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Normal bases of rings of continuous functions
constructed with the (g,)-digit principle

by

S. EVRARD (Amiens)

When K is a local field with valuation ring V', K. Conrad [6] constructs
normal bases of the ring C(V, K) of continuous functions from V to K, using
what he calls extension by ¢-digit expansion, where g denotes the cardinality
of the residue field k of V. In this article, we extend Conrad’s method to the
ring C(S, K) of continuous functions from S to K where S denotes a subset
of V. Moreover, we no more assume the finiteness of the residue field k, but
replace this condition by the precompactness of S.

We first recall in Section 1 the notion of normal basis and Conrad’s
g-digit principle. In Section 2, we define extension by (g,)-digit expan-
sion. Then, in Section 3, we generalize Conrad’s ¢-digit principle to a
(gn)-digit principle (Theorem 3.6), which may be applied in particular to
Amice’s regular compact subsets [1]. In Section 4, we end with several ex-
amples.

1. The ¢-digit principle. Let (K, |- |) be a complete valued non-
archimedean field. Denote by V the corresponding valuation ring, 9 its
maximal ideal and k its residue field. Let (E, || -||) be an ultrametric Banach
space over K.

DEFINITION 1.1. A sequence (ey,)n>0 of elements of E is called a normal
basis of E (orthonormal basis in [6]) if

(1) each x € E has a representation as * = ), -, Zne, Where z, € K
and lim,_ o z, = 0,
(2) in the representation x = 3 - znen, we have [|z| = sup,, |z,|.
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Let Ey = {z € E : ||z|| < 1}. Then Ez/IMEy is a k-vector space. For
en € Ey, €, denotes the reduction of e,, modulo 9 Ey. The following propo-
sition allows one to characterize normal bases in purely algebraic terms.

PROPOSITION 1.2 ([2, Prop. 3.1.5]). Assume that the valuation is dis-
crete and that ||E|| = |K|. A sequence (en)nen of elements of E is a normal
basis of E if and only if e, € Ey for every n > 0 and (€,)nen is a k-basis
Of Eo/mEo.

Assuming that k is finite with cardinality ¢ (hence K is a local field),
K. Conrad [6] uses extension by ¢-digit expansion to construct some normal
bases of the ring C(V, K'). We first recall this notion.

DEFINITION 1.3. Let (ey)n>0 be a sequence of elements of C(V, V). We
construct another sequence of functions (f;) in the following way:

if i=iy+ig+---+iq¢" (0<ij<gq) then fi:eéo~--ef,’“.
The sequence (f;) is called the extension of (e,) by q-digit expansion.

In characteristic p, V' contains a field which is isomorphic to k, and so
it may be viewed as a k-vector space. In this case, the ¢g-digit principle has
the following form:

ProprosITION 1.4 (Digit principle in characteristic p [6, Theorem 2]).
If the sequence (e,) is a normal basis of the ring of continuous k-linear
functions from V' to K, then the extension of (e,) by q-digit expansion is a

normal basis of C(V, K).

As noted by K. Conrad, in characteristic 0 there is no analogue of the
subspace of linear functions. Nevertheless, there is another version that holds
in any characteristic:

ProposITION 1.5 (Digit principle in any characteristic [6, Theorem 3]).
Let (en)n>0 be a sequence of elements of C(V,V') such that the reductions
& € C(V,k) are constant on cosets modulo ML and the map

Gn VI = k", v (eo(z),...,En—1(2)),

is bijective. Then the extension of (e,) by q-digit expansion is a normal basis
of C(V,K).

To generalize the g-digit principle to subsets S, the map ¢, will be re-
quired to be only injective, as S/9" does not necessarily contain ¢" elements.

