On zeros of approximate functions of the Rankin-Selberg L-functions

by
Masatoshi Suzuki (Tokyo)

Notations. As usual, \mathbb{Z} is the ring of rational integers, $\mathbb{Z}_{>0}$ the set of positive integers, \mathbb{C} the field of complex numbers. We denote by \mathfrak{h} the upper half-plane, and by Γ the full modular group $\mathrm{PSL}_{2}(\mathbb{Z})$. For a complex variable s, we put $e(s)=e^{2 \pi i s}, \Gamma_{\mathbb{R}}(s)=\pi^{-s / 2} \Gamma(s / 2)$ and $\Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s)$. We denote by $\zeta(s)$ and $\zeta^{*}(s)=\Gamma_{\mathbb{R}}(s) \zeta(s)$ the Riemann zeta-function and the completed Riemann zeta-function, respectively, and denote by $\sigma_{\nu}(n)=$ $\sum_{d \mid n} d^{\nu}$ the divisor function. Throughout the paper, $z=x+i y(x \in \mathbb{R}$, $y>0)$ is a variable on \mathfrak{h}, and $s=\sigma+i t(\sigma, t \in \mathbb{R})$ is a complex variable. A sum over the empty set is meant to be zero.

1. Introduction. Let $\mathrm{C}(s)$ be the trigonometric function

$$
\mathrm{C}(s):=2 \cos (i(s-1 / 2))=e^{s-1 / 2}+e^{-(s-1 / 2)}
$$

It satisfies the (trivial) functional equation $\mathrm{C}(s)=\mathrm{C}(1-s)$. A well-known but remarkable fact about $\mathrm{C}(s)$ is that it satisfies the Riemann hypothesis: all zeros of $\mathrm{C}(s)$ lie on the central line $\sigma=1 / 2$ of its functional equation. We indicate how to prove the Riemann hypothesis for $\mathrm{C}(s)$. First, we note the (trivial) decomposition

$$
\mathrm{C}(s)=\varphi(s)+\varphi(1-s), \quad \varphi(s)=e^{s-1 / 2}
$$

Then we have

$$
\mathrm{C}(s)=\varphi(s)\left(1+\frac{\varphi(1-s)}{\varphi(s)}\right)
$$

and find that
(A) $\varphi(s) \neq 0$ for $\sigma>1 / 2$,
(B) $\left|\frac{\varphi(1-s)}{\varphi(s)}\right|<1$ for $\sigma>1 / 2$.

[^0]Property (B) implies that
(C) $1+\frac{\varphi(1-s)}{\varphi(s)} \neq 0$ for $\sigma>1 / 2$.

Therefore, $\mathrm{C}(s) \neq 0$ for $\sigma>1 / 2$ by (A) and (C). The functional equation gives $\mathrm{C}(s) \neq 0$ if $\sigma \neq 1 / 2$. Hence we obtain the Riemann hypothesis for the function $\mathrm{C}(s)$. Note that $\mathrm{C}(s)$ has at least one zero.

Now let $L(s)$ be an entire function satisfying the functional equation

$$
L(s)=L(1-s)
$$

The above argument implies that if $L(s)$ has the decomposition

$$
\begin{equation*}
L(s)=\varphi(s)+\varphi(1-s) \tag{1.1}
\end{equation*}
$$

such that $\varphi(s)$ satisfies (A) and (B), then the Riemann hypothesis holds for $L(s)$.

The study of zeros of entire functions along this line has a long history. The decomposition (1.1) with the function $\varphi(s)$ satisfying (A) and (B) is possible in several interesting cases.

Consider the case of the Riemann zeta function. Let

$$
\phi(x)=4 \sum_{n=1}^{\infty}\left(2 \pi^{2} n^{4} x^{9 / 2}-3 \pi n^{2} x^{5 / 2}\right) e^{-\pi n^{2} x^{2}}
$$

Then we have

$$
\xi(s)=s(s-1) \zeta^{*}(s)=\int_{1}^{\infty} \phi(x)\left(x^{s-1 / 2}+x^{-s+1 / 2}\right) \frac{d x}{x} .
$$

Replacing $\phi(x)$ by

$$
\phi^{*}(x)=\pi^{2}\left(x^{9 / 2}+x^{-9 / 2}\right) e^{-\pi\left(x^{2}+x^{-2}\right)}
$$

which is asymptotically equivalent to $\phi(x)$, we obtain

$$
\xi^{*}(s)=\int_{1}^{\infty} \phi^{*}(x)\left(x^{s-1 / 2}+x^{-s+1 / 2}\right) \frac{d x}{x}
$$

The function $\xi^{*}(s)$ is similar to $\xi(s)$ in a suitable sense, and has the decomposition (1.1) such that the corresponding $\varphi(s)$ satisfies (A) and (B) as well as $\mathrm{C}(s)$ [27, pp. 254-291]. For the decomposition of $\xi(s)$ as in (1.1) see Gonek [4] and Egorov [3].

Other interesting cases are the difference of two zeta functions, the constant term of the nonholomorphic Eisenstein series, Weng's zeta functions and a finite truncation of the Chowla-Selberg formula of Epstein zeta-functions etc. They were studied by several authors, e.g., Pólya [17], Taylor [26], Stark [20], Hejhal [6], Ki [9], Lagarias-Suzuki [10], Weng [31-33], Suzuki [22-24], Hayashi [5], Bauer [1], Müller [13], Velásquez [28] and Suzuki-Weng [25].

Can we find new examples of zeta- and L-functions $L(s)$ having (1.1) and satisfying (A) and (B)? In this paper, we show that the Rankin-Selberg L-function is one of such examples. More precisely, we derive a new formula (Theorem 1) for the Rankin-Selberg L-function attached to a pair of cusp forms on the full modular group by using the holomorphic projection of Sturm [21]. Then the well-known relation between the Rankin-Selberg L function and the symmetric square L-function gives a new formula for the symmetric square L-function (Corollary 1). Using Theorem 1, we define a function which approximates the Rankin-Selberg L-function. We show that such an approximate function has a wide zero-free region (Theorem 2), and this uses the fact that it has the decomposition (1.1) with two properties similar to (A) and (B).

As a special case of Corollary 1, we obtain Noda's identity in [14] which relates the Fourier coefficients of the holomorphic cusp form f and the zeros of the Riemann zeta-function or the zeros of the symmetric square L function of f. In addition, Theorem 1 gives an analytic series expansion of the central value $L(1 / 2, f \times g)$. Note that Mizumoto [12] showed that for every normalized Hecke eigen cusp form $f \in S_{k_{1}}$ and every even integer k_{2} satisfying $k_{2} \geq k_{1}$ and $k_{2} \neq 14$, there exists a normalized Hecke eigen cusp form $g \in S_{k_{2}}$ such that $L(1 / 2, f \times g) \neq 0$.

There are nice results of Hoffstein-Lockhart [7], Hoffstein-Ramakrishnan [8] and Ramakrishnan-Wang [18] about the real zeros of the RankinSelberg L-function. They established the nonexistence of the Siegel zero of the Rankin-Selberg L-function attached to a pair of cusp forms on GL(2) and the symmetric square L-function of a cusp form on GL(2). Their results contain fairly good zero-free regions of the Rankin-Selberg L-function compared with the classical one. We expect that Theorem 1 and improving our proof of Theorem 2, should imply nice results on the distribution of complex zeros of the Rankin-Selberg L-function.

This paper is organized as follows. In Section 2, we state main results, Theorems 1 and 2. In Section 3, we apply the results of Section 2 to S_{12} and S_{24}. In Section 4, we review the theory of the Poincaré series, Eisenstein series, C^{∞}-modular forms and the Rankin-Selberg L-function as preliminaries for the proof of Theorems 1 and 2. In Section 5, we give a proof of Theorem 1. In Section 6, we prove Theorem 2. In Section 7, we interpret the argument in Section 5 from the viewpoint of the holomorphic projection of Sturm. In the Appendix, we give an asymptotic expansion of the associated Legendre function of the first kind according to Watson [29].
2. Statements of results. Let k be an even integer ≥ 12 and $\neq 14$. Let S_{k} be the vector space of all holomorphic cusp forms of weight k on Γ. We denote by $d=d_{k}$ the dimension of S_{k}. For two cusp forms $f(z)=$
$\sum_{n=1}^{\infty} a_{f}(n) n^{(k-1) / 2} e(n z)$ and $g(z)=\sum_{n=1}^{\infty} a_{g}(n) n^{(k-1) / 2} e(n z)$, the RankinSelberg L-function $L(s, f \otimes \bar{g})$ is defined by

$$
\begin{equation*}
L(s, f \otimes \bar{g})=\sum_{n=1}^{\infty} a_{f}(n) \overline{a_{g}(n)} n^{-s} \tag{2.1}
\end{equation*}
$$

where bar means complex conjugation. The series on the right-hand side converges absolutely if the real part of s is sufficiently large. In addition, we define

$$
L(s, f \times g)=\zeta(2 s) L(s, f \otimes \bar{g})
$$

and the completed function

$$
\begin{aligned}
L^{*}(s, f \times g) & =2^{-k-1} \Gamma_{\mathbb{C}}(s+k-1) \Gamma_{\mathbb{C}}(s) L(s, f \times \bar{g}) \\
& =\pi^{-s}(4 \pi)^{-s-k-1} \Gamma(s) \Gamma(s+k-1) L(s, f \times \bar{g})
\end{aligned}
$$

Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{d}\right\}$ be an orthonormal basis of S_{k} and let $f_{j}(z)=$ $\sum_{n=1}^{\infty} a_{j}(n) n^{(k-1) / 2} e(n z)$ be the Fourier expansion of $f_{j}(1 \leq j \leq d)$ at the cusp $i \infty$. Let $\mathfrak{m}=\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}_{>0}^{d}$ with $0<m_{1}<\cdots<m_{d}$. Define

$$
A_{\mathcal{F}, \mathfrak{m}}=\left(\begin{array}{ccc}
a_{1}\left(m_{1}\right) & \cdots & a_{d}\left(m_{1}\right) \tag{2.2}\\
\vdots & \ddots & \vdots \\
a_{1}\left(m_{d}\right) & \cdots & a_{d}\left(m_{d}\right)
\end{array}\right)
$$

In general, the matrix $A_{\mathcal{F}, \mathfrak{m}}$ is not invertible. However, if the set of Poincaré series $\left\{P_{m_{1}}, \ldots, P_{m_{d}}\right\} \subset S_{k}$ is a basis of S_{k}, then $A_{\mathcal{F}, \mathfrak{m}}$ is invertible. In particular, for the vector $\mathfrak{m}_{0}=(1, \ldots, d)$, the matrix $A_{\mathcal{F}, \mathfrak{m}_{0}}$ is invertible by the classical result of Petersson $[15,16]$ about the basis problem for elliptic modular forms. Thus we can always choose a vector \mathfrak{m} such that $A_{\mathcal{F}, \mathfrak{m}}$ is invertible.

