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Small value estimates for the multiplicative group
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Damien Roy (Ottawa)

1. Introduction. For applications to transcendental number theory, it
would be desirable to extend the actual criteria for algebraic independence
so that they deal more efficiently with polynomials taking small values on
large subsets of a finitely generated subgroup of an algebraic group. At
the moment, one could say that these criteria concentrate on the smallest
non-zero value of each polynomial on such sets, regardless of the global
distribution of values. A good illustration of the need for refined criteria,
and our main motivation for this quest, is a conjectural small value estimate
for the algebraic group Ga × Gm which is proposed in [6] and shown to be
equivalent to Schanuel’s conjecture. In a preceding paper [7], we explored the
case of the additive group Ga. Here, we turn to the multiplicative group Gm.
Although this is again an algebraic group of dimension one, we will see that
it presents new challenges as roots of unity come into play.

Let C× denote the multiplicative group of non-zero complex numbers,
let m be a positive integer, and let ξ1, . . . , ξm ∈ C×. An application of
Dirichlet’s box principle shows that, for any non-negative real numbers β,
σ, τ , ν with

(1) mσ + τ < 1, β > (m+ 1)σ + τ, ν < 1 + β −mσ − τ,

and for any positive integer n which is sufficiently large in terms of the
preceding data, there exists a non-zero polynomial P ∈ Z[T ] of degree at
most n and height at most exp(nβ) satisfying |P [j](ξi11 · · · ξimm )| < exp(−nν)
for each choice of integers i1, . . . , im and j with 0 ≤ i1, . . . , im ≤ nσ and
0 ≤ j < nτ . Here the height of P , denoted H(P ), is defined as the maximum
of the absolute values of its coefficients divided by their greatest common
divisor, and the expression P [j] stands for the jth divided derivative of P
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(see §2). The goal of this paper is to establish the following partial converse
to this statement.

Theorem 1.1. Let m be a positive integer , let ξ1, . . . , ξm be non-zero
multiplicatively independent complex numbers which generate over Q a field
of transcendence degree one, and let β, σ, τ, ν ∈ R with

σ ≥ 0, τ ≥ 0,
5m+ 1
m+ 5

σ + τ < 1, β ≥ 1 + σ,(2)

ν >


1 + β − 3m− 1

m+ 5
σ − τ if m ≥ 2,

1 + β − 5
11
σ − τ if m = 1.

(3)

Then, for infinitely many positive integers n, there exists no non-zero poly-
nomial P ∈ Z[T ] with deg(P ) ≤ n and H(P ) ≤ exp(nβ) such that

(4) max{|P [j](ξi11 · · · ξ
im
m )| ; 0 ≤ i1, . . . , im ≤ nσ, 0 ≤ j < nτ} < e−n

ν
.

When m = 1 and σ = τ = 0, the above result reduces to the well-
known Gel’fond transcendence criterion. So, for m = 1, it provides a gain
of (5/11)σ + τ in the estimate for ν compared to Gel’fond’s criterion. For
m ≥ 2, the gain is ((3m−1)/(m+5))σ+τ . On the other hand, the conditions
(1) of application of Dirichlet’s box principle put an upper bound on the
gain that can be achieved. This suggests the possibility that Theorem 1.1
remains true for any integer m ≥ 1 with the condition on ν relaxed to
ν > 1 + β −mσ − τ , when mσ + τ < 1, but we have not been able to prove
this. Note that, when σ = 0, Theorem 1.1 deals with finitely many points
and then it follows from Proposition 1 of [5]. The novelty here is that we
deal with large numbers of points.

The proof of the above result is involved but the main underlying idea
is simple and is inspired by techniques from zero estimates. If a polynomial
P ∈ Z[T ] takes small values at all points of the form ξa with ξ in a subset E
of C× and a in a subset A of N∗, then the polynomials P (T a) with a ∈ A take
small values at all points of E. Applying Corollary 3.2 of [7], one deduces
that the product

∏
ξ∈E |Q(ξ)| is small, where Q(T ) denotes the greatest

common divisor in Z[T ] of the polynomials P (T a) with a ∈ A. However,
for this to be useful, we also need good upper bounds for the degree and
height of Q(T ). The precise result that we use for this purpose is stated and
proved in §7. For simplicity, we just mention here the following consequence
of it, where C×tor stands for the group of roots of unity, the torsion part
of C×.

Theorem 1.2. Let β, δ, µ ∈ R with 0 < δ, 0 < µ < 1 and 1+µ < β. Let n
be a positive integer , let A be the set of all prime numbers p with p ≤ nµ, let
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P be a non-zero polynomial of Z[T ] of degree at most n and height at most
exp(nβ) with no root in C×tor ∪ {0}, and let Q ∈ Z[T ] be a greatest common
divisor of the polynomials P (T a) with a ∈ A. If n is sufficiently large as a
function of β, δ and µ, then deg(Q) ≤ n1−µ+δ and H(Q) ≤ exp(nβ−2µ+δ).

This result is the multiplicative analog of Theorem 1.2 of [7]. To achieve
such non-trivial estimates on the degree and height of Q, the requirement
that P has no root in C×tor ∪ {0} is necessary. For example, if P (T ) is of the
form T r(T s−1) for some integers r ≥ 0 and s ≥ 1, then P (T ) divides P (T a)
for any integer a ≥ 1, and so P (T ) itself is the gcd of the latter collection
of polynomials.

In practice, we start with a polynomial P satisfying (4) and we take
for E a suitable subset of the subgroup of C× generated by ξ1, . . . , ξm. In
order to get appropriate degree and height estimates for the corresponding
polynomial Q, we first need to remove from P a suitable cyclotomic factor.
General estimates for this are given in §3. They require a lower bound for
the absolute value of the cyclotomic factor on the set E. This is easy to
achieve if one assumes that ξ1, . . . , ξm do not all have absolute value one,
but the general case requires more elaborate arguments which occupy all
of §4 and §5 for the case m ≥ 2, and most of §9 in the case m = 1. The
proof of Theorem 1.1 is completed in §8 for m ≥ 2 and in §11 for m = 1.
In both cases, we end up with a product

∏
ξ∈E |Q(ξ)| being small and we

need to choose ξ ∈ E such that |Q(ξ)| is small in order to be able to apply
a standard transcendence criterion. The refined estimate that we obtain in
the case m = 1 follows by observing that these values |Q(ξ)| cannot be
uniformly small. For this we use a combinatorial result proved in §10 as an
extension of Proposition 9.1 of [7].

2. Notation and preliminaries. Throughout this paper, the symbols
i, j, k are restricted to integers. We denote by C× the multiplicative group
of non-zero complex numbers, by C×tor its torsion subgroup, by N the set of
non-negative integers, and by N∗ the set of positive integers. We also denote
by |E| the cardinality of an arbitrary set E, and by φ the Euler totient
function. A cyclotomic polynomial is a monic polynomial of Z[T ] whose
roots lie in C×tor. For any integer j ≥ 0, we define the jth divided derivative
of a polynomial P ∈ C[T ] by P [j] = (j!)−1P (j) where P (j) = djP/dT j

is the usual jth derivative of P . Finally, the length L(P ) of a polynomial
P ∈ C[T1, . . . , Tm] is the sum of the absolute values of its coefficients.

Let K be a number field and let d = [K : Q]. For each place v of K,
we normalize the corresponding v-adic absolute value | |v of K so that it
extends the usual absolute value of Q if v is Archimedean, or the usual p-adic
absolute value of Q with |p|v = p−1 if v lies above a prime number p. We
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also denote by Kv the completion of K at v, and by dv its local degree. For
any polynomial P ∈ Kv[T1, . . . , Tm], we define the v-adic norm ‖P‖v of P
as the largest v-adic absolute value of its coefficients. Finally, we define the
height H(P ) of any polynomial P ∈ K[T1, . . . , Tm] by

H(P ) =
∏
v

‖P‖dv/dv

where the product extends over all places v of K. This height is said to
be homogeneous because it satisfies H(aP ) = H(P ) for any non-zero ele-
ment a of K, and absolute as it is independent of the choice of the number
field K containing the coefficients of P . It therefore extends to a height on
Q[T1, . . . , Tm] where Q stands for the algebraic closure of Q. In particular,
the height of a non-zero polynomial P ∈ Z[T1, . . . , Tm] is simply given by
H(P ) = ‖P‖/cont(P ) where ‖P‖ = ‖P‖∞ is the maximum of the absolute
values of its coefficients (we also use the latter notation for polynomials with
complex coefficients), and where the content cont(P ) of P is the gcd of its
coefficients. We say that a non-zero polynomial of Z[T1, . . . , Tm] is primitive
if its content is 1, and that it is primary if it is a power of an irreducible ele-
ment of Z[T1, . . . , Tm]. This implies that a non-constant primary polynomial
of Z[T1, . . . , Tm] is primitive.

In the present study, we frequently use the well-known fact that for
one-variable polynomials P1, . . . , Ps ∈ Q[T ] with product P = P1 · · ·Ps, we
have

(5) e−deg(P )H(P ) ≤ H(P1) · · ·H(Ps) ≤ edeg(P )H(P ).

For a single point x ∈ Q, we use the same notation H(x) to denote the
inhomogeneous height of x, that is, the height of the polynomial T − x. For
x ∈ K, it is given by the formula H(x) =

∏
max{1, |x|v}dv/d where the

product runs through all places v of K. As the field K can be chosen to be
arbitrarily large, this shows that we have H(xm) = H(x)|m| for any m ∈ Z
and any non-zero x ∈ Q. From (5), we deduce that, if x1, . . . , xs ∈ Q are all
the roots of a non-zero polynomial P ∈ Q[T ] of degree s, listed with their
multiplicities, then

(6) e−sH(P ) ≤ H(x1) · · ·H(xs) ≤ esH(P ).

The following lemma formalizes the standard procedure of “lineariza-
tion” while handling multiplicities at the same time (cf. [7, Lemma 2.1]).

Lemma 2.1. Let ϕ : Z[T ] → [0,∞) be a multiplicative function, let δ, d
and Y be positive real numbers with δ < 1 and ed ≤ Y , and let t ∈ N∗.
Suppose that there exists a non-zero polynomial Q1 ∈ Z[T ] of degree at
most d and height at most Y for which Q = gcd{Q[j]

1 (T ) ; 0 ≤ j < t} satisfies
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ϕ(Q) ≤ δ. Then there exists a primary polynomial S ∈ Z[T ] with

deg(S) ≤ d/t, H(S) ≤ Y 2/t and ϕ(S) ≤ δ1/(6t).

By multiplicative, we mean that ϕ satisfies ϕ(FG) = ϕ(F )ϕ(G) for any
F,G ∈ Z[T ]. In our applications later, ϕ takes the form ϕ(P ) =

∏
ξ∈E |P (ξ)|

for some fixed finite set E of complex numbers.

Proof. LetQ = R1 · · ·Rs be a factorization ofQ into irreducible elements
of Z[T ]. Since Q divides Q1, we find

s∏
i=1

(Y deg(Ri)H(Ri)d) ≤ Y deg(Q1)(edeg(Q1)H(Q1))d ≤ Y 3d.

Therefore, upon writing δ = Y −3dη for an appropriate value of η > 0, we
obtain

s∏
i=1

ϕ(Ri) = ϕ(Q) ≤ Y −3dη ≤
s∏
i=1

(Y deg(Ri)H(Ri)d)−η.

So, there is at least one index i with 1 ≤ i ≤ s such that the polynomial
R = Ri satisfies

(7) ϕ(R) ≤ (Y deg(R)H(R)d)−η.

Since R divides Q[j]
1 for j = 0, . . . , t−1, the polynomial Q1 is divisible by Rt.

This implies that deg(R) ≤ d/t and H(R)t ≤ edH(Q1) ≤ Y 2. Let k ≥ 1 be
the largest integer such that the polynomial S = Rk satisfies deg(S) ≤ d/t
and H(S) ≤ Y 2/t (such an integer exists since R 6= ±1). We consider two
cases. If deg(S) ≥ d/(2t), then (7) leads to ϕ(S) ≤ Y −η deg(S) ≤ Y −ηd/(2t)

= δ1/(6t). On the other hand, if deg(S) < d/(2t), we have deg(R2k) ≤ d/t and
so H(R2k) ≥ Y 2/t. As H(R2k) ≤ edeg(R2k)H(R)2k ≤ Y 1/tH(R)2k, we deduce
that H(R)k ≥ Y 1/(2t) and then (7) leads to ϕ(S) ≤ H(R)−ηkd ≤ Y −ηd/(2t)

= δ1/(6t), as in the previous case.