2. The (q,)-digit expansion. Hypotheses and notation. Let V be a
discrete valuation domain, with valuation v. Denote by K the quotient field
of V', by 9 the maximal ideal of V', by 7 a generator of 9 (with v(mw) = 1),
by k = V/9 the residue field and by ¢ the cardinality (finite or not) of k.
Let S be an infinite subset of V.
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We denote by 17, K , and S the completions of V', K and S with respect
to the M-adic topology. We still denote by v the extension of v to K. For
every n > 0, we denote by S/9" the set formed by the classes of S modulo
™ and we define g, to be the cardinality of S/9M™ (g0 = 1).

We assume that S is precompact, that is, S is compact, and we know
that this is equivalent to the fact that all the g,’s are finite.

Of course, (g,) is a non-decreasing and non-stationary sequence. Now,
we define the (g,)-digit expansion of a positive integer m:

PROPOSITION 2.1. Let (gn)n>0 be a non-decreasing and non-stationary
sequence of integers, with qo = 1. For every m > 0, there exists a unique
representation of m as

m = mo+miqi + -+ Mgy

where r 1s such that
Gr <m < gry1

and where, for every j in [1,r],
mj >0 and mo+miq + - +m;q < qji1.
This representation is called the (gy)-digit expansion of m.
Proof. Suppose there is such a representation of m. For 0 < k <7, let
N =mg+ miqr + -+ + miqy.
Hence, for 1 < k < r, one has
Nip = Ni_1+mpqr, with Np_1 < qi.

So, my, is the quotient of the division of Ny by qr, and Ni_q is the rest.
Consequently, the sequence (my) is uniquely determined.
Conversely, let us prove that such a sequence satisfies our hypothesis.

Consider the sequences N, N,_1,...,Ng and m,,m,_1,...,mg defined by
induction in the following way:

N, =m,

mi = [Nk/qk] for0<k<r,

N1 =N —mpqe forl1 <k<r.

By definition of r, m, = [m/q,] # 0. At each step (1 < k < r), one has
Ni_1 < qr and m = Np_1 +mpqr + - - - + m,q,. Indeed,
T T
> mug = (Ni— Ni-1) =m— Nj_1.
1=k I=k
Hence,

N,
0] = No.

m = No+miqq + - +myq., my= [q
0



222 S. Evrard

Finally, m =) _;_,miqx and, for 0 <k <r,
mo +miqr + -+ Mg = m — (Mpp1Gryr + - +Mrqr) = N < ggoy1- w
REMARKS 2.2.

(1) Let m = mo + miq1 + - - - + myq, be the (g,)-digit expansion of m.
Then, for 0 < 57 < r, one has:

o 0.<m; < gji1/g),
e in particular, if ¢; = ¢j41 then m; = 0.

(2) The condition 0 < m; < gj+1/¢; is not sufficient to define the m;’s.
If we consider the sequence ¢, = 2n + 1 of odd integers, the (g¢,)-
digit expansion of m = 5 is m = 5 = ¢o, but one can also write
m=2+3=2q+ ¢ with mg=2<q1/q0 = 3.

(3) On the contrary, the condition 0 < m; < ¢j41/q; does characterize
the (g, )-digit expansion when ¢; divides gj41. Indeed, if a; = gj41/¢;
is an integer and 0 < m; < «j, then my < ¢1, and by induction,
(mo+maqit- - +mj_1q-1)+m;q; < g+ (a; —1)g; = a;q; = gjta.

(4) If the sequence (gn) is associated to a subset S (that is, ¢, =
card(S/9")), then we have ¢, < gnt1 < qqn. As already said, (g,) is
a non-decreasing and non-stationary sequence. Note that it need not
be strictly increasing and g, does not necessarily divide ¢,4+1, as
shown by V' = Zs and S = 125Z5 U {25 + 125Z5} U {1 + 125Z5}.
One has: S/(5) = {0,1} and ¢1 = 2; S/(25) = {0,1} and ¢2 = 2;
S/(125) = {0,1,25} and ¢3 = 3; g2 = 15 and, more generally,
gn =3 - 5773 for n > 3.