Theorem 1. Let k be an even integer ≥ 12 and $\neq 14$. Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{d}\right\}$ be an orthonormal basis of S_{k} and let $f_{j}(z)=\sum_{n=1}^{\infty} a_{j}(n) n^{(k-1) / 2} e(n z)$ be the Fourier expansion of $f_{j}(1 \leq j \leq d)$ at the cusp $i \infty$. Choose $\mathfrak{m} \in \mathbb{Z}_{>0}^{d}$ such that the matrix $A_{\mathcal{F}, \mathfrak{m}}$ defined by (2.2) is invertible $\left(\operatorname{det} A_{\mathcal{F}, \mathfrak{m}} \neq 0\right)$. Define the set of numbers $\left(\alpha_{i j}\right)_{1 \leq i, j \leq d}$ by

$$
\begin{equation*}
A_{\mathcal{F}, \mathfrak{m}}^{-1}=\left(\alpha_{i j}\right)_{1 \leq i, j \leq d} \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{align*}
(4 \pi)^{-k+1} & \Gamma(k-1) L^{*}\left(s, f_{i} \times \bar{f}_{j}\right) \tag{2.4}\\
= & (4 \pi)^{-s-k+1} \Gamma(s+k-1) \zeta^{*}(2 s) D_{\mathfrak{m}, i j}(s) \\
& +(4 \pi)^{s-k} \Gamma(k-s) \zeta^{*}(2 s-1) D_{\mathfrak{m}, i j}(1-s) \\
& +(4 \pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s)\left\{W_{\mathfrak{m}, i j}^{+}(s)+W_{\mathfrak{m}, i j}^{-}(s)\right\}
\end{align*}
$$

for all $1 \leq i \leq j \leq d$ in the vertical strip

$$
\begin{equation*}
|\sigma-1 / 2|<k / 2-1 \tag{2.5}
\end{equation*}
$$

except for the point $s=1 / 2$. Here

$$
\begin{align*}
D_{\mathfrak{m}, i j}(s) & =\sum_{h=1}^{d} \alpha_{j h} a_{i}\left(m_{h}\right) m_{h}^{-s} \tag{2.6}\\
W_{\mathfrak{m}, i j}^{+}(s) & =\sum_{h=1}^{d} \sum_{n=1}^{\infty} \alpha_{j h} a_{i}\left(m_{h}+n\right) \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m_{h}+n}{n}\right) \tag{2.7}\\
W_{\mathfrak{m}, i j}^{-}(s) & =\sum_{h=1}^{d} \sum_{n=1}^{m_{h}-1} \alpha_{j h} a_{i}\left(m_{h}-n\right) \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m_{h}-n}{n}\right) \tag{2.8}
\end{align*}
$$

with $\tau_{\nu}(n)=n^{\nu} \sigma_{-2 \nu}(n)$, and $P_{\nu}^{\mu}(z)$ is the associated Legendre function of the first kind (see Appendix). Further, at the point $s=1 / 2$,

$$
\begin{aligned}
& (4 \pi)^{-k+1} \Gamma(k-1) L^{*}\left(1 / 2, f_{i} \times \bar{f}_{j}\right) \\
& =(4 \pi)^{-k+1 / 2} \Gamma\left(k-\frac{1}{2}\right) \sum_{h=1}^{d} \frac{\alpha_{j h} a_{i}\left(m_{h}\right)}{\sqrt{m_{h}}}\left\{\frac{\Gamma^{\prime}}{\Gamma}\left(k-\frac{1}{2}\right)+\log \frac{e^{\gamma}}{16 \pi^{2} m_{h}}\right\} \\
& \quad+(4 \pi)^{-k+1} \Gamma\left(k-\frac{1}{2}\right)^{2}\left\{W_{\mathfrak{m}, i j}^{+}(1 / 2)+W_{\mathfrak{m}, i j}^{-}(1 / 2)\right\}
\end{aligned}
$$

The series $W_{\mathfrak{m}, i j}^{+}(s)$ converges absolutely and uniformly on every compact subset K in (2.5), and has the asymptotic expansion

$$
\begin{aligned}
W_{\mathfrak{m}, i j}^{+}(s)= & \sum_{h=1}^{d} \sum_{n=1}^{N-1} \alpha_{j h} a_{i}\left(m_{h}+n\right) \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m_{h}+n}{n}\right) \\
& +O\left(N^{|\sigma-1 / 2|-k / 2+1+\varepsilon}\right)
\end{aligned}
$$

where the implied constant depends on $\mathcal{F}, \mathfrak{m}$ and K.
Remark 1. By definition of $\alpha_{i j}$, we have

$$
D_{\mathfrak{m}, i j}(0)=\sum_{h=1}^{d} \alpha_{j h} a_{i}\left(m_{h}\right)=\delta_{i j} .
$$

Hence the poles of the first two terms of (2.4) at $s=0,1$ cancel out whenever $i \neq j$. This agrees with the fact that the residue of $L\left(s, f_{i} \times \bar{f}_{j}\right)$ at $s=1$ is a multiple of the Petersson inner product $\left(f_{i}, f_{j}\right)$.

Let $f(z)=1+\sum_{n=2}^{\infty} a_{f}(n) n^{(k-1) / 2} e(n z) \in S_{k}$ be a normalized Hecke eigen cusp form. The symmetric square L-function $L\left(s, \operatorname{sym}^{2} f\right)$ is defined by the Euler product

$$
L\left(s, \operatorname{sym}^{2} f\right)=\prod_{p}\left(1-\alpha_{p}^{2} p^{-s}\right)^{-1}\left(1-\alpha_{p} \beta_{p} p^{-s}\right)^{-1}\left(1-\beta_{p}^{2} p^{-s}\right)^{-1}
$$

where α_{p} and β_{p} are determined by $\alpha_{p}+\beta_{p}=a_{f}(p)$ and $\alpha_{p} \beta_{p}=1$. The right-hand side converges absolutely if the real part of s is sufficiently large. The completed L-function $L^{*}\left(s, \operatorname{sym}^{2} f\right)$ is defined by

$$
\begin{aligned}
L^{*}\left(s, \operatorname{sym}^{2} f\right) & =\pi^{-3 s / 2} \Gamma\left(\frac{s+1}{2}\right) \Gamma\left(\frac{s+k-1}{2}\right) \Gamma\left(\frac{s+k}{2}\right) L\left(s, \operatorname{sym}^{2} f\right) \\
& =\pi^{k} \Gamma_{\mathbb{C}}(s+k-1) \Gamma_{\mathbb{C}}(s) \Gamma_{\mathbb{R}}(s)^{-1} L\left(s, \operatorname{sym}^{2} f\right)
\end{aligned}
$$

It is known that $L\left(s, \operatorname{sym}^{2} f\right)$ and $L(s, f \times \bar{f})$ are related via

$$
\zeta(s) L\left(s, \operatorname{sym}^{2} f\right)=L(s, f \times \bar{f})
$$

Therefore we have the equality

$$
2^{-1}(2 \pi)^{-k} \zeta^{*}(s) L^{*}\left(s, \operatorname{sym}^{2} f\right)=L^{*}(s, f \times \bar{f})
$$

Corollary 1. Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{d}\right\}$ be the orthogonal basis of S_{k} consisting of normalized Hecke eigen cusp forms. Put $f_{j}^{*}=f_{j} /\left(f_{j}, f_{j}\right)^{1 / 2}$ and $\mathcal{F}^{*}=\left\{f_{1}^{*}, \ldots, f_{d}^{*}\right\}$. Choose $\mathfrak{m} \in \mathbb{Z}_{>0}^{d}$ such that $A_{\mathcal{F}^{*}, \mathfrak{m}}$ is invertible. Then

$$
\begin{align*}
2^{-k}(2 \pi)^{-2 k+1} & \frac{\Gamma(k-1)}{\left(f_{j}, f_{j}\right)} \zeta^{*}(s) L^{*}\left(s, \operatorname{sym}^{2} f_{j}\right) \tag{2.9}\\
= & (4 \pi)^{-s-k+1} \Gamma(s+k-1) \zeta^{*}(2 s) D_{\mathfrak{m}, j j}(s) \\
& +(4 \pi)^{s-k} \Gamma(k-s) \zeta^{*}(2 s-1) D_{\mathfrak{m}, j j}(1-s) \\
& +(4 \pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s)\left\{W_{\mathfrak{m}, j j}^{+}(s)+W_{\mathfrak{m}, j j}^{-}(s)\right\}
\end{align*}
$$

for all $1 \leq j \leq d$ and all $s \neq 1 / 2$ in the vertical strip (2.5), where $D_{\mathfrak{m}, j j}(s)$, $W_{\mathfrak{m}, j j}^{+}(s)$ and $W_{\mathfrak{m}, j j}^{-}(s)$ are defined by (2.6)-(2.8) for the basis \mathcal{F}^{*} and the vector \mathfrak{m}.

REMARK 2. In the case $S_{k}=\mathbb{C} \Delta_{k}(k=12,16,18,20,22$ and 26), $D_{(m), 11}(s)$ is just m^{-s}. Hence, by taking s to be a zero of $\zeta(s)$ or a zero of $L\left(s, \operatorname{sym}^{2} \Delta_{k}\right)$, we obtain a new proof of the result of Noda [14, Theorem]. His result is an equality which relates the zeros of the Riemann zeta function or the zeros of the symmetric square L-functions with the Fourier coefficients of the holomorphic cusp form Δ_{k}.

Corollary 2. Under the notation of Theorem 1, we have the following formula for the central value:

$$
\begin{aligned}
L\left(1 / 2, f_{i} \times \bar{f}_{j}\right)= & \frac{(4 \pi)^{k-1}}{\Gamma(k-1)} \sum_{h=1}^{d} \frac{\alpha_{j h} a_{i}\left(m_{h}\right)}{\sqrt{m_{h}}}\left\{\frac{\Gamma^{\prime}}{\Gamma}\left(k-\frac{1}{2}\right)+\log \frac{e^{\gamma}}{16 \pi^{2} m_{h}}\right\} \\
& +4 \pi^{k} \frac{\Gamma(2 k-2)}{\Gamma(k-1)^{2}}\left\{W_{\mathfrak{m}, i j}^{+}(1 / 2)+W_{\mathfrak{m}, i j}^{-}(1 / 2)\right\}
\end{aligned}
$$