For any finite subset E of C with at least two points, we define

(8) ∆E =
∏
ξ′ 6=ξ
|ξ′ − ξ|1/2

where the product is taken over all ordered pairs (ξ, ξ′) of distinct elements
of E. When E consists of one point, we put ∆E = 1. The following result is
a reformulation of Corollary 3.2 of [7] and our main tool to study families
of polynomials taking small values on such a set E.

Proposition 2.2. Let E be a non-empty finite set of complex numbers,
let n, t ∈ N∗ with n ≥ t|E|, let P1, . . . , Pr ∈ Z[T ] be a finite sequence of r ≥ 2
non-zero polynomials of degree at most n, and let Q ∈ Z[T ] be their greatest
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common divisor. Then

(9)
∏
ξ∈E

(
|Q(ξ)|

cont(Q)

)t
≤ c1( max

1≤i≤r
H(Pi))2n

∏
ξ∈E

( max
1≤i≤r
0≤j<t

|P [j]
i (ξ)|)t,

with c1 = e10n2
(2 + cE)4nt|E|∆−t

2

E , where cE = maxξ∈E |ξ| and ∆E is defined
by (8).

We conclude this section by stating the version of Gel’fond’s criterion on
which all our results ultimately rely. It is mainly due to Brownawell [1] and
Waldschmidt [9] (see the comments after Lemma 2.2 of [7] for more details).

Lemma 2.3. Let α, β and ε be positive real numbers with β ≥ α, and
let ξ1, . . . , ξm be a finite sequence of complex numbers which generate a field
of transcendence degree one over Q. For infinitely many integers n, there
exists no polynomial P ∈ Z[T1, . . . , Tm] of degree at most nα and height at
most exp(nβ) satisfying

0 < |P (ξ1, . . . , ξm)| ≤ exp(−nα+β+ε).

3. The first step. The goal of this section is to establish the following
result which represents the first step in the proof of our main theorem.

Proposition 3.1. Let M,n, t ∈ N∗ and X ∈ R with 1 ≤ t ≤ n. Let A
be a non-empty subset of {1, . . . ,M}, and let E be a non-empty finite subset
of C× with E∩C×tor = ∅. Finally , let P ∈ Z[T ] be a non-zero polynomial with
deg(P ) ≤ n and H(P ) ≤ X, written as a product P (T ) = P0(T )T rΦ(T )t

where P0 ∈ Z[T ], r ∈ N and Φ ∈ Z[T ], with Φ cyclotomic. Put

cE = max{max(|ξ|, |ξ|−1) ; ξ ∈ E},
δΦ = min{|Φ(ξa)| ; a ∈ A, ξ ∈ E},
δP = max{|P [j](ξa)| ; a ∈ A, ξ ∈ E, 0 ≤ j < 2t− 1},

and assume that

(10) t|E| ≤Mn ≤ 1
10

logX and (2 + cE)20t|E| ≤ X.

Then the polynomial Q(T ) = gcd{P [j]
0 (T a) ; a ∈ A, 0 ≤ j < t} (computed in

Z[T ]) satisfies ∏
ξ∈E

|Q(ξ)|
cont(Q)

≤ X5Mn/t∆−tE

(
δP

min(1, δΦ)3t

)|E|
.

In practice, given P , we choose r to be the largest non-negative integer
such that T r divides P (T ), and Φ(T ) to be the cyclotomic polynomial of
Z[T ] of largest degree such that Φ(T )t divides P (T ). Then Q(0) 6= 0 and no
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root of Q is a root of unity. As we saw in §1, such conditions are required
in order to get good estimates on the degree and height of Q.

To prove the above result, we will apply Proposition 2.2 to the family
of polynomials P [j]

0 (T a) with a ∈ A and 0 ≤ j < t. In order to estimate the
absolute value of their derivatives at the elements of E, we first establish
three lemmas.

Lemma 3.2. Let Φ ∈ C[T ], t ∈ N∗ and ξ ∈ C with Φ(ξ) 6= 0. For any
integer j ≥ 0, we have

|(Φ−t)[j](ξ)| ≤ 1
j!

((t+ 2j) deg(Φ)‖Φ‖max(1, |ξ|)deg(Φ))j |Φ(ξ)|−t−j .

Proof. For each j ≥ 0, the jth derivative of Φ−t can be written in the
form (Φ−t)(j) = AjΦ

−t−j where Aj is a polynomial of C[T ] satisfying A0 = 1
and the recurrence relation Aj = A′j−1Φ − (t + j − 1)Aj−1Φ

′ for j ≥ 1. If
j ≥ 1, this gives deg(Aj) ≤ deg(Aj−1) + deg(Φ) and by recurrence we get
deg(Aj) ≤ j deg(Φ) for each j ≥ 0. For the length of these polynomials, we
also find, for j ≥ 1,

L(Aj) ≤ L(A′j−1)‖Φ‖+ (t+ j − 1)L(Aj−1)‖Φ′‖
≤ (deg(Aj−1) + (t+ j − 1) deg(Φ))‖Φ‖L(Aj−1)
≤ (t+ 2j − 2) deg(Φ)‖Φ‖L(Aj−1),

which by recurrence gives L(Aj) ≤ ((t + 2j) deg(Φ)‖Φ‖)j . The conclusion
follows on using |Aj(ξ)| ≤ L(Aj) max(1, |ξ|)deg(Aj).

Lemma 3.3. Let n, t ∈ N∗ with 1 ≤ t ≤ n, and let P ∈ Z[T ] be a non-
zero polynomial of degree at most n. Suppose that P factors as a product
P (T ) = P0(T )T rΦ(T )t, where P0 ∈ Z[T ], r ∈ N and Φ ∈ Z[T ], with Φ
cyclotomic. Then, for each ξ ∈ C× with Φ(ξ) 6= 0, we have

max
0≤j<2t−1

|P [j]
0 (ξ)| ≤ e10n max(|ξ|, |ξ|−1)3n

min(1, |Φ(ξ)|)3t
max

0≤j<2t−1
|P [j](ξ)|.

Proof. Since P0(T ) = P (T )T−rΦ(T )−t, Leibniz’ formula for the deriva-
tive of a product gives, for each integer j ≥ 0,

(11) P
[j]
0 (T ) =

∑
j0+j1+j2=j

P [j0](T ) (T−r)[j1] (Φ(T )−t)[j2],

where the summation runs through all decompositions of j as a sum of
non-negative integers j0, j1, j2. Let ξ ∈ C× with Φ(ξ) 6= 0. As we have r ≤ n
and t ≤ n, we find, for each j = 0, 1, . . . , 2t, that

|(T−r)[j](ξ)| =
(
r + j − 1

j

)
|ξ|−r−j ≤ (3n)j

j!
max(1, |ξ|−1)3n.
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Since Φt divides P , we have deg(Φ) ≤ n/t, and since Φ is monic with all of
its roots on the unit circle, we deduce that ‖Φ‖ ≤ 2deg(Φ) ≤ 2n/t. Then, for
j = 0, 1, . . . , 2t, Lemma 3.2 gives

|(Φ−t)[j](ξ)| ≤ (5n)j

j!
22n max(1, |ξ|)2n min(1, |Φ(ξ)|)−3t.

Combining these estimates with (11), we conclude that

max
0≤j<2t−1

|P [j]
0 (ξ)| ≤ C max(|ξ|, |ξ|−1)3n min(1, |Φ(ξ)|)−3t max

0≤j<2t−1
|P [j](ξ)|,

with

C =
∑

j1,j2≥0

(3n)j1(5n)j2

j1!j2!
22n ≤ e10n.

Lemma 3.4. Let a, t ∈ N∗, P ∈ Z[T ] and F (T ) = P (T a). For each
ξ ∈ C, we have

max
0≤j<t

|F [j](ξ)| ≤ (2 + |ξ|)at max
0≤j<t

|P [j](ξa)|.

Proof. Let n = deg(P ). Expanding F and P in Taylor series around ξ
and ξa respectively, we find

an∑
j=0

F [j](ξ)T j = F (T + ξ) = P ((T + ξ)a) =
n∑
j=0

P [j](ξa)((T + ξ)a − ξa)j .

Since T t divides ((T + ξ)a− ξa)j for each j ≥ t, this shows that the polyno-
mials

t−1∑
j=0

F [j](ξ)T j and
t−1∑
j=0

P [j](ξa)((T + ξ)a − ξa)j

have the same coefficients of T j for j = 0, 1, . . . , t− 1. Therefore the length
of the first is bounded above by that of the second, and so we obtain

t−1∑
j=0

|F [j](ξ)| ≤
t−1∑
j=0

|P [j](ξa)|(1 + |ξ|)aj ≤ (2 + |ξ|)at max
0≤j<t

|P [j](ξa)|.

Proof of Proposition 3.1. Fix temporarily a choice of a ∈ A, ξ ∈ E and
k ∈ N with k < t, and put P̃ = P

[k]
0 (T a). Since P0 divides P and since

4n ≤ logX by (10), we find

(12) deg(P̃ ) ≤ a deg(P0) ≤Mn, H(P̃ ) ≤ 2nH(P0) ≤ 2nenX ≤ X3/2.

According to Lemma 3.4, we have

max
0≤j<t

|P̃ [j](ξ)| ≤ (2 + |ξ|)at max
0≤j<t

|P [k][j]
0 (ξa)|

≤ (2 + cE)Mt22t max
0≤j<2t−1

|P [j]
0 (ξa)| .
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By Lemma 3.3, we also have

max
0≤j<2t−1

|P [j]
0 (ξa)| ≤ e10n max(|ξa|, |ξa|−1)3n

min(1, |Φ(ξa)|)3t
max

0≤j<2t−1
|P [j](ξa)|

≤
e10nc3Mn

E δP
min(1, δΦ)3t

.

Combining the last two estimates and using t ≤ n ≤ Mn and e ≤ 2 + cE ,
we obtain

(13) max
0≤j<t

|P̃ [j](ξ)| ≤ (2 + cE)16MnδP
min(1, δΦ)3t

.

With the estimates (12) and (13) at hand, we are now ready to apply Propo-
sition 2.2 to the collection of polynomials P [k]

0 (T a) with a ∈ A and 0 ≤ k < t.
Using the hypotheses (10), this gives∏

ξ∈E

(
|Q(ξ)|

cont(Q)

)t

≤ e10(Mn)2(2 + cE)4(Mn)t|E|∆−t
2

E (X3/2)2Mn

(
(2 + cE)16MnδP

min(1, δΦ)3t

)t|E|
≤ X5Mn∆−t

2

E

(
δP

min(1, δΦ)3t

)t|E|
.

4. Cyclotomic polynomials. In order to apply Proposition 3.1 to the
proof of our main Theorem 1.1, we need a lower bound for the absolute value
of a cyclotomic polynomial on an appropriate subset of a finitely generated
subgroup of C×. When the generators of that subgroup do not all have
absolute value one, the required estimate is easy to derive. The reader who
wants a proof of Theorem 1.1 under this simplifying assumption can skip
this section and go directly to the last proposition of the next section where
a suitable estimate is proved.

For the rest of this section, we fix a positive integer m and non-zero
complex numbers ξ1, . . . , ξm. For each m-tuple of integers i = (i1, . . . , im), we
write for shortness ξi = ξi11 · · · ξimm , and we define ‖i‖ = max{|i1|, . . . , |im|}
to be the maximum norm of i. Our goal is to prove the following result
dealing with values of cyclotomic polynomials at the points ξi.

Proposition 4.1. Let d,N ∈ N∗ and δ ∈ R with

(14) 0 < δ ≤ (8md4N)−2md,

and let Φ ∈ Z[T ] be a cyclotomic polynomial of degree ≤ d. Then there exist
relatively prime positive integers a1, . . . , am, D with D ≤ (2md2N)m such
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that , upon defining

L(i1, . . . , im) = a1i1 + · · ·+ amim

for each (i1, . . . , im) ∈ Zm, at least one of the following conditions holds:

(1) There exists a proper subspace U of Qm such that |Φ(ξi)| ≥ δ for
any point i ∈ Zm with i /∈ U , ‖i‖ ≤ N and gcd(L(i), D) = 1.

(2) There exists a root Z of Φ which is a root of unity of order exactly
D such that , upon denoting by G the multiplicity of Z as a root of Φ,
we have |ξi − ZL(i)|G ≤ δ1/2 for each i ∈ Zm with ‖i‖ ≤ N .