DEFINITION 2.3. Let (e,)n>0 be a sequence of elements of a commutative
monoid (with an identity element). The extension of the sequence (en)n>0
by (qn)-digit expansion is the following sequence (fp,)m>0:

fm =00 x e x - x el
where m = mgy +miq1 + - - - + myq, is the (g,)-digit expansion of m.

REMARKS 2.4.

(1) fo=1.

(2) If there exists j such that ¢; = gj41, then the term e; of the sequence
(en) never appears in any element of the sequence (fy,).

(3) For ¢ <m < ¢r41, if m = m,q, + N, with N, < ¢, then

Jfm = e;fbr X [N, -

We now try to find conditions on the subset S and on the sequence

(en)n>0 of elements of C(S, V') for the sequence ( fr,)m>0 to be a normal basis

of C (§ K ). We first assume that the sequence (e,)n>0 satisfies a condition
similar to that considered by K. Conrad. More precisely, let (ey)n>0 be a
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sequence of elements of C (§ , Y7) such that, for each n > 0, the reduction
e, of e, in C(§, k) is constant on cosets of S modulo 9™ 1. Denote by
(fm)m>0 the extension of (e,)n>0 by (¢n)-digit expansion. It is obvious that,
for 0 < m < g, the reductions f,, in C (§ ,k) are constant on cosets of S
modulo M". In order to determine when this sequence is a normal basis of
C(S, K), we use the following lemma.

LEMMA 2.5 ([8]). Let (gn)n>0 be a sequence of C(S,V) such that, for0<
m < qr, the reductions g,, in C(S, k) are constant on cosets of S modulo IMM".
The following assertions are equivalent:

(1) (gn) is a normal basis of C(S, K),

(2) (g,) is a k-linear basis of C(S, k),

(3) for each integer v > 1, (G,,)o<m<q, S @ k-basis of F(S/OM", k), the
space of functions from S/9M" to k,

(4) for each n, the g,,’s (0 < m < n) are k-linearly independent.

Proof. Proposition 1.2 gives the equivalence between assertions (1)
and (2). The equivalence between (3) and (4) follows from the dimension
of the vector space F(S/9M", k). Obviously, (2) implies (4). Finally, (3) im-
plies (2), as a continuous function from S to k is locally constant and can
be viewed as a map from S/9M" to k for some 7. w

PROPOSITION 2.6. Let (gn)n>0 be a sequence of functions such that, for

every 0 < m < g, the reductions g,, in C(S, k) are constant on cosets of S
modulo IMM". For r > 1, let G, be the following matrix:

Gr = (g;(ai))o<ij<qr,
where (a;)o<i<q, denotes a complete set of residues of S modulo M". Then:

(1) det G, does not depend on the a;’s (except for the sign).
(2) The g,,’s (0 < m < @) are k-linearly independent if and only if
det G, # 0.

Proof. (1) If (b;)o<i<q, is another complete set of residues of S mod-
ulo M, there exists a permutation o such that b; = a,; (mod IM").
As the g,’s are constant on cosets of S modulo 9", the sets of rows of
(9;(ai))o<i,j<q, and of (g;(bi))o<i j<q. are permutations of each other.

(2) Suppose that the A, € k (0 < m < ¢,) are such that

AoGo + AG1 + -+ Ag—1G4,-1 = 0.

Evaluating the g,,’s (0 < m < g,) on the ¢, elements of S/9M", we obtain
a system of ¢, equations in the g, unknowns \,,. This system has a unique
solution if and only if det G, # 0. =
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3. Normal basis obtained by the (g,)-digit principle. We still
maintain the hypotheses and notation introduced in Section 2 and we com-
plete them by the following;:

Hypotheses and notation. Let r € N be fixed and denote by (a;)o<i<g,,, @
complete set of residues of S modulo M"+1 such that (a;)o<i<g, is a complete
set of residues of S modulo MM". For 0 < i < g, let

vi = card{j : 0 < j < gr4+1, aj = a; (mod M")}.
Moreover, we order the a;’s (0 <i < g,) so that

Y = 2 Yg—1 = L.