On the right-hand side we have

$$
\begin{aligned}
W_{\mathfrak{m}, i j}^{+}(1 / 2)= & \sum_{h=1}^{d} \sum_{n=1}^{N-1} \alpha_{j h} a_{i}\left(m_{h}+n\right) \frac{\sigma_{0}(n)}{\sqrt{n}} P_{-1 / 2}^{1-k}\left(\frac{2 m_{h}+n}{n}\right) \\
& +O\left(N^{-k / 2+1+\varepsilon}\right)
\end{aligned}
$$

for every positive integer N and every positive real number ε.
Considering equations (2.4) and (2.7), we define

$$
\begin{equation*}
W_{\mathfrak{m}, i j}^{+, N}(s)=\sum_{h=1}^{d} \sum_{n=1}^{N} \alpha_{j h} a_{i}\left(m_{h}+n\right) \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m_{h}+n}{n}\right) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{align*}
L_{\mathfrak{m}, i j}^{N}(s)= & (4 \pi)^{-s-k+1} \Gamma(s+k-1) \zeta^{*}(2 s) D_{\mathfrak{m}, i j}(s) \tag{2.11}\\
& +(4 \pi)^{s-k} \Gamma(k-s) \zeta^{*}(2 s-1) D_{\mathfrak{m}, i j}(1-s) \\
& +(4 \pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s)\left\{W_{\mathfrak{m}, i j}^{+, N}(s)+W_{\mathfrak{m}, i j}^{-}(s)\right\}
\end{align*}
$$

for a positive integer N. In addition, we define

$$
\begin{aligned}
L_{\mathfrak{m}, i j}^{0}(s)= & (4 \pi)^{-s-k+1} \Gamma(s+k-1) \zeta^{*}(2 s) D_{\mathfrak{m}, i j}(s) \\
& +(4 \pi)^{s-k} \Gamma(k-s) \zeta^{*}(2 s-1) D_{\mathfrak{m}, i j}(1-s)
\end{aligned}
$$

for $N=0$. The only difference between $L_{\mathfrak{m}, i j}^{N}(s)$ and the right-hand side of (2.4) is in the bracketed expression $\{\cdots\}$. The functional equations $\tau_{s-1 / 2}(n)$ $=\tau_{1 / 2-s}(n)$ and $P_{s-1}^{1-k}(z)=P_{-s}^{1-k}(z)$ imply that $L_{\mathfrak{m}, i j}^{N}(s)$ satisfies the functional equation

$$
\begin{equation*}
L_{\mathfrak{m}, i j}^{N}(s)=L_{\mathfrak{m}, i j}^{N}(1-s) . \tag{2.12}
\end{equation*}
$$

Theorem 2. Let k be an even integer ≥ 12 and $\neq 14$. Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{d}\right\}$ be an orthonormal basis of S_{k}. Choose $\mathfrak{m} \in \mathbb{Z}_{>0}^{d}$ such that $A_{\mathcal{F}, \mathfrak{m}}$ is invertible. Further suppose that there exists $\delta=\delta_{\mathcal{F}, \mathfrak{m}}$ such that $0<\delta<1 / 2$, and $D_{\mathfrak{m}, i j}(s)$ has only finitely many zeros in the right half-plane $\sigma \geq 1 / 2-\delta$. Then for every nonnegative integer N and every positive real number a there exists $C=C_{\mathfrak{m}, N, a}>0$ such that $L_{\mathfrak{m}, i j}^{N}(s)$ has no zeros in the region

$$
\frac{\log \left\{C \log ^{1 / 2}(|t|+1)\right\}}{\log (|t|+1)}<\left|\sigma-\frac{1}{2}\right|<a,
$$

that is, all zeros of $L_{\mathfrak{m}, i j}^{N}(s)$ in the strip $|\sigma-1 / 2|<a$ are contained in

$$
\left|\sigma-\frac{1}{2}\right| \leq \frac{\log \left\{C \log ^{1 / 2}(|t|+1)\right\}}{\log (|t|+1)}
$$

In particular,

$$
N\left(T, \sigma_{1}, \sigma_{2}\right)=O_{\sigma_{1}, \sigma_{2}}(1)
$$

for all $0<\sigma_{1}<\sigma_{2}$, where $N\left(T, \sigma_{1}, \sigma_{2}\right)$ is the number of zeros of $L_{\mathfrak{m}, i j}^{N}(s)$ satisfying $\sigma_{1} \leq \sigma-1 / 2 \leq \sigma_{2}$ and $|t| \leq T$ counted with multiplicity.

Remark 3. In the case of the Riemann zeta-function, Selberg established the estimate

$$
N(T, 1 / 2+4 \delta) \ll T^{1-\delta} \log T
$$

uniformly for $\delta \geq 0$ by using his mollification method. Here $N(T, a)$ is the number of zeros of $\zeta(s)$ satisfying $\sigma \geq a$ and $|t| \leq T$ counted with multiplicity. Hence almost all zeros of $\zeta(s)$ lie in the region

$$
\left|\sigma-\frac{1}{2}\right| \leq \frac{\eta(t)}{\log (|t|+3)}
$$

where $\eta(t)$ is any positive function which increases to infinity. Theorem 2 is an analogue of this result.

Remark 4. As in Remark $2, D_{(m), 11}(s)=m^{-s}$ if $\operatorname{dim} S_{k}=1$. Hence the assumption in Theorem 2 about the location of zeros of $D_{\mathfrak{m}, i j}(s)$ is always satisfied if $\operatorname{dim} S_{k}=1$. However, in general the location of zeros of $D_{\mathfrak{m}, i j}(s)$ strongly depends on the choice of the vector \mathfrak{m} (see Section 3).

Remark 5. The existence of the vector \mathfrak{m} such that $L_{\mathfrak{m}, i j}^{N}(s)$ has no zeros in $0<|\sigma-1 / 2|<1 / 2$ for all sufficiently large N implies that the Riemann hypothesis for the Rankin-Selberg L-function $L\left(s, f_{i} \times \bar{f}_{j}\right)$ is true. Therefore such a result is desired for a pair of Hecke eigen cusp forms f_{i} and f_{j}. However, our proof of Theorem 2 in Section 6 does not need the condition that f_{i} and f_{j} are Hecke eigen cusp forms. Hence, a new idea using more precise arithmetic properties of the Fourier coefficients of f_{i} and f_{j} is needed in order to obtain results in the direction of the Riemann hypothesis.
3. Examples. In this section, we calculate the central values of L functions by applying Corollary 2 to S_{12} and S_{24}. We calculate the value of the Petersson inner product according to Rankin [19].
3.1. The case $k=12$. In this case $\operatorname{dim} S_{12}=1$. As mentioned in Remark 2, we have $D_{(m), 11}(s)=m^{-s}$ by definition (2.6). All members of S_{12} are constant multiples of the normalized Hecke eigen cusp form

Fig. 1. $\left|L_{0}(1 / 2+i t, \Delta \times \Delta)\right|$ for $0 \leq t \leq 30$. Points • are zeros of $L(s, \Delta \times \Delta)$ on $\sigma=1 / 2$. $\Delta(z)=e(z) \prod_{n=1}^{\infty}(1-e(n z))^{24}=\sum_{n=1}^{\infty} \tau(n) e(n z)$. Put $f=\Delta /(\Delta, \Delta)^{1 / 2}$, and choose $\mathfrak{m}=(m)=(1)$. Then we have $W_{(1), 11}^{-}(s) \equiv 0$, and

$$
\begin{aligned}
\frac{L(1 / 2, \Delta \times \Delta)}{\sqrt{(\Delta, \Delta)}}= & \frac{(4 \pi)^{11}}{\Gamma(11)}\left\{\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{23}{2}\right)+\log \frac{e^{\gamma}}{16 \pi^{2}}\right\} \\
& +\frac{4 \pi^{12} \Gamma(22)}{\Gamma(11)^{2} \Gamma(12)} \sum_{n=1}^{\infty} \frac{\tau(n+1)}{(n+1)^{11}} \frac{\sigma_{0}(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 12 ;-\frac{1}{n}\right)
\end{aligned}
$$

Using the value $(\Delta, \Delta)=1.03536 \ldots \times 10^{-6}$, we have

$$
L(1 / 2, \Delta \times \Delta)=-7.25563 \ldots \times 10^{2}
$$

Figure 1 is the graph of the absolute value of

$$
L_{0}(s, \Delta \times \Delta)=\frac{\omega_{12} \sqrt{(\Delta, \Delta)}}{\pi^{-s}(4 \pi)^{-s-11} \Gamma(s) \Gamma(s+11)} L_{(1), 11}^{0}(s)
$$

on the critical line $\sigma=1 / 2$, where $\omega_{12}=(4 \pi)^{11} / \Gamma(11)$ and

$$
L_{(1), 11}^{0}(s)=(4 \pi)^{-s-11} \Gamma(s+11) \zeta^{*}(2 s)+(4 \pi)^{s-12} \Gamma(12-s) \zeta^{*}(2 s-1)
$$

Figure 2 is the graph of the absolute value of

$$
L_{N}(s, \Delta \times \Delta)=\frac{\omega_{12} \sqrt{(\Delta, \Delta)}}{\pi^{-s}(4 \pi)^{-s-11} \Gamma(s) \Gamma(s+11)} L_{(1), 11}^{N}(s)
$$

for $N=10$ on the critical line $\sigma=1 / 2$, where

$$
\begin{aligned}
& L_{(1), 11}^{N}(s)=(4 \pi)^{-s-11} \Gamma(s+11) \zeta^{*}(2 s)+(4 \pi)^{s-12} \Gamma(12-s) \zeta^{*}(2 s-1) \\
& +(4 \pi)^{-11} \Gamma(s+11) \Gamma(12-s) \sum_{n=1}^{N} \frac{\tau(n+1)}{(n+1)^{11 / 2}} \frac{n^{s-1 / 2} \sigma_{1-2 s}(n)}{\sqrt{n}} P_{s-1}^{-11}\left(1+\frac{2}{n}\right)
\end{aligned}
$$

Fig. 2. $\left|L_{10}(1 / 2+i t, \Delta \times \Delta)\right|$ for $0 \leq t \leq 30$. Points \bullet are zeros of $L(s, \Delta \times \Delta)$ on $\sigma=1 / 2$.

Fig. 3. The thin line is $\left|L_{0}(1 / 2+i t, \Delta \times \Delta)\right|$ for $0 \leq t \leq 30$, the line of medium thickness is $\left|L_{10}(1 / 2+i t, \Delta \times \Delta)\right|$ for $0 \leq t \leq 30$, and the thick line is $\left|L_{100}(1 / 2+i t, \Delta \times \Delta)\right|$ for $0 \leq t \leq 30$.