When condition (2) does not hold, condition (1) necessarily holds and
provides the kind of estimate that we are looking for. This happens for
example when ξ1, . . . , ξm do not all have absolute value one and when N is
sufficiently large in terms of ξ1, . . . , ξm, because under condition (2) we find,
for each j = 1, . . . ,m,∣∣|ξj | − 1

∣∣ ≤ |ξj − Zaj | ≤ δ1/(2G) ≤ δ1/(2d) ≤ (8md4N)−m.

In the next section we carry out an independent analysis of this situation
(see Proposition 5.3). We also show that condition (2) cannot hold for N suf-
ficiently large when ξ1, . . . , ξm are as in the statement of our main theorem,
with m ≥ 2.

Before going into the proof of Proposition 4.1, we also note that con-
ditions (1) and (2) are almost mutually exclusive in the following sense.
Suppose that condition (2) holds, and let i be any point of Zm satisfying
‖i‖ ≤ N and gcd(L(i), D) = 1. Then |ξi| ≤ 1 + δ1/(2G) ≤ 2, and ZL(i)

is a conjugate of Z over Q. So the latter is also a root of Φ of multiplic-
ity G. Upon writing Φ(T ) = Ψ(T )(T − ZL(i))G with Ψ ∈ C[T ], we find that
|Ψ(ξi)| ≤ (|ξi| + 1)d ≤ 3d (since Ψ is monic of degree at most d with all its
roots of absolute value one), and thus |Φ(ξi)| ≤ 3dδ1/2.

The proof of Proposition 4.1 requires several lemmas about cyclotomic
polynomials and their roots. The first three of them are quite general.

Lemma 4.2. Let d ∈ N∗, let Φ ∈ Z[T ] be a cyclotomic polynomial of
degree at most d, and let ζ be a root of Φ. Denote by ` the order of ζ as a
root of unity , and by g its multiplicity as a root of Φ. Then

(15) ` ≤ 2d log2(2d)
g

≤ 2d2,

where log2 stands for the logarithm in base 2.

Proof. The theory of cyclotomic fields gives [Q(ζ) : Q] = φ(`) where φ
denotes Euler’s totient function. Since ζ is a root of Φ of multiplicity g, this
implies that gφ(`) ≤ d. Putting k = ω(`)+1 where ω(`) denotes the number
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of distinct prime factors of `, we have k ≥ 1,

φ(`) = `
∏
p|`

(
1− 1

p

)
≥ `

k∏
i=2

(
1− 1

i

)
=
`

k
and ` ≥

∏
p|`

p ≥ k!.

Since k! ≥ k2/2, this gives k ≤
√

2`, so φ(`) ≥
√
`/2, and thus we have

` ≤ 2φ(`)2. Since k! ≥ 2k−1, we also find k ≤ 1 + log2(`), which combined
with the previous upper bound for ` gives k ≤ 2 log2(2φ(`)). Since we also
have φ(`) ≤ d/g ≤ d, we conclude that k ≤ 2 log2(2d) and consequently
` ≤ kφ(`) ≤ 2(d/g) log2(2d).

For roots of unity, Liouville’s inequality takes a very simple form:

Lemma 4.3. Let ζ1 and ζ2 be two distinct roots of unity with respective
orders `1 and `2. Then

|ζ1 − ζ2| ≥
4
`1`2

.

Proof. For j = 1, 2, write ζj = exp(2πrj
√
−1) where rj is a rational

number with denominator `j . Upon subtracting from r1 a suitable integer,
we can arrange that |r1 − r2| ≤ 1/2. Since |exp(t

√
−1)− 1| ≥ 2|t|/π for any

real number t with |t| ≤ π, we deduce that

|ζ1 − ζ2| = |exp(2π(r1 − r2)
√
−1)− 1| ≥ 4|r1 − r2|.

Since r1− r2 is a non-zero rational number with denominator dividing `1`2,
we also have |r1 − r2| ≥ (`1`2)−1 and the conclusion follows.

Lemma 4.4. Let d ∈ N∗ and let Φ ∈ Z[T ] be a cyclotomic polynomial of
degree at most d. Then, for any ξ ∈ C, there exists a root ζ of Φ with

(16) |ξ − ζ|g ≤ (2d4)d|Φ(ξ)|,
where g denotes the multiplicity of ζ as a root of Φ.

Proof. Let ζ be a root of Φ which is closest to ξ, and let g be its multiplic-
ity. Since Φ is monic, we can write Φ(T ) = (T−ζ1) · · · (T−ζs) where s ≤ d is
the degree of Φ and where ζ1, . . . , ζs are roots of unity with ζ1 = · · · = ζg = ζ.
By Lemma 4.2, each ζj has order at most 2d2. Thus, for j = g + 1, . . . , s,
Lemma 4.3 gives |ζ − ζj | ≥ d−4. For the same values of j we also have
|ζ − ζj | ≤ |ξ − ζ| + |ξ − ζj | ≤ 2|ξ − ζj | by virtue of the choice of ζ, and so
|ξ − ζj | ≥ (2d4)−1. This gives |Φ(ξ)| ≥ |ξ − ζ|g(2d4)g−s ≥ |ξ − ζ|g(2d4)−d.

The last lemma is more technical and provides the key to the proof of
Proposition 4.1.

Lemma 4.5. Let `,N ∈ N∗ and % ∈ R with 0 < % ≤ (1/2)(mN)−m.
Suppose that there exist linearly independent points i(1), . . . , i(m) of Zm of
norm at most N , and roots of unity ζ1, . . . , ζm of order at most ` such that
|ξi(k) − ζk| ≤ % for k = 1, . . . ,m. Then there exist a positive integer D with
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D ≤ (`mN)m, a root of unity Z of order D, and non-zero integers a1, . . . , am
with gcd(a1, . . . , am, D) = 1 such that , for each i = (i1, . . . , im) ∈ Zm with
norm ‖i‖ ≤ N , we have

(17) |ξi − Za1i1+···+amim | ≤ 4(mN)m%.

Proof. For k = 1, . . . ,m, we can write ξi
(k)

= ζk(1 + %k) for a complex
number %k with |%k| ≤ %. Put %′k = log(1 + %k) = −

∑∞
j=1(−%k)j/j. Since

|%k| ≤ 1/2, we find |%′k| ≤ 2|%k|, and so

(18) ξi
(k)

= ζk exp(%′k) with |%′k| ≤ 2%.

Let M be the square m ×m matrix whose rows are i(1), . . . , i(m). For j =
1, . . . ,m, let (bj1, . . . , bjm) denote the jth row of the adjoint of M , and
let ej denote the jth row of the m × m identity matrix. Since we have
det(M)ej = bj1i(1) + · · ·+ bjmi(m), we find by (18) that

(19) ξ
det(M)
j = ζ

bj1
1 · · · ζ

bjm
m exp

( m∑
k=1

bjk%
′
k

)
.

Since |bjk| ≤ (m− 1)!Nm−1 for k = 1, . . . ,m and since det(M) is a non-zero
integer, we deduce from (18) and (19) that

(20) ξj =Zj exp(%′′j ) with Z
det(M)
j =ζ

bj1
1 · · · ζ

bjm
m and |%′′j | ≤ 2m!Nm−1%.

Let Z be a generator of the subgroup of C×tor spanned by Z1, . . . , Zm, and
let D be the order of Z. Since Zdet(M) belongs to the subgroup spanned
by ζ1, . . . , ζm and since the latter have order at most `, the order D of Z
is at most `m|det(M)| ≤ (`mN)m. For j = 1, . . . ,m, we choose an integer
aj ≥ 1 such that Zj = Zaj . Then, because of the choice of Z, we have
gcd(a1, . . . , am, D) = 1, and for each i = (i1, . . . , im) ∈ Zm with ‖i‖ ≤ N we
find by (20) that

ξi = Za1i1+···+amim exp(%′′′i ) with(21)

|%′′′i | ≤ (mN)(2m!Nm−1%) ≤ 2(mN)m%.

Since |%′′′i | ≤ 1, we also have |exp(%′′′i )− 1| ≤ 2|%′′′i | and so (17) follows.

Proof of Proposition 4.1. Let IN denote the set of points i ∈ Zm with
norm ‖i‖ ≤ N , and let IN,Φ denote the set of points i ∈ IN such that
|Φ(ξi)| < δ. If IN,Φ is contained in a proper subspace U of Qm, we are
done. Assume the contrary. Then, since IN,Φ is a finite set, there exists a
smallest positive real number % for which it contains m linearly independent
points i(1), . . . , i(m) with the property that each of the complex numbers
ξi

(1)
, . . . , ξi

(m)
is at a distance ≤ % from a zero of Φ. Lemma 4.4 shows that,
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for each i ∈ IN,Φ, there exists a root ζ of Φ with

(22) |ξi − ζ|g ≤ (2d4)dδ,

where g denotes the multiplicity of ζ. Since g ≤ d, this implies that % ≤
2d4δ1/d. Since the hypothesis (14) gives 2d4δ1/d ≤ (2mN)−m and since, by
Lemma 4.2, any root ζ of Φ has order ≤ 2d2, Lemma 4.5 provides us with
relatively prime positive integers a1, . . . , am, D with D ≤ (2d2mN)m, and a
root of unity Z of order D, such that for each i = (i1, . . . , im) ∈ IN , we have

(23) |ξi − ZL(i)| ≤ 4(mN)m%, where L(i) = a1i1 + · · ·+ amim.

If we choose i ∈ IN,Φ and if ζ is a root of Φ satisfying (22), this gives

(24) |ζ − ZL(i)| ≤ (1 + 4(mN)m)2d4δ1/d.

As ζ and ZL(i) are roots of unity of order at most 2d2 and D respec-
tively, and since by (14) the right hand side of (24) is bounded above by
4d4(4mN)m(8md4N)−2m < 4D−1(2d2)−1, we conclude, by Lemma 4.3, that
both roots of unity are equal. Therefore, ZL(i) = ζ is a root of Φ when
i ∈ IN,Φ.

Finally, let IN,Φ,D denote the set of points i ∈ IN,Φ with gcd(L(i), D) = 1.
Again, if this set is contained in a proper subspace of Qm, the first condi-
tion of the proposition holds. Suppose on the contrary that IN,Φ,D contains
m linearly independent points. For each i ∈ IN,Φ,D, the root of unity ZL(i) is
a conjugate of Z over Q, so it is a root of Φ of the same multiplicity G as Z,
and the inequality (22) gives |ξi − ZL(i)|G ≤ (2d4)dδ. As IN,Φ,D contains m
linearly independent points, this means that %G ≤ (2d4)dδ. By (23) and the
fact that G ≤ d, we conclude that, for each i ∈ IN , we have

|ξi − ZL(i)|G ≤ (4(mN)m%)G ≤ (4mN)md(2d4)dδ ≤ δ1/2.

5. Avoiding cyclotomic factors in rank at least two. In this sec-
tion, we consider two instances where only the first alternative in Propo-
sition 4.1 holds. As observed in the preceding section, the simplest case is
when ξ1, . . . , ξm do not all have absolute value one. The reader who wants
to restrict to this situation can go directly to Proposition 5.3, where a short
independent proof is given, and omit the rest of the section. The second
case is when ξ1, . . . , ξm are multiplicatively independent with m ≥ 2, and
generate over Q a field of transcendence degree one. To show that the latter
condition is sufficient, we first establish the following measure of simultane-
ous approximation by roots of unity, where φ stands for the Euler totient
function.

Proposition 5.1. Let m ≥ 2 be an integer , and let ξ1, . . . , ξm ∈ C×
be multiplicatively independent non-zero complex numbers which generate
over Q a field of transcendence degree one. Then, for any choice of positive
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integers a1, . . . , am, D and for any root of unity Z ∈ C×tor of order D, we
have

(25) max
1≤j≤m

|ξj − Zaj | > cφ(D)

where c is a constant depending only on ξ1, . . . , ξm with 0 < c ≤ 1.

In the proof below as well as in the rest of the section, we use the same
notation as in Section 4. Namely, we denote by ‖i‖ the maximum norm of
an integer point i = (i1, . . . , im) ∈ Zm, and we define ξi = ξi11 · · · ξimm .

Proof. The field R = Q(ξ1, . . . , ξm) is a field of functions in one variable
over Q (see Chapter 1 of [2]). Let K denote its field of constants and, for
j = 1, . . . ,m, let bj denote the divisor of poles of ξj . Let J be the ideal of
polynomials of Q[T1, . . . , Tm] which vanish at the point (ξ1, . . . , ξm), and let
P1, . . . , Ps be a system of generators of this ideal, chosen in Z[T1, . . . , Tm].
Define

c1 = max
1≤k≤s

(L(Pk) max
1≤j≤m

(1 + |ξj |)deg(Pk)), c2 = [K : Q]
m∑
j=1

deg(bj),

and choose a real number c with 0 < c < c−1
1 such that (25) holds whenever

D ≤ (3c2)6 (this involves a finite number of inequalities). We claim that, for
such a value of c, the estimate (25) holds in general.