Let (en)n>0 be a sequence of elements of C(g, 17) such that, for each n > 0,
the reduction €, of e, in C(S,k) is constant on cosets of S modulo 9"+
Denote by (fm)m>0 the extension of (e;,)n>0 by (¢n)-digit expansion. Clearly,
we have:

LEMMA 3.1. There are exactly vq.—1 complete sets of residues of S mod-
ulo A" in a complete set of residues of S/IM" L. Moreover, for all 0 < i,j
< gr4+1 such that a; = a; (mod IM"), one has:

(1) Vk <r,e(a;) = ex(ay),

(2) Vk < qr, fr(ai) = fr(ay).

3.1. A necessary condition

LEMMA 3.2. Suppose that there exists v such that g, divides gr11 and
write ¢r41 = oayqp. If the fr,’s (0 < m < gr41) are k-linearly independent,
then

Yo === Y-l = O = Qg1 /G
Proof. Assume that o > . First, note that ¢, < ¢,1 since, if ¢, = ¢r41,

one has v; = 1 = a, for every i. In the matrix G,11 = (f;(a;))o<ij<g1, We
arrange the columns into the following sequence:

Ler, .., e0m ™ fro et i fget T
We denote by C; ; the column corresponding to fiéf; and, for 1 <1 < ¢, and
0 < j < a,, we use the following elementary transformations on columns:
Cij — Cij — [i(ao)Co,;.
For 1 <[ < gp41, the term in the column Cj ; and the row L; becomes
Fila)el(ar) — fi(ao)el(a).
It follows from Lemma 3.1 that, whenever [ (0 < [ < gy4+1) is such that

a; = ap (mod 9M™), then f;(ap) = fi(a;) and, after permuting the rows of
the matrix, the first 79 new rows (corresponding to such an a;) end with
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zeros. Consequently, the new matrix is of the form
A 0
| where A € M,, (k),
B | C
and, as 79 > ay, the first line of C' is null. Finally,
detGyy1 =det A-detC'=0. n

This necessary condition defines a class of subsets of V' called Legendre
subsets in [7]. Before stating our main theorem, we recall some properties
of these sets.

3.2. Legendre sets

DEFINITION 3.3. The subset S is called a Legendre set if, for every r

in N, each class of S modulo 9" contains the same number of elements
modulo 9"+,

If S is a Legendre set then, for every r > 0, g, divides g,41 and for every
0 <i < g, one has

Vi = qT+1/qT"

Such subsets have been studied by Y. Amice [1] as regular compact
subsets in the case when K is a local field and S is compact, and by Y. Fares
and the author [7] in a more general setting. Let us recall a property of
the Legendre sets that we will use in the applications. We first recall the
following definitions:

DEFINITION 3.4. Let (an)n>0 be a sequence of elements of S.

(1) The sequence is called a v-ordering of S (see [3]) when, for every

n > 0,
o( T t0e-o0) = o IT (o).

0<k<n 0<k<n

(2) The sequence is called a very well distributed sequence of S (see [1])
if, for every 7 > 0 and every A € N, (axg,- - -, @(r+1)q,—1) 1S @ com-
plete set of residues of S/9M".

We then have a very nice property:
ProproOSITION 3.5 ([7]).

o A wvery well distributed sequence of a subset is a v-ordering.
e Fvery v-ordering of a Legendre set is a very well distributed sequence.

Here are some examples of Legendre sets:
ExaAMPLE 1. Assume that the residue field k is finite of cardinality q.

