
w=1

ζf(ẇ)−f(1)

ζẇ − 1

)
,

where (1̇, 2̇, 3̇, 4̇, 5̇) = (418, 1161, 1958, 1160, 1540). Assume the congruence

(6)
1

ζ − 1
+

5∑
w=1

ζẇdw

ζẇ − 1
≡ 0 (mod 2)

to be satisfied by non-negative integers d1, d2, d3, d4, d5 smaller than 133.
Putting d0 = 0, let Qw denote for each w ∈ {0, . . . , 5} the set of the integers

dw +
∑

b∈R2\{ẇ}

ε(b)b

for all maps ε : R2\{ẇ} → {0, 1}. Let u range over the non-negative integers
smaller than 133. We then put

Q2
w(u) = {a ∈ Qw | a ≡ u (mod 132)},

Q3
w(u) = {a ∈ Qw | a ≡ u (mod 133)}.

As in the case p = 11, we see that each |Q3
w(u)| is 0 or 1 and that no |Q2

w(u)|
exceeds 2. Hence not only is (6) equivalent to

5∑
w=0

∑
a∈Qw

ζa ≡ 0 (mod 2)

but also we have
5∑

w=0

|Q2
w(u)| ≤ 12.

Lemma 6 therefore shows that
5∑

w=0

|Q3
w(u)| ≡ 0 (mod 2),
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which implies that

(7)
5∑

w=0

∑
a∈Qw

ξa2 ≡ 0 (mod 2),
5∑

w=0

∑
a∈Qw

ξa1 ≡ 0 (mod 2).

Since the second congruence above gives

1
ξ1 − 1

+
5∑

w=1

ξ2
wdw

1

ξ2
w

1 − 1
=

1
ξ1 − 1

+
5∑

w=1

ξẇdw1

ξẇ1 − 1
≡ 0 (mod 2),

there exist integers d′1, d′2, d′3, d′4, d′5, d′′1, d′′2, d′′3, d′′4, d′′5 in {0, . . . , 12} such
that (d′1, d

′
2, d
′
3, d
′
4, d
′
5) belongs to U and

dw ≡ 13d′′w + d′w (mod 132) for every w ∈ {1, . . . , 5}.
Hence, by the first congruence of (7),

1
ξ2 − 1

+
5∑

w=1

ξ
2wd′′w
1 ξ

ẇd′w
2

ξẇ2 − 1
≡ 0 (mod 2).

The trace map from K132 to K13 transforms the above into

1
ξ1 − 1

+
5∑

w=1

ξ
2w(d′′w+κ(d′w))
1

ξ2
w

1 − 1
≡ 0 (mod 2),

where, for each integer c, κ(c) = 0 or κ(c) = 1 according to whether c
is divisible by 13 or not. Thus there exists a 5-tuple (c1, c2, c3, c4, c5) in U
satisfying

d′′w + κ(d′w) ≡ cw (mod 13) for every w ∈ {1, . . . , 5}.
In particular,

1
ξ2 − 1

+
5∑

w=1

ξ
ẇ(13(cw−κ(d′w))+d′w)
2

ξẇ2 − 1
≡ 0 (mod 2).

However, for any given (c′1, c
′
2, c
′
3, c
′
4, c
′
5), (c′′1, c

′′
2, c
′′
3, c
′′
4, c
′′
5) ∈ U , we can check

by computer that

1
ξ2 − 1

+
5∑

w=1

ξ
ẇ(13(c′′w−κ(c′w))+c′w)
2

ξẇ2 − 1
6≡ 0 (mod 2).

This contradiction shows that no 5-tuple (d1, d2, d3, d4, d5) of integers in
{0, . . . , 133 − 1} satisfies the congruence (6). Hence, by Lemma 5, h−n /h

−
n−1

is odd if n ≥ 5.
We now let m = 1, R = {1, 5, 7, 9, 10, 11}, and so

R3 = {1, 239, 5051, 7627, 7628, 23749}.
Let ξ1 be any primitive 13th root of unity as before. Let ψ be a primitive
Dirichlet character of order 134 with conductor 135 such that ξ1 = ψ(1+134),
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whence
ξ1 = ψ13(1 + 133) = ψ132

(1 + 132) = ψ133
(14).

We then see that, in the case n = 4,∑
b∈R3

ψ(b∗)
ξb
∗

1 − 1
=

1
ξ1 − 1

+
ψ(5051)
ξ21 − 1

+
ψ(7628)
ξ41 − 1

+
ψ(239)
ξ81 − 1

+
ψ(7627)
ξ16
1 − 1

+
ψ(23749)
ξ32
1 − 1

,

in the case n = 3,∑
b∈R2

ψ13(b∗)
ξb
∗

1 − 1
=

1
ξ1 − 1

+
ψ13(657)
ξ21 − 1

+
ψ13(1037)
ξ41 − 1

+
ψ13(239)
ξ81 − 1

+
ψ13(1036)
ξ16
1 − 1

+
ψ13(1779)
ξ32
1 − 1

,

in the case n = 2,∑
b∈R1

ψ132
(b∗)

ξb
∗

1 − 1
=

1
ξ1 − 1

+
ψ132

(150)
ξ21 − 1

+
ψ132

(23)
ξ41 − 1

+
ψ132

(70)
ξ81 − 1

+
ψ132

(22)
ξ16
1 − 1

+
ψ132

(89)
ξ32
1 − 1

,

and in any case,∑
b∈R

ψ133
(b)

ξb
∗

1 − 1
=

1
ξ1 − 1

+
ψ133

(7)
ξ21 − 1

+
ψ133

(10)
ξ41 − 1

+
ψ133

(5)
ξ81 − 1

+
ψ133

(9)
ξ16
1 − 1

+
ψ133

(11)
ξ32
1 − 1

.