To prove this, suppose on the contrary that there exist positive integers
a1, . . . , am, D and a root of unity Z of order D which satisfy

max
1≤j≤m

|ξj − Zaj | ≤ cφ(D).

Upon replacing a1, . . . , am, D and Z respectively by a1/a, . . . , am/a, D/a
and Za where a = gcd(a1, . . . , am, D), we may assume without loss of gen-
erality that a1, . . . , am, D are relatively prime. For each k = 1, . . . , s, the
norm of Pk(Za1 , . . . , Zam) from Q(Z) to Q is an integer given by

NQ(Z)/Q(Pk(Za1 , . . . , Zam)) =
∏

1≤j≤D
gcd(j,D)=1

Pk(Zja1 , . . . , Zjam).

Since |Pk(Za1 , . . . , Zam)| = |Pk(ξ1, . . . , ξm) − Pk(Za1 , . . . , Zam)| is bounded
above by c1 max1≤j≤m |ξj−Zaj |, and since |Pk(Zja1 , . . . , Zjam)|≤L(Pk)≤c1
for each integer j, we deduce that

|NQ(Z)/Q(Pk(Za1 , . . . , Zam))| ≤ cφ(D)
1 max

1≤j≤m
|ξj − Zaj | ≤ (c1c)φ(D) < 1.

Thus the norm of Pk(Za1 , . . . , Zam) is 0 and so we have Pk(Za1 , . . . , Zam)
= 0 for k = 1, . . . , s. According to [2, Ch. 1, §4, Cor. 1], this implies the
existence of a place p of R which is a common zero of ξ1−Za1 , . . . , ξm−Zam .
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The residue field of this place contains Q[Za1 , . . . , Zam ], which is simply
Q(Z) since gcd(a1, . . . , am, D) = 1. Thus, we have

(26) [K : Q] deg(p) ≥ [Q(Z) : Q] = φ(D).

Define L(i) = a1i1+· · ·+amim for each i = (i1, . . . , im) ∈ Zm, and choose
any non-zero point i ∈ Zm such that L(i) ≡ 0 mod D. Since ξ1, . . . , ξm are
multiplicatively independent, the difference η = ξi− 1 is a non-zero element
of R. Let a denote its divisor of zeros, and b its divisor of poles. Then a and
b have the same degree. Similarly, for each j = 1, . . . ,m the divisor of zeros
aj of ξj has the same degree as its divisor of poles bj . Since b is also the
divisor of poles of ξi = ξi11 · · · ξimm , we deduce that

deg(b) ≤ ‖i‖
m∑
j=1

deg(bj).

On the other hand, since ZL(i) = 1, the place p is a zero of η and so we
have deg(a) ≥ deg(p). Combining this with (26) and the above inequality,
we conclude that

φ(D) ≤ [K : Q] deg(p) ≤ [K : Q] deg(a) = [K : Q] deg(b) ≤ c2‖i‖.

This observation implies that the function f : Zm → Z/DZ defined by f(i) =
L(i) + DZ (i ∈ Zm) is injective on the set of points i ∈ Nm with ‖i‖ <
c−1
2 φ(D), and therefore we have

(27) D ≥ (c−1
2 φ(D))m ≥ (c−1

2 φ(D))2.

On the other hand, since Z is a root of a cyclotomic polynomial of degree
φ(D), Lemma 4.2 gives D ≤ 2φ(D) log2(2φ(D)) ≤ 3φ(D) log(2φ(D)). Since
log(x) ≤

√
x for any positive real number x, this leads to D ≤ (3φ(D))3/2,

which combined with (27) gives D ≤ (3c2)6. This is a contradiction since we
chose c so that (25) holds for such a value of D.

Combining the above result with Proposition 4.1, we obtain:

Corollary 5.2. Let m, ξ1, . . . , ξm and c be as in the statement of
Proposition 5.1. Let d,N ∈ N∗ and δ ∈ R with

(28) 0 < δ ≤ min{(8md4N)−m, c}2d,

and let Φ ∈ Z[T ] be a cyclotomic polynomial of degree ≤ d. Then there
exist relatively prime positive integers a1, . . . , am, D with D ≤ (2md2N)m

and a proper subspace U of Qm such that |Φ(ξi)| ≥ δ for any point i =
(i1, . . . , im) ∈ Zm \ U with ‖i‖ ≤ N and gcd(a1i1 + · · ·+ amim, D) = 1.

Proof. Let Z be a root of Φ, let D denote its order as a root of unity,
and let G denote its multiplicity as a root of Φ. Since d ≥ deg(Φ) ≥ Gφ(D),
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Proposition 5.1 gives

max
1≤j≤m

|ξj − Zaj |G > cGφ(D) ≥ cd ≥ δ1/2

for any choice of positive integers a1, . . . , am. The conclusion follows by
Proposition 4.1.

The next result provides a substitute for Corollary 5.2 when ξ1, . . . , ξm
do not all have absolute value one.

Proposition 5.3. Let m ≥ 2 be an integer , let ξ1, . . . , ξm ∈ C× be non-
zero complex numbers not all of absolute value 1, and let N be a positive
integer. If N is sufficiently large, there exists a proper subspace U of Qm

such that |Φ(ξi)| ≥ (8mN)−md for each positive integer d, each cyclotomic
polynomial Φ ∈ Z[T ] of degree ≤ d, and each point i ∈ Zm \U with ‖i‖ ≤ N .

Proof. Write ξj = exp(uj + vj
√
−1) with uj , vj ∈ R for j = 1, . . . ,m.

Then u1, . . . , um are not all zero, and by a result of Dirichlet (see for example
[8, Ch. II, Thm. 1A]), there exist integers a1, . . . , am and b satisfying the
conditions 1 ≤ b ≤ (2mN)m and |buj − aj | ≤ (2mN)−1 for j = 1, . . . ,m.
If N is large enough, the integers a1, . . . , am are not all zero, and so the
equation a1x1 + · · ·+amxm = 0 defines a proper subspace U of Qm. For any
i = (i1, . . . , im) ∈ Zm \U with ‖i‖ ≤ N , we have |a1i1 + · · ·+amim| ≥ 1 and
thus

|u1i1 + · · ·+ umim| ≥
1
b

∣∣∣ m∑
j=1

ajij

∣∣∣− 1
b

m∑
j=1

|buj − aj | |ij |

≥ 1
b
− 1
b
m(2mN)−1N =

1
2b
≥ (4mN)−m.

Since |exp(x)− 1| ≥ |x|/2 for each x ∈ R with |x| ≤ 1/2, we deduce that for
the same choice of i and any root of unity ζ ∈ C×tor, we have

|ξi − ζ| ≥
∣∣|ξi| − 1

∣∣ = |exp(u1i1 + · · ·+ umim)− 1|
≥ 1− exp(−(4mN)−m) ≥ (8mN)−m.

Consequently, for any positive integer d and any cyclotomic polynomial Φ ∈
Z[T ] of degree ≤ d, we get |Φ(ξi)| ≥ (8mN)−md.

6. Estimates for an intersection. Throughout this section, we fix an
abelian group G with its group law written multiplicatively, and we fix a
finite set of prime numbers A with cardinality at least 2. We denote by Gtor

the torsion subgroup of G. For each subset E of G, we define

O(E) = {xp ;x ∈ E, p ∈ A}.
For a singleton {x}, we simply write O(x) to denote O({x}). Then, for any
subset E of G, we have O(E) =

⋃
x∈E O(x). For each x ∈ G and each integer
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k ≥ 1, we also define Ck(x) to be the set of all elements y of G which satisfy
a relation of the form

(29) xp1···pk = yq1···qk

for a choice of prime numbers p1, . . . , pk, q1, . . . , qk in A (not necessarily
distinct). We also define C0(x) = {x}. With this notation, the main result
of this section reads as follows:

Proposition 6.1. Let E and F be finite non-empty subsets of G with
O(E) ⊆ F and E ∩Gtor = ∅. Suppose that

(30) |F | ≤ 1
2l+1(l + 1)!

(
|A|
l + 2

)
for some integer l with 0 ≤ l ≤ |A| − 2. Then, there exist an integer r ≥ 1,
a sequence of points x1, . . . , xr of E, and partitions E = E1 q · · · q Er and
F = F1 q · · · q Fr q Fr+1 of E and F which, for i = 1, . . . , r, satisfy

(a) Ei ⊆ Cl(xi), (b) Fi ⊆ O(Ei), (c) |Fi| ≥
|A| − l
2(l + 1)

|Ei|.

This result can be viewed as a generalization of Proposition 6.2 of [7]
(see the remark at the end of this section for more details on how to derive
the latter from the former). Its proof will follow the same general pattern,
although additional difficulties come into play due to the fact that G may
contain non-trivial torsion elements. To deal with these, we use several ad-
ditional notions.

First of all, we say that two elements x and y of G are A-equivalent and
we write x ∼A y if there exist finite sequences (p1, . . . , pk) and (q1, . . . , ql)
of elements of A such that

(31) xp1···pk = yq1···ql .

This defines an equivalence relation on G. In view of the preceding defi-
nitions, for any x ∈ G and any integer k ≥ 0, the equivalence class of x
contains Ck(x).

Fix a non-torsion element x of G and a point y in the same equivalence
class. Then y is also a non-torsion element of G. Moreover, if 〈x〉 denotes the
subgroup of G generated by x, then the set of integers i such that yi ∈ 〈x〉 is
a non-trivial subgroup of Z. We define denx(y) to be the positive generator
n of this group. Then, since x is non-torsion, there exists a unique integer m
such that yn = xm, and we define numx(y) = m. Note that these integers m
and n may not be relatively prime, and therefore the fraction m/n may not
be in reduced form. However, the following lemma shows useful properties
for these notions of logarithmic “numerator” and “denominator” of y with
respect to x.
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Lemma 6.2. Let x and y be non-torsion elements of G in the same
equivalence class. Put n = denx(y) and m = numx(y), and choose elements
p1, . . . , pk, q1, . . . , ql of A such that (31) holds. Then m (resp. n) is a positive
divisor of p1 · · · pk (resp. q1 · · · ql), and we have

(32)
m

n
=
p1 · · · pk
q1 · · · ql

.

Moreover , if q is an element of A not dividing n, then the point z = yq

satisfies denx(z) = n and numx(z) = qm.

Proof. Since x /∈ Gtor, the equality (31) combined with yn = xm leads
to (32). Moreover, as (31) gives yq1···ql ∈ 〈x〉, it follows from the definition of
denx(y) that n is a positive divisor of q1 · · · ql. Then, since all the elements
of A are positive, we deduce from (32) that m is a positive divisor of p1 · · · pk.
This proves the first part of the lemma.

For the second part, fix a prime number q ∈ A not dividing n. Put z = yq,
n′ = denx(z) and m′ = numx(z). Since zn = yqn = xqm ∈ 〈x〉, it follows, by
definition of n′, that n′ divides n. Moreover, since yqn

′
= zn

′
= xm

′ ∈ 〈x〉, it
also follows from the definition of n that n divides qn′. Since, by hypothesis,
q and n are relatively prime, and since n and n′ are positive, these two
divisibility relations imply that n = n′. Then, since x /∈ Gtor, the equality
xm

′
= zn = xqm implies that m′ = qm.

For any integer k ≥ 0, any non-torsion point x of G and any subset E
of G, we define

Ck(x,E) = Ck(x) ∩ E and Dk(x,E) = O(Ck(x,E)).

With this notation, the first part of Lemma 6.2 shows that, for each y ∈
Ck(x,E) and each z ∈ Dk(x,E), the integers denx(y), numx(y) and denx(z)
are products of at most k elements of A, while numx(z) is a product of at
most k + 1 elements of A, counting multiplicities. We also note that if a
subset F of G contains O(E), then it contains Dk(x,E). The next lemma
compares the sizes of Ck(x,E) and Dk(x,E).

Lemma 6.3. Let E be a finite subset of G, let k ≥ 0 be an integer , and
let x ∈ G with x /∈ Gtor. Then

|Dk(x,E)| ≥ |A| − k
k + 1

|Ck(x,E)|.