In Figures 1 and 2, dot points • are zeros of $L(s, \Delta \times \Delta)=\zeta(s) L\left(s, \operatorname{sym}^{2} \Delta\right)$ on the critical line ([34, Table 3]). Interestingly, we observe that the lower zeros of $L(s, \Delta \times \Delta)$ on the critical line are approximated by zeros of the sum of the Riemann zeta-function $L_{0}(s, \Delta \times \Delta)$. Needless to say, this is not true for zeros of $L(s, \Delta \times \Delta)$ whose imaginary part becomes large. Figure 3 is the comparison of the absolute values $\left|L_{0}(s, \Delta \times \Delta)\right|,\left|L_{10}(s, \Delta \times \Delta)\right|$ and $\left|L_{100}(s, \Delta \times \Delta)\right|$ on the critical line. It shows that to know the value of $L(s, \Delta \times \Delta)$ for large $|t|$, we need many terms in $W_{\mathfrak{m}, i j}^{ \pm}(s)$ as large as $|t|$.
3.2. The case $k=24$. This is the first case in which $d>1$. We have $\operatorname{dim} S_{24}=2$. Two functions f and g given by

$$
\begin{aligned}
f(z) & =E_{12}(z) \Delta(z)+12\left(\frac{27017}{691}+\sqrt{144169}\right) \Delta^{2}(z) \\
& =\sum_{n=1}^{\infty} A_{f}(n) e(n z) \\
g(z) & =E_{12}(z) \Delta(z)+12\left(\frac{27017}{691}-\sqrt{144169}\right) \Delta^{2}(z) \\
& =\sum_{n=1}^{\infty} A_{g}(n) e(n z)
\end{aligned}
$$

are distinct normalized Hecke eigen cusp forms of S_{24}, where

$$
E_{12}(z)=1+\frac{65520}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) e(n z)
$$

Put $\mathcal{F}=\left\{f /(f, f)^{1 / 2}, g /(g, g)^{1 / 2}\right\}$. Then \mathcal{F} is an orthonormal basis of S_{24}. Applying Corollary 2 to $\mathfrak{m}=(1,2)$, we obtain

$$
\begin{aligned}
& \begin{aligned}
& \frac{L(1 / 2, f \times f)}{(f, f)}=\frac{1}{D} \frac{(4 \pi)^{23}}{\Gamma(23)}\left\{\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{47}{2}\right)\left(A_{g}(2)-\frac{A_{f}(2)}{\sqrt{2}}\right)\right. \\
&\left.+\left(A_{g}(2) \log \frac{e^{\gamma}}{16 \pi^{2} m}-\frac{A_{f}(2)}{\sqrt{2}} \log \frac{e^{\gamma}}{32 \pi^{2} m}\right)\right\} \\
& \quad+ \frac{1}{D} \frac{4 \pi^{24} \Gamma(46)}{\Gamma(23)^{2} \Gamma(24)}\left\{\sum_{n=1}^{\infty} A_{g}(2) \frac{A_{f}(n+1)}{(n+1)^{23}} \frac{\sigma_{0}(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 24 ;-\frac{1}{n}\right)\right.
\end{aligned} \\
& \left.\quad-2^{23} \sum_{n=1}^{\infty} \frac{A_{f}(n+2)}{(n+2)^{23}} \frac{\sigma_{0}(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 24 ;-\frac{2}{n}\right)-2^{23} F\left(\frac{1}{2}, \frac{1}{2}, 24 ;-1\right)\right\} \\
& \begin{array}{r}
\frac{L(1 / 2, f \times g)}{\sqrt{(f, f)(g, g)}}=\frac{A_{f}(2)}{D} \frac{\sqrt{(g, g)}}{\sqrt{(f, f)}} \frac{(4 \pi)^{23}}{\Gamma(23)}\left\{\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{47}{2}\right)\left(\frac{1-\sqrt{2}}{\sqrt{2}}\right)\right. \\
\left.\quad+\left(\frac{1}{\sqrt{2}} \log \frac{e^{\gamma}}{32 \pi^{2} m}-\log \frac{e^{\gamma}}{16 \pi^{2} m}\right)\right\} \\
-\frac{1}{D} \frac{4 \pi^{24}}{\Gamma(23)^{2} \Gamma(46)} \frac{\sqrt{(g, g)}}{\sqrt{(f, f)}}\left\{\sum_{n=1}^{\infty} A_{f}(2) \frac{A_{f}(n+1)}{(n+1)^{23}} \frac{\sigma_{0}(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 24 ;-\frac{1}{n}\right)\right. \\
\left.-2^{23} \sum_{n=1}^{\infty} \frac{A_{f}(n+2)}{(n+2)^{23}} \frac{\sigma_{0}(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 24 ;-\frac{2}{n}\right)-2^{23} F\left(\frac{1}{2}, \frac{1}{2}, 24 ;-1\right)\right\}
\end{array}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{L(1 / 2, g \times g)}{(g, g)}=\frac{1}{D} \frac{(4 \pi)^{23}}{\Gamma(23)}\{ \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{47}{2}\right)\left(\frac{A_{g}(2)}{\sqrt{2}}-A_{f}(2)\right) \\
&\left.+\left(\frac{A_{g}(2)}{\sqrt{2}} \log \frac{e^{\gamma}}{32 \pi^{2} m}-A_{f}(2) \log \frac{e^{\gamma}}{16 \pi^{2} m}\right)\right\} \\
&-\frac{1}{D} \frac{4 \pi^{24} \Gamma(46)}{\Gamma(23)^{2} \Gamma(24)}\left\{\sum_{n=1}^{\infty} A_{f}(2) \frac{A_{g}(n+1)}{(n+1)^{23}} \frac{\sigma_{0}(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 24 ;-\frac{1}{n}\right)\right. \\
&\left.-2^{23} \sum_{n=1}^{\infty} \frac{A_{g}(n+2)}{(n+2)^{23}} \frac{\sigma_{0}(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 24 ;-\frac{2}{n}\right)-2^{23} F\left(\frac{1}{2}, \frac{1}{2}, 24 ;-1\right)\right\}
\end{aligned}
$$

where $D=A_{g}(2)-A_{f}(2)$. As $(f, f)=1.28993 \times 10^{-4}$ and $(g, g)=1.07837 \times$ 10^{-4}, we obtain the central values

$$
\begin{aligned}
L(1 / 2, f \times f) & =-3.07917 \ldots \\
L(1 / 2, f \times g) & =+9.79843 \ldots \times 10^{-3} \\
L(1 / 2, g \times g) & =-2.55952 \ldots
\end{aligned}
$$

Further, if $\operatorname{det} A_{\mathcal{F}, \mathfrak{m}} \neq 0$, we have

$$
\begin{align*}
D_{\mathfrak{m}, 11}(s) & =\frac{1}{D_{\mathfrak{m}}}\left\{\frac{A_{f}\left(m_{1}\right) A_{g}\left(m_{2}\right)}{m_{1}^{s}}-\frac{A_{f}\left(m_{2}\right) A_{g}\left(m_{1}\right)}{m_{2}^{s}}\right\}, \\
D_{\mathfrak{m}, 12}(s) & =\frac{A_{f}\left(m_{1}\right) A_{f}\left(m_{2}\right)}{D_{\mathfrak{m}}} \frac{\sqrt{(g, g)}}{\sqrt{(f, f)}}\left\{\frac{1}{m_{2}^{s}}-\frac{1}{m_{1}^{s}}\right\}, \\
D_{\mathfrak{m}, 21}(s) & =\frac{A_{g}\left(m_{1}\right) A_{g}\left(m_{2}\right)}{D_{\mathfrak{m}}} \frac{\sqrt{(f, f)}}{\sqrt{(g, g)}}\left\{\frac{1}{m_{1}^{s}}-\frac{1}{m_{2}^{s}}\right\}, \tag{3.1}\\
D_{\mathfrak{m}, 22}(s) & =\frac{1}{D_{\mathfrak{m}}}\left\{\frac{A_{f}\left(m_{1}\right) A_{g}\left(m_{2}\right)}{m_{2}^{s}}-\frac{A_{f}\left(m_{2}\right) A_{g}\left(m_{1}\right)}{m_{1}^{s}}\right\},
\end{align*}
$$

where $D_{\mathfrak{m}}=A_{f}\left(m_{1}\right) A_{g}\left(m_{2}\right)-A_{f}\left(m_{2}\right) A_{g}\left(m_{1}\right)$. We find that $A_{\mathcal{F},(1,2)}, A_{\mathcal{F},(2,3)}$ and $A_{\mathcal{F},(3,5)}$ are invertible by calculating their determinants directly. Using (3.1), we can determine the location of zeros of $D_{\mathfrak{m}, 11}(s)$ for a given vector \mathfrak{m}. For example, all zeros of $D_{\mathfrak{m}, 11}(s)$ lie on the line $\sigma=0.343579 \ldots$ for $\mathfrak{m}=$ $(1,2), \sigma=-5.69519 \ldots$ for $\mathfrak{m}=(2,3)$ and $\sigma=1.72665 \ldots$ for $\mathfrak{m}=(3,5)$. These examples show that the location of zeros of $D_{\mathfrak{m}, i j}(s)$ strongly depends on the choice of the vector \mathfrak{m}. It is not clear whether we can always choose a vector \mathfrak{m} such that $D_{\mathfrak{m}, i j}(s)$ satisfies the assumption of Theorem 2 in the case of large dimension of S_{k}.

4. Preliminaries

4.1. Poincaré series. Let m be a nonnegative integer. The m th Poincaré series $P_{m}(z)$ of weight k on Γ is defined by

$$
P_{m}(z)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} j(\gamma, z)^{-k} e(m \gamma z)
$$

where $\Gamma_{\infty}=\left\{ \pm\left(\begin{array}{rr}1 & n \\ 1\end{array}\right): n \in \mathbb{Z}\right\} \subset \Gamma$ and $j(\gamma, z)=c z+d$ for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. If $k>2$, the series on the right-hand side converges absolutely and uniformly on every compact subset of \mathfrak{h}. If $m \geq 1, P_{m}(z)$ is a cusp form, or may vanish identically. In particular, $P_{m}(z)$ vanishes identically for $k \leq 10$ and $k=14$, since a cusp form of weight k on Γ exists only for $k=12$ and $k \geq 16$. Petersson $[15,16]$ showed that a basis of S_{k} can be chosen from the Poincaré series $P_{m}(z)$, and the set $\left\{P_{1}(z), \ldots, P_{d}(z)\right\}\left(d=\operatorname{dim} S_{k}\right)$ is a basis of S_{k}.
4.2. Nonholomorphic Eisenstein series. The nonholomorphic Eisenstein series $E(z, s)$ is defined by

$$
E(z, s)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma}(\operatorname{Im} \gamma z)^{s}=\frac{1}{2} \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \\(c, d)=1}} \frac{y^{s}}{|c z+d|^{2 s}}
$$

The right-hand side converges absolutely for $\sigma>1$. The modified function

$$
E^{*}(z, s)=\zeta^{*}(2 s) E(z, s)
$$

is often called the completed nonholomorphic Eisenstein series. The function $E^{*}(z, s)$ is continued meromorphically to the whole s-plane, and is holomorphic except for simple poles at $s=0$ and 1 . It satisfies the functional equation $E^{*}(z, s)=E^{*}(z, 1-s)$. On the other hand, $E((a z+b) /(c z+d), s)=$ $E(z, s)$ for every $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$. Hence, in particular, $E^{*}(z, s)$ has the Fourier expansion

$$
E^{*}(z, s)=\sum_{n=0}^{\infty} a_{n}(y, s) \cos (2 \pi n x)
$$

where

$$
a_{0}(y, s)= \begin{cases}\zeta^{*}(2 s) y^{s}+\zeta^{*}(2 s-1) y^{1-s}, & s \neq 0,1 / 2,1 \tag{4.1}\\ y^{1 / 2} \log y+(\gamma-\log 4 \pi) y^{1 / 2}, & s=1 / 2\end{cases}
$$

and

$$
\begin{equation*}
a_{n}(y, s)=4 \sqrt{y} \sum_{n=1}^{\infty} \tau_{s-1 / 2}(n) K_{s-1 / 2}(2 \pi n y) \tag{4.2}
\end{equation*}
$$

for $n \neq 0$. Here $\gamma=0.57721 \ldots$ is the Euler constant, $\tau_{\nu}(n)=n^{\nu} \sigma_{-2 \nu}(n)$, $\sigma_{\nu}(n)=\sum_{d \mid n} d^{\nu}$ and $K_{\nu}(t)$ is the K-Bessel function.
4.3. C^{∞}-modular forms. A smooth function f on \mathfrak{h} satisfying $f(\gamma z)=$ $j(\gamma, z)^{k} f(z)$ for every $\gamma \in \Gamma$ is called a C^{∞}-modular form of weight k. The Petersson inner product (f, g) of C^{∞}-modular forms f and g is defined by

$$
(f, g):=\int_{\Gamma \backslash \mathfrak{h}} f(z) \overline{g(z)} y^{k-2} d x d y
$$

if the right-hand side converges. In particular, (f, g) is defined if one of f and g belongs to M_{k}, and the other to S_{k}, where M_{k} is the space of all holomorphic modular forms of weight k on Γ. A C^{∞}-modular form f of weight k is called a C^{∞}-modular form of bounded growth if