(1) V is a Legendre set and ¢, = qgn—1 = ¢".
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(2) Let S = U;=1 b; + M, where by, ..., b, are not congruent modulo 9.
Then S is a Legendre set and g, = r¢" .
et u € e such that v(u) = 0. en =’ :nc 1S a
3) L Vb h th 0. Then S " N} i

Legendre set.
We are ready to state our theorem.
3.3. Eatension of Conrad’s q-digit principle

THEOREM 3.6. Let V be a discrete valuation domain with maximal ideal
M and residue field k = V/IN. Let S be a precompact subset of V and,
for n > 0, let q, = card(S/IM"). Assume that, for every r, q, divides
Gra1- Let (&) be a sequence of elements of C(S,V) such that the reductions
€ € C(S, k) are constant on cosets of S modulo M1 and suppose that, for
every r > 0, the following map is injective:

b S/ S BT n s (Bo(n), .., 80 (T)).

Then the extension (fm)m>0 of (én)n>0 by (qn)-digit expansion is a normal
basis of C(S, K) if and only if S is a Legendre set.

Proof. The necessity follows from Lemmas 2.5 and 3.2. Using Proposi-
tion 2.6, we now show that the condition is sufficient. We prove by induction
on r that det G, # 0. For = 0, one has

det G1 = V(éo(ao), . ,éo(aqlfl))

where V() denotes the Vandermonde determinant. By hypothesis, ¢q is
injective, hence det G1 # 0. Now, we suppose that det G, # 0 and we show
that det G,4+1 # 0. First, as there are exactly «, complete sets of residues
of S modulo M" in (a;)o<i<gq., we can assume that for 0 < i < ¢, and
0<I<ay,

Qitlg, = a; (mod IM").

Then we compute det G141 by ordering each row L,y ; in the matrix as
follows:

Ll:(f07"'7fq1—1):(17607" gl 1)

and, for r > 1,

Lesy = (Lp, &Ly, ..., 2077 Ly).
So we can write

I, J ... Jyt

K 0 G, 0 0
ar—1

Jo
GT-‘rl: . . . 0 0 )
: : : 0 0 G,
Iy Jop-1 .- Jg‘;ll
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with, for 0 <1 < ay,
er(ay,) 0 0
Ji = 0 0
0 0 e (a@s1)g—1)

We now compute the determinant of B, noticing that the matrices J; and
Jj commute:

det B=V(Jo,.... Jo,-1) = [ det(J;—J).

0<i<j<an
We then obtain
qr—1
det Gyyy = det G2 - [ V(@r(a),er(ag 1), -+ er(aga, 1y, 41))-
1=0

By induction hypothesis, det G, # 0. Moreover, as
€j(a;) = €j(ag+i) for j<rand0<I< ay,
the injectivity of ¢,41 implies that
er(aitjq,) # €r(aivig,) for 0<j<l<oy.
Hence,

V(ér(ai),ér(aquri), . 7ér(a(ar—1)qr+i)) 7& 0 for1<i<g.m

4. Applications

4.1. Ezamples of normal bases obtained by the (qy,)-digit principle. For
the following examples, the hypotheses of Theorem 3.6 are clearly satisfied.

PROPOSITION 4.1. Let S be a Legendre set, and denote by F a complete
set of residues of V- modulo M. Fach x in S has a unique representation of
the form v = xo +x1m + - + 7! + - with x; € F'. For each j > 0, let

wj:S—=V, xmuxj.
Then (§2,,), the extension of (wy) by (gn)-digit expansion, is a normal basis
of C(S,K).

The second example uses hyperdifferential operators as defined by Voloch

in [9]: We suppose here that the characteristic of V is p > 0, so we can

consider V' as a k-vector space. He defines a sequence of k-linear maps ¢, by
the following condition:

VreN,VmeN, 6(m) = <m> T
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PROPOSITION 4.2. Let S be a Legendre set of V. Then the extension
(Ap) of (6r) by (qn)-digit expansion is a normal basis of C(S,K).

4.2. A polynomial example. We end with a polynomial example. We
already know ([5] or [4]) that, if S is a subset in a discrete valuation ring V'
and (an)n>0 is a v-ordering of S, then the sequence of polynomials

w(X)= ] X —a

ar — a;
o0<i<r v

is a normal basis of C(S, K). Here is another example:

PROPOSITION 4.3. Let S be a Legendre set and (an)n>0 be a v-ordering
of S. Let (e,) be defined by

coX)=X, eX)= ]

a
0<i<g, I"

X—ai

for r > 1.