Proof. Put C = Ck(x,E) and D = O(C), so that D = Dk(x,E). We
denote by N the set of all pairs (y, q) ∈ C ×A such that q divides denx(y),
and we put P = (C × A) \ N . Then, since N and P form a partition of
C ×A, we have

(33) |N |+ |P | = |C| |A|.
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For any given y ∈ C, the integer denx(y) is a product of at most k prime
numbers (including multiplicities). Therefore there are at most k distinct
elements q of A such that (y, q) ∈ N . This being true for each y ∈ C, we
deduce that

(34) |N | ≤ k|C|.
Consider the surjective map ϕ : C×A→ D given by ϕ(y, q) = yq for each

(y, q) ∈ C×A. We claim that, for each z ∈ D, we have |ϕ−1(z)∩P | ≤ k+1.
If we admit this result, then we find

|P | = |ϕ−1(D) ∩ P | ≤ (k + 1)|D|,
and by combining this estimate with (33) and (34), we deduce that

(k + 1)|D| ≥ |P | = |A| |C| − |N | ≥ (|A| − k)|C|,
as announced.

To prove the above claim, suppose that (y, q) ∈ ϕ−1(z)∩P for some fixed
z ∈ D. Put n = denx(y) and m = numx(y). By hypothesis, we have yq = z
and q is prime to n. According to Lemma 6.2, this implies that denx(z) = n
and numx(z) = qm. So, n is known (it depends only on x and z) and q is a
prime divisor of numx(z). Moreover, since z ∈ D, the integer numx(z) is a
product of at most k + 1 prime numbers of A. So, this leaves at most k + 1
possibilities for q. Once q is known, the relation numx(z) = qm uniquely
determines m, and the conditions yq = z and yn = xm in turn determine y:
since q is prime to n, we can write 1 = aq + bn with a, b ∈ Z and then we
find y = zaxbm. Thus ϕ−1(z) contains at most k + 1 elements (y, q) of P .

Lemma 6.4. Let E be a finite subset of G, let k ≥ 0 be an integer , and
let x ∈ G with x /∈ Gtor. Then

|Dk(x,E) ∩ O(E \ Ck(x,E))| ≤ (k + 1)|Ck+1(x,E)|.
Proof. It suffices to show that, for any y ∈ E \ Ck(x,E) such that

Dk(x,E) meets O(y), we have y ∈ Ck+1(x,E) and |Dk(x,E)∩O(y)| ≤ k+1.
Fix such a choice of y (assuming that there is one). Since Dk(x,E) ∩ O(y)
6= ∅, there exist p, q ∈ A and z ∈ Ck(x,E) such that yq = zp. More-
over, since z ∈ Ck(x,E), there also exist p1, . . . , pk, q1, . . . , qk ∈ A such that
zq1···qk = xp1···pk . Combining these two relations, we obtain

(35) yqq1···qk = xpp1···pk ,

which shows that y ∈ Ck+1(x,E). Put n = denx(y) and m = numx(y). By
Lemma 6.2, the equality (35) also implies that n divides qq1 · · · qk and that
m/n = (pp1 · · · pk)/(qq1 · · · qk). In particular, the factorizations of m and n
into prime numbers have the same length: they involve the same number of
elements of A, counting multiplicities. If j is this length, then the equality
yn = xm means that y ∈ Cj(x,E). Since y /∈ Ck(x,E), we must have j > k.
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It follows that j = k + 1 and n = qq1 · · · qk. In particular, q is one of the
prime factors of n. Since n = denx(y) has at most k + 1 distinct prime
factors, we conclude that |Dk(x,E) ∩ O(y)| ≤ k + 1.

Proof of Proposition 6.1. We proceed by induction on |E|. Fix a choice
of x ∈ E. We claim that there exists an index k with 0 ≤ k ≤ l such that
the sets Ck = Ck(x,E) and Dk = Dk(x,E) satisfy

(36) |Dk \ O(E \ Ck)| ≥
|A| − k
2(k + 1)

|Ck|.

If we admit this statement then, for such k, the sets E1 = Ck and F1 =
Dk \O(E \Ck) satisfy conditions (a)–(c) of Proposition 6.1 for i = 1 and the
choice of x1 = x. Put E′ = E\E1 and F ′ = F\F1. Then we have E = E1qE′,
F = F1 q F ′ and O(E′) ⊆ F ′. If E′ = ∅, this proves the proposition with
r = 1 and F2 = F ′. Otherwise, we may assume, by induction, that the
proposition applies to E′ and F ′, and the conclusion follows.

To prove the above claim, suppose on the contrary that (36) does not
hold for k = 0, 1, . . . , l. Then

|Dk| < |Dk ∩ O(E \ Ck)|+
|A| − k
2(k + 1)

|Ck| (0 ≤ k ≤ l).

Combining this with the lower bound for |Dk| provided by Lemma 6.3 and
the upper bound for |Dk ∩ O(E \ Ck)| provided by Lemma 6.4, we obtain

|A| − k
2(k + 1)2

|Ck| < |Ck+1| (0 ≤ k ≤ l).

Since C0 = {x} has cardinality 1, these inequalities lead to |Cl+1(x,E)| >
(2l+1(l+ 1)!)−1

( |A|
l+1

)
, so by Lemma 6.3, |Dl+1(x,E)| > (2l+1(l+ 1)!)−1

( |A|
l+2

)
.

This contradicts (30) since Dl+1(x,E) ⊆ F .

Remark. It is easy to translate the proposition to the case of an abelian
group G written additively. Choose G to be the additive group of Q. Let s be
a positive integer, let A = {p1, . . . , ps} be a set of s distinct prime numbers,
and let T be the A-equivalence class of 1 in G = Q. Then Proposition 6.1
applied to arbitrary subsets E and F of T with O(E) ⊆ F translates into
Proposition 6.2 of [7], upon identifying Zs with T under the map which
sends a point (i1, . . . , is) ∈ Zs to the rational number pi11 · · · piss .

7. Estimates for the gcd. We now apply the combinatorial result of
the preceding section to provide estimates for the degree and height of the
greatest common divisor of a family of polynomials of the form P (T a) where
P is fixed and a varies among a finite set A of integers. The result that we
prove below implies Theorem 1.2.
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Theorem 7.1. Let K be a number field , let M,n ∈ N∗ with M ≥ 2, let
A be a non-empty set of prime numbers p from the interval M/2 ≤ p ≤M ,
let P be a non-zero polynomial of K[T ] of degree at most n with no root in
C×tor∪{0}, and let Q ∈ K[T ] be a greatest common divisor of the polynomials
P (T a) with a ∈ A. Suppose that there exists an integer l satisfying

4 ≤ 2l ≤ |A| and n ≤ 1
2l+1(l + 1)!

(
|A|
l + 2

)
.

Then

(37) deg(Q) ≤ 6l
|A|

deg(P ), logH(Q) ≤ c

|A|M
(M deg(P ) + logH(P ))

with c = l 22l+6.

Proof. Suppose first that all roots of P are simple. Then, for each a ∈ A,
the roots of P (T a) are also simple (since P (0) 6= 0), and so the roots of Q are
simple. Define G to be the multiplicative group C× of C, and let E and F
denote respectively the sets of roots of Q and P . By hypothesis, we have
F ⊂ G \ Gtor and |F | ≤ n. Moreover, for any x ∈ E and any a ∈ A, x is
a root of P (T a) and so we have xa ∈ F . In the notation of §6, this means
that E ⊂ G \Gtor and that O(E) ⊆ F . If E = ∅, then Q is a constant and
(37) holds. Otherwise, Proposition 6.1 provides us with an integer r ≥ 1,
a sequence of points x1, . . . , xr of E, and partitions E = E1 q · · · q Er and
F = F1 q · · · q Fr+1 satisfying, for i = 1, . . . , r,

(38) Ei ⊆ Cl(xi), Fi ⊆ O(Ei), |Fi| ≥
|A| − l
2(l + 1)

|Ei| ≥
|A|
6l
|Ei|.

Summing term by term the last inequalities for i = 1, . . . , r, we obtain
|F | ≥ |A| |E|/(6l) and so

(39) deg(Q) = |E| ≤ 6l
|A|
|F | = 6l

|A|
deg(P ).

For each i = 1, . . . , r and each point x ∈ Ei, we have x ∈ Cl(xi) and so
there exist p1, . . . , pl, q1, . . . , ql ∈ A such that xp1···pli = xq1···ql . This gives
H(xi)p1···pl = H(x)q1···ql , and thus

(40) 2−l logH(xi) ≤ logH(x) ≤ 2l logH(xi).

Combining this with the standard estimates (6) for the height of a polyno-
mial in terms of the heights of its roots, and using (39), we deduce that

logH(Q) ≤ deg(Q) +
∑
x∈E

logH(x)(41)

≤ 6l
|A|

deg(P ) +
r∑
i=1

2l|Ei| logH(xi).



378 D. Roy

On the other hand, for each i = 1, . . . , r and each y ∈ Fi, we have y ∈ O(Ei)
and so there exist a ∈ A and x ∈ Ei such that y = xa. Then we get
H(y) = H(x)a, and by (40) we obtain

logH(y) ≥ M

2
logH(x) ≥ M

2l+1
logH(xi).

Combining this with (6) and using (38), we find

logH(P ) + deg(P ) ≥
∑
y∈F

logH(y) ≥
r∑
i=1

M

2l+1
|Fi| logH(xi)

≥ |A|M
6l 2l+1

r∑
i=1

|Ei| logH(xi).

This provides an upper bound for
∑r

i=1 |Ei| logH(xi) which after substitu-
tion into (41) leads to

logH(Q) ≤ c1
|A|M

(M deg(P ) + logH(P ))

with c1 = l 22l+4 ≥ 6l(1 + 22l+1). This proves the theorem with the constant
c replaced by c1 when P has only simple roots.

In the general case, let m denote the largest multiplicity of a root of P .
For i = 1, . . . ,m, let Zi denote the set of roots of P having multiplicity at
least i, and put Pi =

∏
x∈Zi(T − x). Since roots of P which are conjugate

over K have the same multiplicity, P1, . . . , Pm are polynomials of K[T ].
Moreover, they have simple roots and P is a constant multiple of their
product P1 · · ·Pm. Put Qi = gcd{Pi(T a) ; a ∈ A} for i = 1, . . . ,m. We claim
that Q is a constant multiple of Q1 · · ·Qm.

To prove this claim, choose any root x of Q. We first observe that, for
each a ∈ A, the multiplicity of x as a root of P (T a) is the same as the
multiplicity of xa as a root of P (since T a − xa has only simple roots).
Therefore the multiplicity of x as a root of Q is the largest integer i such
that O(x) ⊆ Zi, or equivalently, it is the largest integer i such that x is a
root of each of the polynomials Q1, . . . , Qi. This being true for each root
x of Q shows that Q divides Q1 · · ·Qm. As the converse is clear, our claim
follows.

Since P1, . . . , Pm all have degree at most n, the above considerations show
that the estimates (37) apply to the pair (Qi, Pi) for each i = 1, . . . ,m, with
c replaced by c1. From this we deduce that

deg(Q) =
m∑
i=1

deg(Qi) ≤
m∑
i=1

6l
|A|

deg(Pi) =
6l
|A|

deg(P )
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and

logH(Q) ≤ deg(Q) +
m∑
i=1

logH(Qi)

≤ deg(Q) +
m∑
i=1

c1
|A|M

(M deg(Pi) + logH(Pi))

≤ c1
|A|M

((2M + 1) deg(P ) + logH(P )),

showing that (37) holds in general with c = 4c1.

8. Proof of Theorem 1.1 for rank at least two. Let the notation
be as in Theorem 1.1, and suppose that m ≥ 2. For σ = 0, the result follows
from [5, Prop. 1]. So, we may assume that σ > 0. Define positive constants
µ and ε by

(42) µ =
m+ 1
m+ 5

σ, ε =
1
8

min
{
σ − µ, ν − 1− β +

3m− 1
m+ 5

σ + τ

}
.