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{1}|f(z)| y^{k-2} e^{-\varepsilon y} d x d y<\infty \quad \text { for every } \varepsilon>0 \tag{4.3}
\end{equation*}
$$

4.4. Inner product with Poincaré series. Let $f(z)=\sum_{n \in \mathbb{Z}} a_{n}(y) e(n x)$ be a C^{∞}-modular form of bounded growth. By the unfolding method we derive

$$
\left(f, P_{m}\right)=\int_{0}^{\infty} \int_{0}^{1} f(z) e(-m \bar{z}) y^{k-2} d x d y
$$

for all $m \geq 0$. Substituting the Fourier expansion of f for the right-hand side, we obtain

$$
\begin{equation*}
\left(f, P_{m}\right)=\int_{0}^{\infty} a_{m}(y) e^{-2 \pi m y} y^{k-2} d y \quad(m \geq 0) \tag{4.4}
\end{equation*}
$$

Interchanging integration and summation is justified by the growth condition (4.3) ([21, Proposition 1]). Hence, equality (4.4) holds for all $C^{\infty_{-}}$ modular forms of bounded growth. Thus we have

$$
\begin{aligned}
\left(f, P_{m}\right) & =a_{f}(m) m^{(k-1) / 2} \int_{0}^{\infty} e^{-4 \pi m y} y^{k-2} d y \\
& =(4 \pi)^{-k+1} \Gamma(k-1) a_{f}(m) m^{-(k-1) / 2}
\end{aligned}
$$

for every nonnegative integer m, since the holomorphic cusp form $f(z)=$ $\sum_{n=1}^{\infty} a_{f}(n) n^{(k-1) / 2} e(n z)$ satisfies the condition (4.3).
4.5. Rankin-Selberg L-functions. Let $f(z)=\sum_{n=1}^{\infty} a_{f}(n) n^{(k-1) / 2} e(n z)$ and $g(z)=\sum_{n=0}^{\infty} a_{g}(n) n^{(k-1) / 2} e(n z)$ be modular forms in S_{k} and M_{k}, respectively. The Rankin-Selberg L-function $L(s, f \otimes \bar{g})$ is defined by (2.1) if the real part of s is sufficiently large. The function $F(z)=y^{k} f(z) \overline{g(z)}$ is a bounded Γ-invariant function on \mathfrak{h} with rapid decay as $y \rightarrow+\infty$. Its Fourier expansion is

$$
\begin{aligned}
& F(x+i y)=y^{k} f(z) \overline{g(z)} \\
& =y^{k} \sum_{n \in \mathbb{Z}}\left(\sum_{m=1-n}^{\infty} a_{f}(m+n) \overline{a_{g}(m)}(m+n)^{(k-1) / 2} m^{(k-1) / 2} e^{-2 \pi(2 m+n) y}\right) e(n x)
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
\int_{\Gamma \backslash \mathfrak{h}} y^{k} f(z) \overline{g(z)} E(z, s) d \mu(z) & \\
& =\int_{0}^{\infty}\left(\sum_{n=1}^{\infty} a_{f}(n) \overline{a_{g}(n)} n^{k-1} e^{-4 \pi n y}\right) y^{s+k-1} \frac{d y}{y}
\end{aligned}
$$

for $\sigma>1$ by the unfolding method. The right-hand side is equal to

$$
(4 \pi)^{-s-k+1} \Gamma(s+k-1) \sum_{m=1}^{\infty} a_{f}(n) \overline{a_{g}(n)} n^{-s}
$$

for $\sigma>k / 2+1$, since the series converges absolutely there by the estimates $a_{f}(n)=O\left(n^{1 / 2}\right)$ and $a_{g}(n)=O\left(n^{(k-1) / 2}\right)$. Hence we obtain

$$
\begin{align*}
\left(f E_{s}^{*}, g\right) & =\int_{\Gamma \backslash \mathfrak{h}} y^{k} f(z) \overline{g(z)} E^{*}(z, s) d \mu(z) \tag{4.5}\\
& =\pi^{-s}(4 \pi)^{-s-k+1} \Gamma(s) \Gamma(s+k-1) L(s, f \times \bar{g})
\end{align*}
$$

for $\sigma>k / 2+1$, where $E_{s}^{*}(z)=E^{*}(z, s)$. The left-hand side is defined for all $s \in \mathbb{C}$ except for the poles of $E^{*}(z, s)$, since f is a cusp form. Therefore (4.5) gives the meromorphic continuation of $L(s, f \times \bar{g})$ to \mathbb{C}.
5. Proof of Theorem 1. Theorem 1 is a consequence of the following proposition.

Proposition 1. Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{d}\right\}$ be an orthonormal basis of S_{k}, and let $f_{j}(z)=\sum_{n=1}^{\infty} a_{j}(n) n^{(k-1) / 2} e(n z)$ be the Fourier expansion of f_{j} at $i \infty$. For every $f \in S_{k}$,

$$
\begin{align*}
(4 \pi)^{-k+1} \Gamma(k-1) & \sum_{j=1}^{d} a_{j}(m) L^{*}\left(s, f \times \bar{f}_{j}\right) \tag{5.1}\\
= & a_{f}(m)\left[(4 \pi)^{-s-k+1} \Gamma(s+k-1) \zeta^{*}(2 s) m^{-s}\right. \\
& \left.+(4 \pi)^{s-k} \Gamma(k-s) \zeta^{*}(2 s-1) m^{s-1}\right] \\
& +(4 \pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \\
& \times \sum_{n=1}^{m-1} a_{f}(m-n) \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m-n}{n}\right) \\
& +(4 \pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \\
& \times \sum_{n=1}^{\infty} a_{f}(m+n) \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m+n}{n}\right)
\end{align*}
$$

in the strip (2.5) if the first term $a_{f}(m)[\cdots]$ in (5.1) is replaced by

$$
a_{f}(m)(4 \pi)^{-k+1 / 2} \Gamma\left(k-\frac{1}{2}\right)\left\{\frac{\Gamma^{\prime}}{\Gamma}\left(k-\frac{1}{2}\right)+\log \frac{e^{\gamma}}{16 \pi^{2} m}\right\} \frac{1}{\sqrt{m}}
$$

at the point $s=1 / 2$. The series on the right-hand side of (5.1) converges absolutely and uniformly on every compact subset of the vertical strip (2.5).

Proof. We denote $E^{*}(z, s)$ by $E_{s}^{*}(z)$. Calculating the Petersson inner product $\left(f E_{s}^{*}, P_{m}\right)$ in two ways, we will obtain Proposition 1.

Let m be a positive integer, and let $\mathcal{F}=\left\{f_{1}, \ldots, f_{d}\right\}$ be an orthonormal basis of S_{k}. Expanding $P_{m}(z)$ with respect to the basis \mathcal{F}, we have

$$
P_{m}(z)=(4 \pi)^{-k+1} \Gamma(k-1) m^{-(k-1) / 2} \sum_{j=1}^{d} \overline{a_{j}(m)} f_{j}(z)
$$

where $a_{j}(m)$ is the m th Fourier coefficient of f_{j}. Using this expansion, we obtain the first formula

$$
\begin{equation*}
\left(f E_{s}^{*}, P_{m}\right)=(4 \pi)^{-k+1} \Gamma(k-1) m^{-(k-1) / 2} \sum_{j=1}^{d} a_{j}(m) L^{*}\left(s, f \times \bar{f}_{j}\right) \tag{5.2}
\end{equation*}
$$

for $\sigma>1$. Further (5.2) holds for all $s \in \mathbb{C}$, since f is a cusp form. By Lemma 1 of [14], the product $f(z) E(z, s)$ is a C^{∞}-modular form of bounded growth for $0<\sigma<1$. Hence, by (4.4), we have

$$
\begin{equation*}
\left(f E_{s}^{*}, P_{m}\right)=\int_{0}^{\infty}\left(\sum_{n=1}^{\infty} a_{f}(n) a_{m-n}(y, s) n^{(k-1) / 2} e^{-2 \pi n y}\right) e^{-2 \pi m y} y^{k-2} d y \tag{5.3}
\end{equation*}
$$

for $0<\sigma<1$, where $a_{n}(y, s)$ is the nth Fourier coefficient of $E^{*}(z, s)$ given in (4.1) and (4.2). Formally, the right-hand side of (5.3) is equal to

$$
\begin{aligned}
& \sum_{n=0}^{m-1} a_{f}(m-n)(m-n)^{(k-1) / 2} \int_{0}^{\infty} a_{n}(y, s) e^{-2 \pi(2 m-n) y} y^{k-2} d y \\
& \quad+\sum_{n=1}^{\infty} a_{f}(m+n)(m+n)^{(k-1) / 2} \int_{0}^{\infty} a_{n}(y, s) e^{-2 \pi(2 m+n) y} y^{k-2} d y
\end{aligned}
$$

This formal calculation is justified, since interchanging summation and integration is allowed by the estimates

$$
\begin{aligned}
& \left|a_{0}(y, s)\right| \ll y^{\sigma}+y^{1-\sigma} \\
& \left|a_{n}(y, s)\right| \ll y^{\sigma}\left|\sigma_{1-2 s}(n)\right| e^{-\pi n y / 2} \quad(n \neq 0)
\end{aligned}
$$

and Fubini's theorem. For $n=0$ and $s \neq 0,1 / 2,1$, we have

$$
\begin{align*}
& \int_{0}^{\infty} a_{0}(y, s) e^{-4 \pi m y} y^{k-2} d y \tag{5.4}\\
& =\zeta^{*}(2 s) \int_{0}^{\infty} e^{-4 \pi m y} y^{k+s-2} d y+\zeta^{*}(2 s-1) \int_{0}^{\infty} e^{-4 \pi m y} y^{k-s-1} d y \\
& =(4 \pi m)^{-s-k+1} \Gamma(s+k-1) \zeta^{*}(2 s)+(4 \pi m)^{s-k} \Gamma(k-s) \zeta^{*}(2 s-1)
\end{align*}
$$