Furthermore,

ψ13(1779) = ψ132
(89) = (ξ32

1 )3, ψ(7627) = (ξ16
1 )8, ψ(23749) = (ξ32

1 )5,

ψ133
(9) = (ξ16

1 )12, ψ133
(11) = (ξ32

1 )7.

Therefore, viewing the elements of U , we know from Lemma 4 that h−n /h
−
n−1

is odd if n ≤ 4. Consequently, the theorem is completely proved.

5. Final remark. Let H denote the class number of B1 in the narrow
sense. By class field theory, H must be odd when the narrow 2-class group
of B∞ is trivial. For each integer a relatively prime to p, we define an integer
v(a) by

1− ap−1 = pv(a).

The following assertion does not need the assumption 2p−1 6≡ 1 (mod p2).

Proposition. Assume that m = 1, and take any primitive pth root ζ of
unity. Then H is odd if and only if∑

b∈R

ζv(b)

ζb∗ − 1

is relatively prime to 2.
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Proof. Let ψ be a primitive Dirichlet character of order p with conductor
p2 such that ψ(1+p) = ζ. Let χ be any primitive Dirichlet character of order
2t with conductor p, that is, χ ∈ X. As in the proof of Lemma 4, we have

− 1
2p2

p2∑
a=1

χψ(a)a ≡
∑
b∈R

ψ(b)
ζb∗ − 1

(mod i),

where i denotes the integral ideal of K2tp generated by eπi/2
t−1 − 1. Since i

is the product of all prime ideals of K2tp dividing 2, it then follows from (1)
that h−1 /h

−
0 is odd if and only if∑

b∈R

ψ(b)
ζb∗ − 1

is relatively prime to 2. Furthermore, for any b ∈ R, an integer b′ with
ζb
′

= ψ(b) satisfies (1 + p)b
′(p−1) ≡ bp−1 (mod p2), i.e., b′ ≡ v(b) (mod p).

Hence Lemma 3, together with the fact 2 - h−0 , proves the proposition.

By means of the above proposition, we have checked by computer that,
if p ≤ 487, then H is odd.

Now, take any prime number q different from p. Let F be the decompo-
sition field of q for the abelian extension KpB∞/Q. Note that F is of finite
degree and that the case q = l is none other than the case F = Q. It is
shown in [H3] that, if q is sufficiently large with the degree of F bounded,
then the q-class group of B∞ is trivial, whence q does not divide hn, the
class number of Bn. This result implies that the primes q′ for which the
q′-class group of B∞ is trivial distribute with natural density 1 in the set of
all prime numbers. On the other hand, we have not found any example of
(p, n) such that hn > 1. Hence the question arises whether the ideal class
group of B∞ is trivial (cf. also J. Buhler, C. Pomerance and L. Robertson
[BPR], J. P. Cerri [Ce], H. Cohn [Co], T. Fukuda and K. Komatsu [FK], and
[H1]). Moreover, in connection with our results on the narrow class group
of B∞, it might be an interesting problem to find whether H is always odd.
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[H] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin,
1952; Springer-Verlag, Berlin, 1985.

[H1] K. Horie, Ideal class groups of Iwasawa-theoretical abelian extensions over the
rational field, J. London Math. Soc. (2) 66 (2002), 257–275 (“ψd2(b) = 1” in line
11 on page 260 should be “ψ2(b)d = 1”).

[H2] —, Primary components of the ideal class group of the Zp-extension over Q for
typical inert primes, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), 40–43.

[H3] —, The ideal class group of the basic Zp-extension over an imaginary quadratic
field, Tohoku Math. J. 57 (2005), 375–394 (“p− 1” in line 7 on page 391 should
be “ϕ(q)”; so “(p − 1)f” in lines 16, 20 on page 389 and in lines 9, 11 on page
391, along with “f(p − 1)” in line 19 on page 391, should be “ϕ(q)f” (cf. also
[H4, §4])).

[H4] —, Primary components of the ideal class group of an Iwasawa-theoretical abelian
number field, J. Math. Soc. Japan 59 (2007), 811–824.

[I] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem.
Univ. Hamburg 20 (1956), 257–258.

[W1] L. C. Washington, Class numbers and Zp-extensions, Math. Ann. 214 (1975),
177–193.

[W2] —, Introduction to Cyclotomic Fields, 2nd ed., Grad. Texts in Math. 83, Springer-
Verlag, New York, 1996.

Department of Mathematics
Tokai University
1117 Kitakaname, Hiratsuka
Kanagawa 259-1292, Japan

Department of Mathematics
Ochanomizu University

2-1-1 Otsuka, Bunkyo-ku
Tokyo 112-8610, Japan

E-mail: horie.mitsuko@ocha.ac.jp

Received on 24.1.2008
and in revised form on 31.5.2008 (5619)