We proceed by contradiction, assuming on the contrary that for each suffi-
ciently large value of n there exists a non-zero polynomial P ∈ Z[T ] with
deg(P ) ≤ n and H(P ) ≤ exp(nβ) satisfying (4). Upon dividing P by its
content, we may assume that P is primitive. Fix such an integer n and a
corresponding polynomial P . Each computation below assumes that n is
larger than an appropriate constant depending only on β, ε, µ, σ, τ , ν,
ξ1, . . . , ξm, a condition that we write, for short, as n� 1. Define

t =
[
nτ + 1

2

]
, d =

[
n

t

]
, δ = exp

(
−n

ν

6t

)
,

M = [nµ], N = [nσ], X = exp(nβ),

and factor P as a product P (T ) = T rΦ(T )tP0(T ) where r is the largest non-
negative integer such that T r divides P (T ), and where Φ is the cyclotomic
polynomial of Z[T ] of largest degree such that Φt divides P . Since ν > 1,
the main condition (28) of Corollary 5.2 is satisfied for n� 1 and so there
exist relatively prime positive integers a1, . . . , am, D with D ≤ (2mn2+σ)m

and a proper subspace U of Qm such that we have |Φ(ξi11 · · · ξimm )| ≥ δ for
any point (i1, . . . , im) ∈ Zm \ U satisfying max{|i1|, . . . , |im|} ≤ nσ and
gcd(a1i1 + · · · + amim, D) = 1. If ξ1, . . . , ξm do not all have absolute value
one, we can further assume that a1 = · · · = am = D = 1 by applying
Proposition 5.3 instead. Define

A = {a ∈ P ;M/2 ≤ a ≤M and a - D}
where P denotes the set of all prime numbers, and define

E = {ξi11 · · · ξ
im
m ; (i1, . . . , im) ∈ I \ (U ∪ U ′)},
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where U ′ denotes the proper subspace of Qm generated by all the points
(i1, . . . , im) of Zm for which ξi11 · · · ξimm is algebraic over Q, and where

I = {(i1, . . . , im) ∈ Zm ; 1 ≤ i1, . . . , im ≤ nσ−µ,
gcd(a1i1 + · · ·+ amim, D) = 1}.

Then, in the notation of Proposition 3.1, we have both δΦ ≥ δ and δP ≤
exp(−nν). We claim that for n� 1, we also have

(43) nµ−ε ≤ |A| ≤ nµ and nm(σ−µ)−ε ≤ |E| ≤ nm(σ−µ).

The upper bounds are clear and the lower bound for |A| comes from the
prime number theorem. The lower bound for |E| follows from

|E| ≥ |I| − |I ∩ U | − |I ∩ U ′| ≥ |I| − 2n(m−1)(σ−µ)

together with the fact that, by Lemma A.3 (in the Appendix), we have
|I| ≥ 3nm(σ−µ)−ε for n� 1. In particular, both sets A and E are not empty.
The main conditions (10) of Proposition 3.1 are also satisfied for n � 1
since we have

τ +m(σ − µ) < 1 + µ and 1 + µ < 1 + σ ≤ β.

Therefore, according to this proposition, the polynomial

Q(T ) = gcd{P [j]
0 (T a) ; a ∈ A, 0 ≤ j < t} ∈ Z[T ]

satisfies ∏
ξ∈E

|Q(ξ)|
cont(Q)

≤ X5Mn/t∆−tE

(
exp(−nν)

δ3t

)|E|
≤ exp(15n1+β+µ−τ )∆−tE exp(−nν |E|/2)

≤ exp(15nν+m(σ−µ)−8ε)∆−tE exp(−nν |E|/2).

Since Q is primitive (being a divisor of P (T a) for any a ∈ A), we conclude
from (43) that for n� 1 we have∏
ξ∈E
|Q(ξ)| ≤ exp

(
−n

ν |E|
4

)
∆−tE =

∏
ξ∈E

(
exp
(
−n

ν

4

) ∏
ξ′∈E\{ξ}

|ξ′ − ξ|−t/2
)
.

Thus, there exists at least one point ξ ∈ E such that

(44) |Q(ξ)| ≤ exp
(
−n

ν

8

)
or

∏
ξ′∈E\{ξ}

|ξ′ − ξ| ≤ exp
(
−n

ν

4t

)
.

Suppose for the moment that the first inequality in (44) holds. Denote
by P1 a divisor of P in Z[T ] of largest degree with no root in C×tor∪{0}, and
define

Q1 = gcd{P1(T a) ; a ∈ A} ∈ Z[T ].
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As P1 divides P in Z[T ], we have both deg(P1) ≤ n and logH(P1) ≤ n +
logH(P ) ≤ 2nβ. Since P1 has no root in C×tor ∪ {0}, and since |A| ≥ nµ−ε ≥
nµ/2 by (43), Theorem 7.1 applies for n � 1 with the choice of l = [2/µ],
and it gives

deg(Q1) ≤ n1−µ+2ε and logH(Q1) ≤ nβ−2µ+2ε.

We claim moreover that Q and Q1 are related by

Q = gcd{Q[j]
1 (T ) ; 0 ≤ j < t}.

As Q and Q1 are primitive, this amounts to showing that their orders of
vanishing at any point z ∈ C satisfy

(45) ordz(Q) = max{0, ordz(Q1)− t+ 1}.
To prove this, we first note that neither P0 nor P1 vanishes at z = 0. So the
same is true for Q and Q1, and thus both sides of (45) are 0 when z = 0.
Assume from now on that z ∈ C×. Then

ordz(Q) = min
a∈A

max{0, ordza(P0)− t+ 1} and ordz(Q1) = min
a∈A

ordza(P1).

If z ∈ C×tor, we have ordza(P0) < t and ordza(P1) = 0 for each a ∈ A, and
then both sides of (45) are again equal to 0. Otherwise, we find ordza(P0) =
ordza(P1) for each a ∈ A, and (45) follows.

The above discussion shows that we may apply Lemma 2.1 to the pair of
polynomials Q and Q1 with the function ϕ : Z[T ]→ [0,∞) given by ϕ(F ) =
|F (ξ)|, and the choice of parameters d = n1−µ+2ε, Y = exp(nβ−2µ+2ε) and
δ = exp(−nν/8). Assuming n � 1, this lemma ensures the existence of a
primary polynomial S ∈ Z[T ] with

deg(S) ≤ 4n1−µ−τ+2ε, logH(S) ≤ 8nβ−2µ−τ+2ε, |S(ξ)| ≤ exp(−nν−τ−ε).
We have S(ξ) 6= 0 since S 6= 0 and since ξ is transcendental over Q (like
all the elements of E). Write ξ = ξi11 · · · ξimm with exponents in the range
1 ≤ i1, . . . , im ≤ nσ−µ. Then S̃(T1, . . . , Tm) = S(T i11 · · ·T imm ) is a polynomial
of Z[T1, . . . , Tm] which for n� 1 satisfies

(46)

deg(S̃) ≤ n1+σ−2µ−τ+3ε,

logH(S̃) ≤ nβ−2µ−τ+3ε,

0 < |S̃(ξ1, . . . , ξm)| ≤ exp(−nν−τ−ε).
Suppose now that the second inequality holds in (44). Then∏

ξ′∈E\{ξ}

|ξ′ − ξ| = S̃(ξ1, . . . , ξm)

with S̃ ∈ Z[T1, . . . , Tm] satisfying deg(S̃) ≤ mnσ−µ|E|, logH(S̃) ≤ |E| as
well as the last inequality of (46) when n � 1. Since (m + 1)(σ − µ) ≤
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1 + σ − 2µ − τ , we deduce that S̃ also satisfies the first two inequalities of
(46) when n� 1.

Therefore the constraints (46) have a solution S̃ ∈ Z[T1, . . . , Tm] for each
n � 1. This contradicts Lemma 2.3 (Gel’fond’s criterion) since β ≥ 1 + σ
and since the choice of ε in (42) implies

ν − τ − ε ≥ (1 + σ − 2µ− τ + 3ε) + (β − 2µ− τ + 3ε) + ε.

The proof is complete.

9. Avoiding cyclotomic factors in rank one. The rest of this paper
is devoted to the proof of Theorem 1.1 in the case where m = 1. In this
section, we first establish a measure of approximation of a complex number
ξ by roots of unity, under conditions that are sensibly weaker than those of
Theorem 1.1. We then prove two corollaries which finally allow us to push
forward the conclusion of Proposition 3.1. The reader who simply wants
a proof of Theorem 1.1 in the case where m = 1 and |ξ1| 6= 1 can go
directly to the Remark following those two corollaries and then proceed to
Proposition 9.4 at the end of the section.

Proposition 9.1. Let ξ ∈ C× \ C×tor, and let β, σ, τ, ν ∈ R with

σ > 0, τ ≥ 0, σ + τ ≤ 1 ≤ β and ν > 1 + β − σ − τ.
Suppose that , for each sufficiently large positive integer n, there exists a
non-zero polynomial P = Pn ∈ Z[T ] with deg(P ) ≤ n and H(P ) ≤ exp(nβ)
satisfying

max{|P [j](ξi)| ; 1 ≤ i ≤ nσ, 0 ≤ j < nτ} ≤ exp(−nν).

Then the ratio % = (ν− τ)/(1− τ) is a real number with % > 1 and , for each
sufficiently large positive integer D and each root of unity Z of order D, we
have

|ξ − Z| ≥ exp(−φ(D)%).

Proof. We have % > 1 because ν > 1 > τ . Now, suppose on the contrary
that there exist roots of unity Z of arbitrarily large order D with |ξ −Z| <
exp(−φ(D)%). Fix such a pair D and Z and put m = φ(D). By taking D
large enough, we may assume that the integer n determined by the condition

2n1−τ < m ≤ 2(n+ 1)1−τ

is arbitrarily large. In particular, we may assume that there exists a corre-
sponding polynomial P = Pn ∈ Z[T ]. Furthermore, we may assume that
P is primitive, so that H(P ) = ‖P‖. Let j ≥ 0 be the smallest non-
negative integer such that P (j)(Z) 6= 0. Since Z has degree m over Q,
we have jm ≤ deg(P ) ≤ n and so j ≤ n/m < nτ/2. Consider the poly-
nomial Q = P [j] ∈ Z[T ]. It has degree deg(Q) ≤ n and length L(Q) ≤
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(n + 1)2n‖P‖ ≤ exp(3nβ). Since Q(Z) is a non-zero algebraic integer of
Q(Z), its norm from Q(Z) to Q is a non-zero integer and so

(47) 1 ≤
∏

1≤i≤D
gcd(i,D)=1

|Q(Zi)|.

Let I denote the set of all integers i coprime to D with 1 ≤ i ≤ nσ. Since
D ≥ m > 2n1−τ ≥ 2nσ, this is a subset of the indexing set of the product
on the right hand side of (47). For each i ∈ I, we use the Taylor expansion
of Q around ξi to estimate |Q(Zi)|. Fix such an index i. This gives

|Q(Zi)| ≤
∞∑
k=0

|Q[k](ξi)| |ξi − Zi|k.

Since m > 2n1−τ and % > 1, we have |ξ − Z| < exp(−m%) < exp(−2nν−τ ).
If n is sufficiently large, we also have exp(−2nν−τ ) ≤ n−σ, therefore |ξ| ≤
1 + n−σ, and so max{1, |ξ|}i ≤ e since i ≤ nσ. Combining these estimates,
we obtain, for n sufficiently large,

|ξi − Zi| = |ξ − Z|
∣∣∣ i−1∑
l=0

ξlZi−l−1
∣∣∣ ≤ exp(−2nν−τ )nσe ≤ exp(−nν−τ ).

In particular, we may assume that |ξi−Zi| ≤ 1/2. On the other hand, since
j < nτ/2, we have j + k < nτ for any integer k with 0 ≤ k ≤ nτ/2, and for
such an integer k the hypothesis on P leads to

|Q[k](ξi)| =
(
j + k

j

)
|P [j+k](ξi)| ≤ 2n exp(−nν).

For the remaining integers k > nτ/2, we use instead the crude estimate

|Q[k](ξi)| ≤ max{1, |ξi|}nL(Q[k]) ≤ en2nL(Q) ≤ exp(5nβ).

So, putting all together, we find for each i ∈ I that

|Q(Zi)| ≤ 2n exp(−nν)
[nτ/2]∑
k=0

|ξi − Zi|k + exp(5nβ)
∞∑

k=[nτ/2]+1

|ξi − Zi|k

≤ 2n+1 exp(−nν) + 2 exp(5nβ)|ξi − Zi|nτ/2

≤ 2n+1 exp(−nν) + 2 exp(5nβ − nν/2)
≤ exp(−nν/3),

where the last step again assumes that n is sufficiently large. For all the
other integers i, we use

|Q(Zi)| ≤ L(Q) ≤ exp(3nβ).



384 D. Roy

Since the inequality (47) involves a product of m factors of the form |Q(Zi)|,
including those with i ∈ I, we deduce that

(48) 1 ≤ exp(3nβ)m exp(−nν/3)|I|.

Define ε = (1/2)(ν− 1−β+σ+ τ) > 0. We have m ≤ 2(n+ 1)1−τ ≤ 4n1−τ ,
and Lemma A.3 (or the prime number theorem) gives |I| ≥ nσ−ε for n
sufficiently large, since D = O(m2) = O(n2). Substituting these estimates
for m and |I| into (48) leads to a contradiction, as β + 1− τ < ν + σ − ε.