For $n=0$ and $s=1 / 2$, we have

$$
\begin{align*}
\int_{0}^{\infty} a_{0}(y & 1 / 2) e^{-4 \pi m y} y^{k-2} d y \tag{5.5}\\
\quad & =\int_{0}^{\infty} e^{-4 \pi m y} y^{k-3 / 2} \log y d y+(\gamma-\log 4 \pi) \int_{0}^{\infty} e^{-4 \pi m y} y^{k-3 / 2} d y \\
& =(4 \pi m)^{-k+1 / 2} \Gamma\left(k-\frac{1}{2}\right)\left\{\frac{\Gamma^{\prime}}{\Gamma}\left(k-\frac{1}{2}\right)+\log \frac{e^{\gamma}}{16 \pi^{2} m}\right\}
\end{align*}
$$

For $n \geq 1$, we have

$$
\begin{align*}
& \int_{0}^{\infty} a_{n}(y, s) e^{-2 \pi(2 m \pm n) y} y^{k-2} d y \tag{5.6}\\
& \quad=2 \tau_{s-1 / 2}(n) \int_{0}^{\infty} K_{s-1 / 2}(2 \pi n y) e^{-2 \pi(2 m \pm n) y} y^{k-3 / 2} d y \\
& \quad=(4 \pi)^{-k+1} m^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \\
& \quad \times \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}}\left(\frac{m}{m \pm n}\right)^{(k-1) / 2} P_{s-1}^{1-k}\left(\frac{2 m \pm n}{n}\right)
\end{align*}
$$

by using the formula

$$
\int_{0}^{\infty} K_{\nu}(x) e^{-a x} x^{\mu-1} d x=\sqrt{\frac{\pi}{2}} \frac{\Gamma(\mu+\nu) \Gamma(\mu-\nu)}{\left(a^{2}-1\right)^{\mu / 2-1 / 4}} P_{\nu-1 / 2}^{-\mu+1 / 2}(a)
$$

for $\operatorname{Re}(a)>-1$ and $\operatorname{Re}(\mu)>|\operatorname{Re}(\nu)|([30$, p. 388]). By (5.3), (5.4) and (5.6), we obtain the second formula

$$
\begin{align*}
\left(f E_{s}^{*}, P_{m}\right)= & m^{-(k-1) / 2} a_{f}(m)\left[(4 \pi)^{-s-k+1} m^{-s} \Gamma(s+k-1) \zeta^{*}(2 s)\right. \tag{5.7}\\
& \left.+(4 \pi)^{s-k} m^{s-1} \Gamma(k-s) \zeta^{*}(2 s-1)\right] \\
+ & m^{-(k-1) / 2}(4 \pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \\
& \times \sum_{n=1}^{m-1} a_{f}(m-n) \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m-n}{n}\right) \\
+ & m^{-(k-1) / 2}(4 \pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \\
& \times \sum_{n=1}^{\infty} a_{f}(m+n) \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m+n}{n}\right)
\end{align*}
$$

Combining (5.2) and (5.7), we obtain (5.1) for $0<\sigma<1$ except for $s=1 / 2$. For $s=1 / 2$, we use (5.5) instead of (5.4).

To complete the proof of Proposition 1, it suffices to show that the series on the right-hand side of (5.1) converges absolutely in the vertical strip (2.5), since the left-hand side of (5.1) is defined for all $s \in \mathbb{C}$ except for the possible poles at $s=1$ and 0 . Moreover, it suffices to show that the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{f}(m+n) \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}} P_{s-1}^{k-1}\left(\frac{2 m+n}{n}\right) \tag{5.8}
\end{equation*}
$$

converges absolutely in the strip (2.5), since

$$
P_{s-1}^{1-k}(z)=\frac{\Gamma(s-k+1)}{\Gamma(s+k-1)} P_{s-1}^{k-1}(z)
$$

for every positive integer $k \geq 2$. Suppose that $\left|a_{f}(n)\right| \ll n^{1 / 2-\alpha+\varepsilon}$ for some real number $0 \leq \alpha \leq 1 / 2$. Then

$$
\begin{aligned}
\left.\sum_{n=1}^{\infty}\left|a_{f}(m+n)\right| \frac{\left|\tau_{s-1 / 2}(n)\right|}{\sqrt{n}} \right\rvert\, & \left.P_{s-1}^{k-1}\left(\frac{2 m+n}{n}\right) \right\rvert\, \\
& \ll m_{m} \sum_{n=1}^{\infty} n^{|\sigma-1 / 2|-\alpha+\varepsilon}\left|P_{s-1}^{k-1}\left(\frac{2 m+n}{n}\right)\right|
\end{aligned}
$$

since $\left|\tau_{s-1 / 2}(n)\right|=\left|n^{s-1 / 2} \sigma_{1-2 s}(n)\right| \ll{ }_{\varepsilon} n^{|\sigma-1 / 2|+\varepsilon}$. Using the formula

$$
\begin{aligned}
P_{s-1}^{k-1}(z)= & \frac{\Gamma(s+k-1)\left(z^{2}-1\right)^{(k-1) / 2}}{2^{k-1} \sqrt{\pi} \Gamma(k-1 / 2) \Gamma(s-k+1)} \\
& \times \int_{0}^{\pi}\left(z+\sqrt{z^{2}-1} \cos \theta\right)^{s-k} \sin ^{2 k-2} \theta d \theta
\end{aligned}
$$

for $\operatorname{Re}(z)>0$ and $k \geq 1$ ([11, p. 199]), we have

$$
\left|P_{s-1}^{k-1}\left(\frac{2 m+n}{n}\right)\right|<_{m} n^{-(k-1) / 2}
$$

Hence we obtain

$$
|\operatorname{series}(5.8)|<_{m} \sum_{n=1}^{\infty} n^{|\sigma-1 / 2|-(k-1) / 2-\alpha+\varepsilon}
$$

The right-hand side converges absolutely for $2-k / 2-\alpha<\operatorname{Re}(s)<k / 2+$ $\alpha-1$. Hence the Ramanujan-Deligne estimate $\left|a_{f}(n)\right|<_{\varepsilon} n^{\varepsilon}$ implies that the series on the right-hand side of (5.1) converges absolutely in the vertical strip (2.5).

Proof of Theorem 1. Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{d}\right\}, \mathfrak{m}=\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}_{>0}^{d}$ with $0<m_{1}<\cdots<m_{d}$ and $\left\{\alpha_{i j}\right\}$ be as in the statement of the theorem. By Proposition 1,

$$
\begin{equation*}
(4 \pi)^{-k+1} \Gamma(k-1) A_{\mathcal{F}, \mathfrak{m}} \mathcal{L}_{\mathcal{F}, f}(s)=\mathcal{N}_{\mathfrak{m}, f}(s) \tag{5.9}
\end{equation*}
$$

where

$$
\mathcal{L}_{\mathcal{F}, f}(s)=\left(\begin{array}{c}
L^{*}\left(s, f \times \bar{f}_{1}\right) \\
\vdots \\
L^{*}\left(s, f \times \bar{f}_{d}\right)
\end{array}\right), \quad \mathcal{N}_{\mathfrak{m}, f}(s)=\left(\begin{array}{c}
N_{f}\left(s, m_{1}\right) \\
\vdots \\
N_{f}\left(s, m_{d}\right)
\end{array}\right)
$$

and

$$
\begin{aligned}
N_{f}\left(s, m_{h}\right)= & a_{f}\left(m_{h}\right)\left[(4 \pi)^{-s-k+1} \Gamma(s+k-1) \zeta^{*}(2 s) m_{h}^{-s}\right. \\
& \left.+(4 \pi)^{s-k} \Gamma(k-s) \zeta^{*}(2 s-1) m_{h}^{s-1}\right] \\
+ & (4 \pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \\
& \times \sum_{n=1}^{m_{h}-1} a_{f}\left(m_{h}-n\right) \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m_{h}-n}{n}\right) \\
+ & (4 \pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \\
& \times \sum_{n=1}^{\infty} a_{f}\left(m_{h}+n\right) \frac{\tau_{s-1 / 2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m_{h}+n}{n}\right)
\end{aligned}
$$

Multiplying (5.9) by the inverse matrix $A_{\mathcal{F}, \mathfrak{m}}^{-1}$, we have

$$
(4 \pi)^{-k+1} \Gamma(k-1) \mathcal{L}_{\mathcal{F}, f}(s)=A_{\mathcal{F}, \mathfrak{m}}^{-1} \mathcal{N}_{\mathfrak{m}, f}(s)
$$

Comparing the j th components of both sides, we obtain

$$
(4 \pi)^{-k+1} \Gamma(k-1) L^{*}\left(s, f \times \bar{f}_{j}\right)=\sum_{h=1}^{d} \alpha_{j h} N_{f}\left(s, m_{h}\right)
$$

Taking $f=f_{i}$, we obtain equality (2.4) of Theorem 1.
6. Proof of Theorem 2. It suffices to investigate the zeros of $L_{\mathfrak{m}, i j}^{N}(s)$ in $\sigma \geq 1 / 2$, because of the functional equation (2.12) of $L_{\mathfrak{m}, i j}^{N}(s)$. By definition
(2.11) of $L_{\mathfrak{m}, i j}^{N}(s)$, we have

$$
\begin{equation*}
L_{\mathfrak{m}, i j}^{N}(s)=(4 \pi)^{-s-k+1} \Gamma(s+k-1) \zeta^{*}(2 s) D_{\mathfrak{m}, i j}(s)\left\{1+R_{\mathfrak{m}, i j}^{N}(s)\right\} \tag{6.1}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{\mathfrak{m}, i j}^{N}(s)= & (4 \pi)^{2 s-1} \frac{\Gamma(k-s) \zeta^{*}(2 s-1)}{\Gamma(s+k-1) \zeta^{*}(2 s)} \frac{D_{\mathfrak{m}, i j}(1-s)}{D_{\mathfrak{m}, i j}(s)} \\
& +(4 \pi)^{s} \frac{\Gamma(k-s)\left\{W_{\mathfrak{m}, i j}^{+, N}(s)+W_{\mathfrak{m}, i j}^{-}(s)\right\}}{\zeta^{*}(2 s) D_{\mathfrak{m}, i j}(s)}
\end{aligned}
$$

By the assumption on the location of zeros of $D_{\mathfrak{m}, i j}(s)$ in Theorem 2, the factor $\zeta^{*}(2 s) D_{\mathfrak{m}, i j}(s)$ in (6.1) has only finitely many zeros in $\sigma \geq 1 / 2$. Hence, if the inequality

$$
\left|R_{\mathfrak{m}, i j}^{N}(s)\right|<1
$$

is valid for $1 / 2<\sigma \leq a$ and sufficiently large $|t|$, then $L_{\mathfrak{m}, i j}^{N}(s) \neq 0$ in that region. Now we show that there exists $T_{N, a, \varepsilon}>1$ such that

$$
\begin{equation*}
\left|R_{\mathfrak{m}, i j}^{N}(\sigma+i t)\right| \ll|t|^{1-2 \sigma} \log |t| \tag{6.2}
\end{equation*}
$$

for $1 / 2 \leq \sigma \leq a$ and $|t| \geq T_{N, a, \varepsilon}$. We define

$$
\begin{align*}
I_{\mathfrak{m}, i j}(s) & =(4 \pi)^{2 s-1} \frac{\Gamma(k-s) \zeta^{*}(2 s-1)}{\Gamma(s+k-1) \zeta^{*}(2 s)} \frac{D_{\mathfrak{m}, i j}(1-s)}{D_{\mathfrak{m}, i j}(s)} \tag{6.3}\\
J_{\mathfrak{m}, i j}^{N}(s) & =(4 \pi)^{s} \frac{\Gamma(k-s)\left\{W_{\mathfrak{m}, i j}^{+, N}(s)+W_{\mathfrak{m}, i j}^{-}(s)\right\}}{\zeta^{*}(2 s) D_{\mathfrak{m}, i j}(s)} \tag{6.4}
\end{align*}
$$

so that

$$
\begin{equation*}
R_{\mathfrak{m}, i j}^{N}(s)=I_{\mathfrak{m}, i j}(s)+J_{\mathfrak{m}, i j}^{N}(s) \tag{6.5}
\end{equation*}
$$

For $I_{\mathfrak{m}, i j}(s)$ and $J_{\mathfrak{m}, i j}^{N}(s)$, we obtain the following estimates.
Lemma 1. There exists $T_{1}>0$ such that

$$
\left|I_{\mathfrak{m}, i j}(s)\right|=O\left(|t|^{1-2 \sigma}\right)
$$

for $1 / 2 \leq \sigma \leq a$ and $|t| \geq T_{1}$, where the implied constant depends on \mathfrak{m}, i and j.