Then the extension (fm) of (er) by (qn)-digit expansion is a normal basis of
C(S,K).

Proof. Of course, e, is an integer-valued polynomial with deg(e,) = ¢.
First, we prove that for every r, €. € C(S,k) is constant on cosets of S
modulo 9" 1. As recalled in Proposition 3.5, every v-ordering of a Legendre

set S is very well distributed in S. So, for each x in S, there exists a unique
s such that 0 < s < ¢, 41 and = = a5 (mod M"*1). We have to prove that

er(x) =er(as).

First suppose that s > ¢,.. Then

Vie{0,...,q—1), L% _q,27%

as — Gy as — Gy

Asv(x —as) >r+1and v(as — a;) < r+ 1, we have

T — Qg T — a;

=0 (mod M) and H =1 (mod M).

g — a;
0<i<gr—1 ° !

as — G4

To conclude, write

er(x) =er(as) - H S

as — a;
0<i<gr ° g

Then e, (x) = e,(as) (mod M).
Suppose now that s < ¢,. Then €,(as) = 0. If we had

v( H (:c—ai)>:fu( H (aqr_ai)>’

0<i<gr 0<i<gr
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then = could replace a4, in a v-ordering. Meanwhile, we could construct a
new v-ordering

ag, -+ 5 g1, T, b1y -5 bgpy—1,- - -

Since a v-ordering must be a very well distributed sequence,

ag,...,0q,.-1,7, bqr+1> ey bqr+1—1

must be a complete set of residues modulo 9" 1. This is impossible, since
v(xr —as) >r+1. So

v( H (x — ai)) > v( H (ag, — ai)) and e.(x)=0.
0<i<gr 0<i<gr

We now prove by induction on r that the ¢,’s are injective. This is
equivalent to proving that

Py (z) = Dr(y) = x =y (mod M),

where
@, : 8 =Kk e (e(x),...,e(2)).

Since €9(X) = X, clearly ep(z) = €y(y) implies x = y (mod M), so ¢g is
injective. Now suppose that ¢,_1 is injective. If  Z y (mod 9M"), it follows
by induction that @,_;(x) # @,_1(y) and then &, (x) # @,(y). Thus we may
assume that = and y are both in the class of some a; (j < ¢,) modulo 9":

r=a;+br" and y=a;+cn”, withbceV.

Considering the classes of b and ¢ in S/9M, we show that b # ¢ implies
() # er(y). B

1) We first note that, for b # 0, €.(x) # 0. Indeed, ay,...,aq4.—1,2 are
then in distinct classes modulo 91"+, They thus form the beginning of a
very well distributed sequence, and hence this sequence is a v-ordering. Then

v( H (aqr—ai)>:v< H (x—ai)>.

0<i<gr 0<i<gr
Consequently, v(e,(x)) = 0, and &,(x) # 0.

If ¢ = 0, as &, is constant on cosets modulo M1, we have &,.(y) =
e-(a;) = 0, and so e.(y) # &-(z). Similarly, if b = 0 and ¢ # 0, we have
again é,(y) = 0 and €,(x) # 0.

2) Now we suppose that b # 0 and ¢ # 0. Then e,(x) # 0 and e,(y) # 0.
We have

er(r)  x—aj xr — ag

) YT YT

For k # j,
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Asv(x —y) =r and v(y — ai) < r, it follows that yx:ai is in V and
Ty (mod ).
Yy —ag

On the other hand,

T — a; _b

y—a; ¢
er(x)

As V is local and ¢ & 9, it follows that g is an element of V, thus so is - W)
and .
er(@) _ b (mod ).
€r (y) c
Now, b # ¢ implies g # 1, hence g:g; # 1, that is, () #&,(y). =
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