Corollary 9.2. Under the notation and hypotheses of Proposition 9.1,
there exists a positive integer n1 with the following property. For each pair
of integers n and t with n ≥ n1 and t ≥ nτ/3, and for each cyclotomic
polynomial Φ ∈ Z[T ] whose tth power Φt divides the polynomial P = Pn,
there exists a positive integer D with D ≤ 2n3 such that

(49) min{|Φ(ξi)| ; 1 ≤ i ≤ nσ, gcd(i,D) = 1} ≥ exp
(
−n

ν

6t

)
.

Proof. Choose ε > 0 such that ν−ε > 1+β−σ−τ . Then the hypotheses
of Proposition 9.1 remain satisfied with the parameter ν replaced by ν − ε,
and so there exists a constant c > 0 such that, for any integer D ≥ 1 and
any root of unity Z of order D, we have

(50) |ξ − Z| ≥ exp(−cφ(D)e%) where %̃ =
ν − ε− τ

1− τ
.

Let n be a positive integer for which the polynomial P = Pn is defined, let
t be an integer with t ≥ nτ/3, and let Φ be a cyclotomic polynomial of Z[T ]
such that Φt divides P . We may assume that Φ is non-constant, and so we
have t ≤ n. Then, for n sufficiently large, all conditions of Proposition 4.1
are satisfied with m = 1, ξ1 = ξ and the choice of parameters d = [n/t],
δ = exp(−nν/(6t)) and N = [nσ] (the condition (14) holds since ν > 1). So,
there exist relatively prime positive integers a1 and D with D ≤ 2(n/t)2nσ

≤ 2n3 such that either (49) holds or there exists a root Z of Φ which has
order D as a root of unity and satisfies

(51) |ξ − Za1 |G ≤ exp
(
− n

ν

12t

)
where G denotes the multiplicity of Z as a root of Φ. Suppose that the second
eventuality holds. We will see that, in this case, the integer n is bounded
and this will complete the proof. Since Z and Za1 are conjugate over Q
(they have the same order D), we may assume without loss of generality
that a1 = 1. Then, by comparing (50) and (51), we find

(52) cGφ(D)e% ≥ nν

12t
.
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However, since Z has degree φ(D) over Q, we also have Gφ(D) ≤ deg(Φ)
≤ n/t. Combining this with (52), we get 12cφ(D)e%−1 ≥ nν−1. Finally, since
φ(D) ≤ n/t ≤ 3n1−τ , this gives n ≤ (12c 3e%−1)1/ε.

Corollary 9.3. Let the notation and hypotheses be as in Proposi-
tion 9.1, and let µ ∈ R with 0 < µ ≤ 1−τ and 2µ+τ < ν. Then there exists
a positive integer n2 with the following property. For each integer n ≥ n2 and
each non-empty subset I of {1, . . . , [nµ]}, the set E = {ξi ; i ∈ I} satisfies

∆E ≥ exp
(
−1

4
nν−τ |E|

)
.

Proof. Again, choose ε > 0 such that ν − ε > 1 + β − σ − τ . Arguing
as in the proof of Corollary 9.2, we find that there is a constant c > 0 such
that (50) holds for any integer D ≥ 1 and any root of unity Z of order D.
Let n be a positive integer and let E = {ξi ; i ∈ I} for some non-empty
subset I of {1, . . . , [nµ]}. Suppose that ∆E < exp(−(1/4)nν−τ |E|). We need
to show that n is bounded (independently of the choice of I). By definition,
we have ∆E =

∏
i<j |ξi − ξj | where the product runs through all pairs (i, j)

of elements of I with i < j. This means that we can write ∆E = |ξ|r |Φ(ξ)|
for an integer r with 0 ≤ r ≤ n2µ|E| and a cyclotomic polynomial Φ of Z[T ]
of degree at most n2µ|E|. Applying Lemma 4.4, we deduce that some root
Z of Φ satisfies

|ξ − Z|G ≤ exp
(
n2µ|E| log(c1(n3µ)4)− 1

4
nν−τ |E|

)
,

where c1 = 2 max{1, |ξ|−1} and where G denotes the multiplicity of Z as a
root of Φ. Since ν − τ > 2µ, we conclude that for n large enough we have

(53) |ξ − Z|G ≤ exp
(
−1

8
nν−τ |E|

)
.

Now, let D denote the order of Z as a root of unity. Combining (53)
with (50), we obtain

(54) 8cGφ(D)e% ≥ nν−τ |E|.
On the other hand, by the actual definition of Φ, we have D ≤ nµ, and G
is the number of pairs of elements (i, j) of I with i < j and i ≡ j mod D.
Thus, we also have G ≤ nµ|E|/D. Substituting this upper bound for G
into (54) and using φ(D) ≤ D, we obtain 8cDe%−1 ≥ nν−µ−τ . Finally, since
D ≤ nµ ≤ n1−τ , this leads to 8cnν−1−ε ≥ nν−µ−τ , thus 8c ≥ n1+ε−µ−τ ≥ nε
and so n ≤ (8c)1/ε.

Remark. If we assume that |ξ| 6= 1, then for each cyclotomic polynomial
Φ ∈ Z[T ] and each non-zero integer i, we find

|Φ(ξi)| ≥
∣∣1− |ξi|∣∣deg(Φ) ≥ cdeg(Φ)

1 ,
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where c1 = 1 − min{|ξ|, |ξ|−1}. Since ν > 1, we deduce that, in this case,
Corollary 9.2 holds with D = 1. Moreover, for a set E as in Corollary 9.3,
we have ∆E = |ξ|rΦ(ξ) where r is an integer with 0 ≤ r ≤ n2µ|E| and Φ
is a cyclotomic polynomial of Z[T ] with deg(Φ) ≤ n2µ|E|, and thus ∆E ≥
exp(c2n2µ|E|) where c2 = log(c1 min{1, |ξ|}), which is stronger than the
conclusion of Corollary 9.3.

The main result of this section is the following.

Proposition 9.4. Let ξ ∈ C× \ C×tor, and let β, ε, µ, σ, τ, ν ∈ R with

0 < µ < σ, 0 ≤ τ ≤ 1− σ, β > max{1 + σ − µ, 2µ+ τ},
0 < 2ε < min{µ, σ − µ} and ν > 1 + β + σ − 2µ− τ + 2ε.

Suppose that for each sufficiently large positive integer n, there exists a non-
zero polynomial P = Pn ∈ Z[T ] with deg(P ) ≤ n and H(P ) ≤ exp(nβ)
satisfying

max{|P [j](ξi)| ; 1 ≤ i ≤ nσ, 0 ≤ j < nτ} < exp(−nν).

Then, for each large enough index n, there exists a positive integer D with
D ≤ 2n3 and with the following property. For any set I of cardinality |I| ≥
nµ−ε consisting of integers i coprime to D in the range 1 ≤ i ≤ nµ, there
exists a primary polynomial S ∈ Z[T ] satisfying

(55)
deg(S) ≤ n1−(σ−µ)−τ+3ε, logH(S) ≤ nβ−2(σ−µ)−τ+3ε,∏

i∈I
|S(ξi)| ≤ exp(−nν+µ−τ−2ε).

Proof. Fix a large integer n and a corresponding polynomial P . Without
loss of generality, we may assume that P is primitive. Put t = [(nτ + 1)/2],
and write P (T ) as a product P (T ) = T rΦ(T )tP0(T ), where r is the largest
positive integer such that T r divides P and Φ is the cyclotomic polynomial
of Z[T ] of largest degree such that Φt divides P . Assuming n large enough,
Corollary 9.2 shows that (49) holds for some integer D with 1 ≤ D ≤ 2n3.
Let I be a subset of {i ∈ Z ; 1 ≤ i ≤ nµ, gcd(i,D) = 1} with cardinality
|I| ≥ nµ−ε (such a subset exists if n is large enough), and form the set
E = {ξi ; i ∈ I}. Put also M = [nσ−µ] and define A to be the set of all prime
numbers p not dividing D with M/2 ≤ p ≤M . Finally, set X = exp(nβ) so
that H(P ) ≤ X. Then, in the notation of Proposition 3.1, we have

cE ≤ exp(c1nµ), δΦ ≥ exp
(
−n

ν

6t

)
and δP ≤ exp(−nν),

where c1 = log max{|ξ|, |ξ|−1}. Since ξ /∈ C×tor ∪ {0}, the sets E and I have
the same cardinality. Assuming n large enough, we have

nσ−µ−ε ≤ |A| ≤ nσ−µ and nµ−ε ≤ |E| = |I| ≤ nµ
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and the main condition (10) of Proposition 3.1 holds because τ + µ <
1 + σ − µ < β and 2µ + τ < β. Combining that proposition with Corol-
lary 9.3, we deduce that the polynomial

Q(T ) = gcd{P [j]
0 (T a) ; a ∈ A, 0 ≤ j < t} ∈ Z[T ]

satisfies∏
i∈I
|Q(ξi)| ≤ exp

(
5
t
n1+β+σ−µ

)
∆−tE exp

(
−n

ν

2
|E|
)

≤ exp(15n1+β+σ−µ−τ ) exp
(
−n

ν

4
|E|
)
≤ exp

(
−1

8
nν+µ−ε

)
provided that n is large enough.

Denote by P1 a divisor of P in Z[T ] of largest degree with no root in
C×tor ∪ {0}, and define

Q1 = gcd{P1(T a) ; a ∈ A} ∈ Z[T ].

Applying Theorem 7.1 as in Section 8, upon noting that β ≥ 1 + σ − µ, we
find that for n sufficiently large we have

deg(Q1) ≤ n1−(σ−µ)+2ε and logH(Q1) ≤ nβ−2(σ−µ)+2ε.

As in Section 8, we also note that Q = gcd{Q[j]
1 (T ) ; 0 ≤ j < t}. This means

that we may apply Lemma 2.1 to the pair of polynomials Q and Q1 with
the function ϕ : Z[T ]→ [0,∞) given by ϕ(F ) =

∏
i∈I |F (ξi)|, and the choice

of parameters

d = n1−(σ−µ)+2ε, Y = exp(nβ−2(σ−µ)+2ε) and δ = exp(−(1/8)nν+µ−ε).

Assuming n large enough, this lemma ensures the existence of a primary
polynomial S ∈ Z[T ] with the required properties (55).

10. An estimate related to Zarankiewicz problem. The following
result is a strengthening of Proposition 9.1 of [7]. As the latter, it has con-
nection with a well-known combinatorial problem of Zarankiewicz (see [3,
Chap. 12]).

Proposition 10.1. Let A and B be finite non-empty sets, let κ1 and
κ2 be positive real numbers, and let ϕ : A × B → [0, κ1] be any function on
A×B with values in the interval [0, κ1]. Suppose that the inequality∑

b∈B
min{ϕ(a1, b), ϕ(a2, b)} ≤ κ2

holds for any pair of distinct elements a1 and a2 of A. Then∑
a∈A

∑
b∈B

ϕ(a, b) ≤ max{|A|
√

2|B|κ1κ2, 2|B|κ1}.
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The connection with the problem of Zarankiewicz is the following. For
positive integers m and n, an m × n matrix M with coefficients in {0, 1}
can be viewed as a function ϕ : A × B → {0, 1} where A = {1, . . . ,m} and
B = {1, . . . , n}. If, for some integer n1 ≥ 1, the matrix M contains no 2×n1

submatrix consisting entirely of ones, the hypotheses of the proposition are
satisfied with κ1 = 1 and κ2 = n1−1 and consequently this matrix contains
at most max{m

√
2n(n1 − 1), 2n} ones.

Proof of Proposition 10.1. We first claim that for each i = 1, . . . , |A|, we
have

(56)
∑
a∈A

∑
b∈B

ϕ(a, b) ≤ |A| |B|
i

κ1 +
(i− 1)|A|

2
κ2.

In the case where i = |A|, this follows from Proposition 9.1 of [7]. The proof
of the general case proceeds by reduction to this situation. Put m = |A|
and, for each a ∈ A, define ψ(a) =

∑
b∈B ϕ(a, b). Choose also an ordering

{a1, . . . , am} of A such that ψ(a1) ≥ · · · ≥ ψ(am), and consider the set A′ =
{a1, . . . , ai}. Then A′ and B satisfy all the hypotheses of the proposition for
the restriction of ϕ to A′×B, with the same values of κ1 and κ2. Accordingly,
by [7, Prop. 9.1], we have∑

a∈A′

ψ(a) =
∑
a∈A′

∑
b∈B

ϕ(a, b) ≤ |B|κ1 +
(
i

2

)
κ2.