Lemma 2. There exists $T_{2}>0$ such that

$$
\left|J_{\mathfrak{m}, i j}^{N}(s)\right|=O\left(|t|^{1-2 \sigma} \log |t|\right)
$$

for $1 / 2 \leq \sigma \leq a$ and $|t| \geq T_{2}$, where the implied constant depends on N, \mathfrak{m}, i and j.

Lemma 1, Lemma 2 and (6.5) imply (6.2). Hence the proof of Theorem 2 will be completed if we prove Lemmas 1 and 2 . To do that, we use the following lemma.

Lemma 3. Let $g(s)$ be an exponential polynomial having the form

$$
g(s)=\sum_{j=1}^{n} p_{j} e^{\beta_{j} s}, \quad 0=\beta_{0}<\beta_{1}<\cdots<\beta_{n}
$$

where $0 \neq p_{j} \in \mathbb{C}(0 \leq j \leq n)$. Then $|g(s)|$ is uniformly bounded away from zero if s is uniformly separated from the zeros of $g(s)$.

Proof. See Theorem 12.6 of [2].
Proof of Lemma 1. Let $\xi(s)=s(s-1) \zeta^{*}(s)$. We have

$$
\left|(4 \pi)^{2 s-1} \frac{\Gamma(k-s) \zeta^{*}(2 s-1)}{\Gamma(s+k-1) \zeta^{*}(2 s)}\right|=\left|\frac{t}{4 \pi}\right|^{1-2 \sigma} \frac{1+O\left(|t|^{-1}\right)}{1+O\left(|t|^{-1}\right)}\left|\frac{s}{s-1}\right|\left|\frac{\xi(2 s-1)}{\xi(2 s)}\right|
$$

for $1 / 2 \leq \sigma \leq a$ and $|t| \geq 1$ by using Stirling's formula

$$
|\Gamma(\sigma+i t)|=\sqrt{2 \pi}|t|^{\sigma-1 / 2} e^{-(\pi / 2)|t|}\left(1+O\left(|t|^{-1}\right)\right)
$$

for $\sigma_{1} \leq \sigma \leq \sigma_{2}$ and $|t| \geq 1$. By the proof of Theorem 2 in [10], we have

$$
\left|\frac{\xi(2 s-1)}{\xi(2 s)}\right| \leq 1
$$

for $\sigma \geq 1 / 2$. Hence, we obtain

$$
\begin{equation*}
\left|(4 \pi)^{2 s-1} \frac{\Gamma(k-s) \zeta^{*}(2 s-1)}{\Gamma(s+k-1) \zeta^{*}(2 s)}\right|=O\left(|t|^{1-2 \sigma}\right) \tag{6.6}
\end{equation*}
$$

for $1 / 2 \leq \sigma \leq a$ and $|t| \geq t_{1}(>1)$. By Lemma 3 and the assumption on the location of zeros of $D_{\mathfrak{m}, i j}(s)$, we have

$$
\begin{equation*}
\left|\frac{D_{\mathfrak{m}, i j}(1-s)}{D_{\mathfrak{m}, i j}(s)}\right|=O(1) \tag{6.7}
\end{equation*}
$$

for $1 / 2 \leq \sigma \leq a$ and $|t| \geq t_{2}$. By (6.3), (6.6) and (6.7), we obtain the estimate in Lemma 1.

Proof of Lemma 2. The asymptotic formula (A.1) of the Appendix yields

$$
\begin{aligned}
(4 \pi)^{s} \frac{\Gamma(k-s)}{\zeta^{*}(2 s)} & P_{s-1}^{1-k}(\cosh \zeta) \\
= & \frac{(2 \pi)^{2 s}}{\sqrt{\pi}} \frac{\Gamma(k-s)}{\Gamma(s+k-1)} \frac{1}{\zeta(2 s)} \frac{1}{(s-1)^{1 / 2}} \frac{e^{-\zeta / 2}}{\sqrt{1-e^{-2 \zeta}}} \\
& \times\left[e^{(s-1 / 2) \zeta}+e^{ \pm \pi i(k-1 / 2)} e^{(-s+1 / 2) \zeta}+O\left(|s-1|^{-1}\right)\right]
\end{aligned}
$$

where the implied constant depends on $\zeta>0$. Therefore,

$$
\begin{aligned}
\left\lvert\,(4 \pi)^{s} \frac{\Gamma(k-s)}{\zeta^{*}(2 s)}\right. & P_{s-1}^{1-k}(\cosh \zeta) \mid \\
= & \frac{(2 \pi)^{2 \sigma}}{\sqrt{\pi}}\left|\frac{\Gamma(k-s)}{\Gamma(s+k-1)}\right| \frac{1}{|\zeta(2 s)|} \frac{1}{\sqrt{|s-1|}} \\
& \times \frac{e^{-\zeta / 2}}{\sqrt{1-e^{-2 \zeta}}}\left[e^{(\sigma-1 / 2) \zeta}+e^{(-\sigma+1 / 2) \zeta}+O\left(|s-1|^{-1}\right)\right] .
\end{aligned}
$$

Using Stirling's formula, we have

$$
\left|\frac{\Gamma(k-s)}{\Gamma(s+k-1)}\right|=|t|^{1-2 \sigma} \frac{1+O\left(|t|^{-1}\right)}{1+O\left(|t|^{-1}\right)} \ll|t|^{1-2 \sigma}
$$

for $1 / 2 \leq \sigma<a$ and $|t| \geq t_{3}$. On the other hand,

$$
\frac{1}{|\zeta(s)|}=O(\log (|t|+2))
$$

for $\sigma \geq 1-A / \log (|t|+2)([27$, p. 60$])$. Hence we have

$$
\begin{equation*}
\left|(4 \pi)^{s} \frac{\Gamma(k-s)}{\zeta^{*}(2 s)} P_{s-1}^{1-k}(\cosh \zeta)\right|=O\left(|t|^{1-2 \sigma} \log |t|\right) \tag{6.8}
\end{equation*}
$$

for $1 / 2-A^{\prime} / \log |t| \leq \sigma \leq a$ and $|t| \geq t_{4}$. By Lemma 3 and the assumption on the location of zeros of $D_{\mathfrak{m}, i j}(s)$, we have

$$
\begin{equation*}
\left|\frac{1}{D_{\mathfrak{m}, i j}(s)}\right|=O(1) \tag{6.9}
\end{equation*}
$$

for $1 / 2 \leq \sigma \leq a$ and $|t| \geq t_{5}$. Here we note that

$$
\begin{gather*}
1+\frac{2}{m_{h}-1}<\frac{2 m_{h}-n}{n}<2 m_{h}-1 \quad\left(1 \leq n \leq m_{h}-1,1 \leq h \leq d\right) \tag{6.10}\\
1+\frac{2 m_{h}}{N}<\frac{2 m_{h}+n}{n}<2 m_{h}+1 \quad(1 \leq n \leq N, 1 \leq h \leq d)
\end{gather*}
$$

for fixed $\mathfrak{m}=\left(m_{1}, \ldots, m_{d}\right)$. Combining (2.10), (6.4), (6.8), (6.9) and (6.10), we obtain Lemma 2 .
7. Relation with the holomorphic projection. In this section, we reconsider the argument of Section 5 from the viewpoint of the holomorphic projection of Sturm [21]. Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{d}\right\}$ be an orthonormal basis of S_{k}. Define

$$
\begin{equation*}
K(z, w)=\sum_{i=1}^{d} f_{i}(z) \overline{f_{i}(w)} \tag{7.1}
\end{equation*}
$$

Then $K(z, w)$ belongs to S_{k} as a function of $z \in \mathfrak{h}$ for every fixed $w \in \mathfrak{h}$, and has the reproducing property:

$$
\begin{equation*}
(g(z), K(z, w))=g(w) \quad \text { for any } g \in S_{k} \tag{7.2}
\end{equation*}
$$

For a C^{∞}-modular form F of bounded growth, we define

$$
\pi(F)(w):=(F(z), K(z, w))
$$

Then $\pi(F)(w)$ belongs to S_{k}, and is called the holomorphic projection of F. Using the formula

$$
\begin{equation*}
K(z, w)=\sum_{m=1}^{\infty} \frac{(4 \pi m)^{k-1}}{\Gamma(k-1)} P_{m}(z) e(-m \bar{w}) \tag{7.3}
\end{equation*}
$$

([21, p. 333]), we obtain

$$
\begin{equation*}
\pi(F)(w)=\sum_{m=1}^{\infty} \frac{(4 \pi m)^{k-1}}{\Gamma(k-1)}\left(F, P_{m}\right) e(m w) \tag{7.4}
\end{equation*}
$$

where the inner product $\left(F, P_{m}\right)$ is given by (4.4). Using (7.2), we have

$$
((F(z), K(z, w)), g(w))=(F(z),(g(w), K(w, z)))=(F(z), g(z))
$$

Hence, we obtain

$$
\begin{equation*}
(F, g)=(\pi(F), g) \tag{7.5}
\end{equation*}
$$

Applying (7.5) to $F(z)=\left(f E_{s}^{*}\right)(z):=f(z) E^{*}(z, s)$, we have

$$
\begin{equation*}
L^{*}(s, f \times \bar{g})=\left(\pi\left(f E_{s}^{*}\right), g\right) \tag{7.6}
\end{equation*}
$$

by (4.5) (compare (7.6) with (2.10) of [12]). By (7.3) and (7.5), we have

$$
\begin{equation*}
(F, g)=(\pi(F), g)=\sum_{m=1}^{\infty} \frac{(4 \pi m)^{k-1}}{\Gamma(k-1)} \phi_{m}(g)\left(F, P_{m}\right) \tag{7.7}
\end{equation*}
$$

where

$$
\phi_{m}(g)=\int_{\Gamma \backslash \mathfrak{h}} \overline{g(w)} e(m w) d \mu(w)
$$

Applying (7.7) to $F=f E_{s}^{*}$, we obtain

$$
\begin{equation*}
L^{*}(s, f \times \bar{g})=\sum_{m=1}^{\infty} \frac{(4 \pi m)^{k-1}}{\Gamma(k-1)} \phi_{m}(g)\left(f E_{s}^{*}, P_{m}\right) \tag{7.8}
\end{equation*}
$$

by (7.6). However, this formula for $L(s, f \times \bar{g})$ is not useful for application, because each $\phi_{m}(g)$ depends on a choice of a fundamental domain of Γ.