On the other hand, since ψ(aj) ≤ (1/i)
∑

a∈A′ ψ(a) for each j = i+1, . . . ,m,
we also find∑

a∈A

∑
b∈B

ϕ(a, b) =
∑
a∈A

ψ(a) ≤
(

1 +
m− i
i

)∑
a∈A′

ψ(a) =
|A|
i

∑
a∈A′

ψ(a).

Our claim (56) follows by combining these two estimates.
To conclude, put % = 2|B|κ1/κ2. If % < |A|2, we apply the inequality

(56) with i = [
√
%] + 1. This gives∑

a∈A

∑
b∈B

ϕ(a, b) ≤ |A| |B|√
%

κ1 +
|A|√%

2
κ2 = |A|√% κ2 = |A|

√
2|B|κ1κ2.

If % ≥ |A|2, the same inequality with i = |A| leads to∑
a∈A

∑
b∈B

ϕ(a, b) ≤ |B|κ1 +
|A|2

2
κ2 ≤ |B|κ1 +

%

2
κ2 = 2|B|κ1.

The proof is complete.

11. Products of values of polynomials at powers of ξ. In this
section, we use Proposition 10.1 to prove a transcendence criterion for a
complex number ξ, based on products of values of polynomials at powers
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of ξ. Then we combine this criterion with Proposition 9.4 to complete the
proof of Theorem 1.1 in the case m = 1.

Theorem 11.1. Let ξ ∈ C be transcendental over Q, and let α, β, µ, ω
be in R with

(57) α ≥ µ > 0, β ≥ α+ µ and ω > α+ β + (3/2)µ.

For infinitely many positive integers n, there exists no primary polynomial
Q ∈ Z[T ] without root in C×tor ∪ {0}, satisfying

(58) deg(Q) ≤ nα, H(Q) ≤ exp(nβ),
∏
a∈A

∏
b∈B
|Q(ξab)| ≤ exp(−nω)

for some non-empty subsets A and B of {1, . . . , [nµ/2]}.
Proof. We proceed by contradiction, assuming on the contrary that such

a triple (Q,A,B) exists for each sufficiently large n. Fix an appropriate in-
teger n, and define E = {ξb ; b ∈ B} for a corresponding choice of (Q,A,B).
Note that Q is primitive being primary and non-constant, thus H(Q) = ‖Q‖.
We consider two cases according to the size of ∆E (see §2 for the definition
of this quantity).

Case 1: ∆−1
E ≤ exp((1/4)nω−µ). We claim that, if n is sufficiently large,

there exists (a, b) ∈ A×B such that |Q(ξab)| ≤ exp(−(1/2)nω−µ/2). To prove
this, we first note that, for each (a, b) ∈ A×B, we have

|Q(ξab)| ≤ ‖Q‖ exp(c1nα+µ) ≤ exp((c1 + 1)nβ),

where c1 = log(1 + |ξ|), so that we can write

|Q(ξab)| = exp((c1 + 1)nβ − ϕ(a, b))

for some real number ϕ(a, b) ≥ 0. This defines a function ϕ : A×B → [0,∞)
which, by the last condition of (58), satisfies

(59)
∑
a∈A

∑
b∈B

ϕ(a, b) ≥ nω.

We also note that, for distinct elements a1 and a2 of A, the polynomials
Q(T a1) and Q(T a2) are relatively prime in Z[T ]. This is because they are
primitive polynomials of Z[T ], and if z is a common root of them, then za1

and za2 are roots of Q(T ). However, since Q(T ) is a primary polynomial
of Z[T ], its roots are conjugate over Q. So, there exists an automorphism
σ of the splitting field of Q(T ) over Q such that σ(za1) = za2 . Then, upon
denoting by m the order of σ, we find za

m
1 = σm(za

m
1 ) = za

m
2 . Since am1 6= am2 ,

this implies that z ∈ C×tor ∪ {0}, contrary to the assumption that Q(T ) has
no root in that set. Thus, the gcd of Q(T a1) and Q(T a2) in Z[T ] is 1.

We apply Proposition 2.2 to the above situation with t = 1, r = 2
and Pi(T ) = Q(T ai) for i = 1, 2. Since both polynomials P1 and P2 have
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degree ≤ nα+µ/2 and height ≤ exp(nβ), and since we assume that ∆−1
E ≤

exp((1/4)nω−µ), it gives

1 ≤ exp(10n2α+µ + c2n
α+3µ/2 + (1/4)nω−µ + 2nβ+α+µ/2)

×
∏
b∈B

max{exp((c1 + 1)nβ − ϕ(a1, b)), exp((c1 + 1)nβ − ϕ(a2, b))},

where c2 = 4 log(2 + |ξ|). By (57), the exponent ω − µ exceeds all the other
exponents of powers of n in the first factor on the right. So, if n is sufficiently
large, we deduce that∑

b∈B
min{ϕ(a1, b), ϕ(a2, b)} ≤

1
2
nω−µ.

This means that Proposition 10.1 applies to the function ϕ with κ1 equal
to the largest value of ϕ on A×B, and with κ2 = (1/2)nω−µ. Because of (59),
this implies that

nω ≤ max{nµ/2
√
nω−µ/2κ1, 2nµ/2κ1},

and so κ1 ≥ (1/2)nω−µ/2. Thus, there exists (a, b) ∈ A×B such that

|Q(ξab)| ≤ exp((c1 + 1)nβ − (1/2)nω−µ/2).

If n is sufficiently large, this means that |Q(ξab)| ≤ exp(−(1/4)nω−µ/2),
thereby proving our claim. For such a choice of (a, b), the polynomial S(T ) =
Q(T ab) ∈ Z[T ] satisfies

(60) deg(S) ≤ nα+µ, H(S) ≤ exp(nβ), 0 < |S(ξ)| ≤ exp(−(1/4)nω−µ/2).

Case 2: ∆−1
E > exp((1/4)nω−µ). In this situation, we define

S(T ) =
∏
b,b′∈B
b<b′

|T b′ − T b|u where u = [nµ/2] + 1.

This polynomial of Z[T ] satisfies the inequalities (60) because

deg(S) ≤
(
|B|
2

)
nµ/2u ≤ n2µ ≤ nα+µ,

logH(S) ≤
(
|B|
2

)
u log(2) ≤ n3µ/2 ≤ nβ,

and, by definition of ∆E , we have 0 < |S(ξ)| = ∆u
E ≤ exp(−(1/4)nω−µ/2).

Thus, in both cases, the conditions (60) have a solution S(T ) ∈ Z[T ] for
n sufficiently large. By Gel’fond’s criterion (Lemma 2.3), this is impossible
because β ≥ α+ µ and ω − µ/2 > (α+ µ) + β.

Proof of Theorem 1.1 in the case m = 1. Suppose that the hypotheses
of Theorem 1.1 are satisfied for m = 1. For σ = 0, the result follows from [5,
Prop. 1]. We may therefore assume that σ > 0. Arguing by contradiction,
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we also assume that, for each sufficiently large positive integer n, there
exists a non-zero polynomial P ∈ Z[T ] with deg(P ) ≤ n and H(P ) ≤
exp(nβ) satisfying (4). Put ξ = ξ1 and µ = (8/11)σ. Then, the conditions
of Proposition 9.4 are satisfied for any choice of ε > 0 small enough as a
function of β, σ, τ, ν. For each sufficiently large n and for the corresponding
integer D with 1 ≤ D ≤ 2n3 provided by Proposition 9.4, consider the
set of all prime numbers p not dividing D in the interval 1 < p ≤ nµ/2,
and partition this set into two disjoint subsets A and B of cardinality at
least n(µ−ε)/2. Then the set I = {ab ; a ∈ A, b ∈ B} has cardinality |I| =
|A| |B| ≥ nµ−ε and consists of integers coprime to D from the interval
[1, nµ]. So, Proposition 9.4 provides us with a primary polynomial S ∈ Z[T ]
satisfying the conditions (55). This contradicts Theorem 11.1 if, from the
start, we choose ε small enough so that the conditions (57) hold with α =
1−(σ−µ)−τ+3ε, ω = ν+µ−τ−2ε, and β replaced by β−2(σ−µ)−τ+3ε.

Appendix. Counting lemmas. The purpose of this appendix is to
provide an estimate that is needed in §8 in the course of the proof of the
main Theorem 1.1 for the case m ≥ 2. It concerns the cardinality of certain
subsets of Zm which arise from an application of Corollary 5.2. I believe
that this has appeared elsewhere but as I have been unable to find a suitable
reference, I include the details of the proof for the convenience of the reader.
It starts with a preliminary lemma.

Lemma A.1. Let m, d,N ∈ N∗, and let a1, . . . , am, b ∈ Z be integers with
gcd(a1, . . . , am, d) = 1. Then the set

I = {(i1, . . . , im) ∈ Zm ; 1 ≤ i1, . . . , im ≤ N, a1i1 + · · ·+ amim ≡ b mod d}
has cardinality |I| = Nm/d+ E with an error E satisfying |E| ≤ (3N)m−1.

The crucial point here is that the error term depends only on m and N .

Proof. If m = 1, the set I is the intersection of {1, . . . , N} with an
arithmetic progression with difference d. Therefore, its cardinality is either
[N/d] or [N/d]+1, and so we have

∣∣|I|−N/d∣∣ ≤ 1. Suppose now that m ≥ 2.
Write d1 = gcd(a1, d), d′ = d/d1 and a′ = a1/d1, and define

I ′ = {(i2, . . . , im) ∈ Zm−1 ; 1 ≤ i2, . . . , im ≤ N,
a2i2 + · · ·+ amim ≡ b mod d1}.

For any point (i1, . . . , im) ∈ Zm we have (i1, . . . , im) ∈ I if and only if
(i2, . . . , im) ∈ I ′ and

(61) a′i1 ≡ (b− a2i2 − · · · − amim)/d1 mod d′ with 1 ≤ i1 ≤ N.
By the preceding considerations (case m = 1), for fixed (i2, . . . , im) ∈ I ′

the set of solutions i1 of (61) has cardinality N/d′ + E(i2, . . . , im) with



392 D. Roy

|E(i2, . . . , im)| ≤ 1. From this we deduce that

|I| =
∑

(i2,...,im)∈I′

(
N

d′
+ E(i2, . . . , im)

)
=
N

d′
|I ′|+ E′ with |E′| ≤ |I ′|.

Since gcd(a2, . . . , am, d1) = 1, we can also assume by induction that |I ′| =
Nm−1/d1 +E′′ with |E′′| ≤ (3N)m−2. Combining these estimates gives |I| =
Nm/d+ E with

|E| ≤ |I ′|+N |E′′| ≤ Nm−1 + (N + 1)(3N)m−2 ≤ (3N)m−1.

The main estimate is the following.

Lemma A.2. Let m,D,N ∈ N∗, and let a1, . . . , am ∈ Z be integers with
gcd(a1, . . . , am, D) = 1. Then, the set

I = {(i1, . . . , im) ∈ Zm ; 1 ≤ i1, . . . , im ≤ N, gcd(a1i1 + · · ·+ amim, D) = 1}
has cardinality

|I| = Nm
∏
p|D

(
1− 1

p

)
+ E with |E| ≤ 2ω(D)(3N)m−1,

where the product runs over all prime factors p of D and where ω(D) stands
for the number of distinct prime factors of D.

Proof. For each positive divisor d of D, define

Id = {(i1, . . . , im) ∈ Zm ; 1 ≤ i1, . . . , im ≤ N and d | a1i1 + · · ·+ amim}.
Since gcd(a1, . . . , am, d) = 1, the preceding lemma gives |Id| = Nm/d + Ed
with |Ed| ≤ (3N)m−1. In terms of the Möbius function µ, the inclusion-
exclusion principle gives

|I| =
∑
d|D

µ(d)|Id|.

The conclusion then follows from
∑

d|D µ(d)d−1 =
∏
p|D(1 − p−1) and the

fact that D admits exactly 2ω(D) square-free positive divisors.

In the present paper, we use the estimate of the above lemma in the
following form.

Lemma A.3. Let the notation be as in Lemma A.2, and let ε and κ be
positive real numbers such that D ≤ Nκ. If N is sufficiently large in terms
of ε, κ and m, then the set I has cardinality at least Nm−ε.

Proof. By Lemma A.2, we have |I| ≥ Nm2−ω(D)− 2ω(D)(3N)m−1. Since
2ω(D) = O(Dδ) for any fixed δ > 0 (see [4, Thm. 315]), we also find
that 2ω(D) ≤ 2ω(D)3m−1 ≤ (1/2)N ε if N is sufficiently large in terms of
ε, κ and m. As we may assume that ε ≤ 1/2, this gives |I| ≥ 2Nm−ε −
(1/2)Nm−1+ε ≥ Nm−ε.
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