To improve formula (7.8) of $L(s, f \times \bar{g})$, we consider the Fourier coefficients of $\pi\left(f E_{s}^{*}\right)$. Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{d}\right\}$ be an orthogonal basis of S_{k}. Applying (7.4) to $F=f E_{s}^{*}$, we have

$$
\begin{equation*}
\pi\left(f E_{s}^{*}\right)(z)=\sum_{m=1}^{\infty} \frac{(4 \pi m)^{k-1}}{\Gamma(k-1)}\left(f E_{s}^{*}, P_{m}\right) e(m z) \tag{7.9}
\end{equation*}
$$

Because $\pi\left(f E_{s}^{*}\right) \in S_{k}$, there exist functions $C_{j}(s)$ of s such that

$$
\begin{equation*}
\pi\left(f E_{s}^{*}\right)(z)=\sum_{j=1}^{d} C_{j}(s) f_{j}(z) \tag{7.10}
\end{equation*}
$$

By (7.1) and (7.6), we have

$$
\begin{equation*}
C_{j}(s)=\frac{1}{\left(f_{j}, f_{j}\right)}\left(\pi\left(f E_{s}^{*}\right), f_{j}\right)=\frac{1}{\left(f_{j}, f_{j}\right)} L^{*}\left(s, f \times \bar{f}_{j}\right) \tag{7.11}
\end{equation*}
$$

Here we have used the Fourier expansion $f_{j}(z)=\sum_{n=1}^{\infty} a_{j}(n) n^{(k-1) / 2} e(n z)$. Combining (7.9)-(7.11), and comparing the m th Fourier coefficients of both sides, we obtain

$$
\begin{aligned}
& \sum_{j=1}^{d} C_{j}(s) a_{j}(m)=\sum_{j=1}^{d} \frac{a_{j}(m)}{\left(f_{j}, f_{j}\right)} L^{*}\left(s, f \times \bar{f}_{j}\right)=\frac{(4 \pi m)^{k-1}}{\Gamma(k-1)}\left(f E_{s}^{*}, P_{m}\right) \\
&= \frac{a_{f}(m)}{(f, f)}\left\{(4 \pi m)^{-s} \frac{\Gamma(s+k-1)}{\Gamma(k-1)} \zeta^{*}(2 s)+(4 \pi m)^{s-1} \frac{\Gamma(k-s)}{\Gamma(k-1)} \zeta^{*}(2 s-1)\right. \\
& \quad+\frac{\Gamma(s+k-1) \Gamma(k-s)}{\Gamma(k-1)} \sum_{n=1}^{m-1} \frac{a_{f}(m-n)}{a_{f}(m)} \frac{\tau_{s}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m-n}{n}\right) \\
&\left.\quad+\frac{\Gamma(s+k-1) \Gamma(k-s)}{\Gamma(k-1)} \sum_{n=1}^{\infty} \frac{a_{f}(m+n)}{a_{f}(m)} \frac{\tau_{s}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2 m+n}{n}\right)\right\}
\end{aligned}
$$

This is nothing other than equality (5.1).

Appendix. Asymptotic expansion of $P_{\nu}^{\mu}(z)$. In this section, we give an asymptotic expansion of the associated Legendre functions $P_{\nu}^{\mu}(z)$ for large $|\nu|$ according to Watson [29], where ν and μ do not have to be integers. The associated Legendre function $P_{\nu}^{\mu}(z)$ of the first kind is defined by

$$
P_{\nu}^{\mu}(z)=\frac{1}{\Gamma(1-\mu)}\left(\frac{z+1}{z-1}\right)^{\mu / 2} F\left(-\nu, \nu+1,1-\mu ; \frac{1-z}{2}\right)
$$

for $z-1 \in \mathbb{C} \backslash(-\infty, 0]$. We write $z=\cosh \zeta, \zeta=\xi+i \eta(\xi, \eta \in \mathbb{R})$ for $z-1 \in \mathbb{C} \backslash(-\infty, 0]$, and define the values $\omega_{i}=\omega_{i}(z)(i=1,2)$ by

$$
\omega_{1}=-\arctan \left(\frac{\eta-\pi}{\xi}\right), \quad \omega_{2}=\arctan \left(\frac{\eta}{\xi}\right)
$$

if $\eta \geq 0$, and by

$$
\omega_{1}=-\arctan \left(\frac{\eta}{\xi}\right), \quad \omega_{2}=-\arctan \left(\frac{\eta+\pi}{\xi}\right)
$$

if $\eta \leq 0$. In each case arctan denotes an acute angle, positive or negative. Define

$$
\tau=\log \left(\frac{t-z}{t^{2}-1}\right)+\log \left(2 e^{\zeta}\right)
$$

We define the numbers c_{n} and d_{n} by using the expansion

$$
(1-t)^{\mu}(1+t)^{-\mu}(z-t)^{-1} \frac{d t}{d \tau}= \pm C \sum_{n=0}^{\infty} c_{n} \tau^{n-1 / 2}+\sum_{n=0}^{\infty} d_{n} \tau^{n}
$$

where $C=2^{-1}\left(1-e^{\zeta}\right)^{\mu+1 / 2}\left(1+e^{\zeta}\right)^{1 / 2-\mu}\left(z-e^{\zeta}\right)^{-1}$ and multiple-valued functions are specified by the conventions

$$
\left|\arg \left(1-e^{\zeta}\right)\right|<\pi, \quad\left|\arg \left(1+e^{\zeta}\right)\right|<\pi .
$$

In particular,

$$
c_{0}=1, \quad c_{1}=\frac{8 \mu^{2}-3+3 e^{2 \zeta}}{4\left(1-e^{2 \zeta}\right)} .
$$

We define the numbers c_{n}^{\prime} from c_{n} by changing the sign of ζ. In particular,

$$
c_{0}^{\prime}=1, \quad c_{1}^{\prime}=\frac{8 \mu^{2}-3+3 e^{-2 \zeta}}{4\left(1-e^{-2 \zeta}\right)}
$$

Proposition 2 (Watson). Let z be a complex number such that $z-1 \in$ $\mathbb{C} \backslash(-\infty, 0]$. In the range of $\arg \nu$ depending on z and given by

$$
-\frac{\pi}{2}-\omega_{2}+\delta \leq \arg \nu \leq \frac{\pi}{2}+\omega_{1}+\delta,
$$

the associated Legendre function $P_{\nu}^{\mu}(z)$ has the asymptotic expansion

$$
\begin{align*}
P_{\nu}^{\mu}(z)= & \frac{\Gamma(\nu+1)}{\Gamma(\nu-\mu+1)} \frac{e^{-\zeta / 2}}{(\nu \pi)^{1 / 2}\left(1-e^{-2 \zeta}\right)^{1 / 2}} \tag{A.1}\\
& \times\left[e^{(\nu+1 / 2) \zeta} \sum_{n=0}^{N-1} \frac{\Gamma(n+1 / 2)}{\Gamma(1 / 2)} c_{n} \nu^{-n}\right. \\
& \left.+e^{\mp \pi i(\mu-1 / 2)} e^{-(\nu+1 / 2) \zeta} \sum_{n=0}^{N-1} \frac{\Gamma(n+1 / 2)}{\Gamma(1 / 2)} c_{n}^{\prime} \nu^{-n}+O\left(|\nu|^{-N}\right)\right]
\end{align*}
$$

as $|\nu| \rightarrow+\infty$, where the implied constant depends on z and μ.

References

[1] H. Bauer, Zeros of Asai-Eisenstein series, Math. Z. 254 (2006), 219-237.
[2] R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York, 1963.
[3] A. V. Egorov, A remark on the distribution of the zeros of the Riemann zeta function and a continuous analogue of Kakeya's theorem, Mat. Sb. 194 (2003), no. 10, 107-116 (in Russian).
[4] S. M. Gonek, Finite Euler products and the Riemann hypothesis, prepublication, 2007, http://arxiv.org/abs/0704.3448.
[5] T. Hayashi, Computation of Weng's rank 2 zeta function over an algebraic number field, J. Number Theory 125 (2007), 473-527.
[6] D. A. Hejhal, On a result of G. Pólya concerning the Riemann ξ-function, J. Anal. Math. 55 (1990), 59-95.
[7] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. (2) 140 (1994), 161-181 (with an appendix by D. Goldfeld, J. Hoffstein and D. Lieman).
[8] J. Hoffstein and D. Ramakrishnan, Siegel zeros and cusp forms, Int. Math. Res. Notices 1995, no. 6, 279-308.
[9] H. Ki, All but finitely many non-trivial zeros of the approximations of the Epstein zeta function are simple and on the critical line, Proc. London Math. Soc. (3) 90 (2005), 321-344.
[10] J. C. Lagarias and M. Suzuki, The Riemann hypothesis for certain integrals of Eisenstein series, J. Number Theory 118 (2006), 98-122.
[11] N. N. Lebedev, Special Functions and Their Applications, Dover Publ., New York, 1972.
[12] S. Mizumoto, Certain L-functions at $s=1 / 2$, Acta Arith. 88 (1999), 51-66.
[13] W. Müller, A spectral interpretation of the zeros of the constant term of certain Eisenstein series, J. Reine Angew. Math. 620 (2008), 67-84.
[14] T. Noda, An application of the projections of C^{∞} automorphic forms, Acta Arith. 72 (1995), 229-234.
[15] H. Petersson, Die linearen Relationen zwischen den ganzen Poincaréschen Reihen von reeller Dimension zur Modulgruppe, Abh. Math. Sem. Hansischen Univ. 12 (1938), 414-472.
[16] -, Über eine Metrisierung der ganzen Modulformen, Jber. Deutsch. Math. Verein. 49 (1939), 49-75.
[17] G. Pólya, Bemerkung über die Integraldarstellung der Riemannschen ζ-Funktion, Acta Math. 48 (1926), 305-317.
[18] D. Ramakrishnan and S. Wang, On the exceptional zeros of Rankin-Selberg Lfunctions, Compos. Math. 135 (2003), 211-244.
[19] R. A. Rankin, The scalar product of modular forms, Proc. London Math. Soc. (3) 2 (1952), 198-217.
[20] H. M. Stark, On the zeros of Epstein's zeta function, Mathematika 14 (1967), 47-55.
[21] J. Sturm, The critical values of zeta functions associated to the symplectic group, Duke Math. J. 48 (1981), 327-350.
[22] M. Suzuki, An analogue of the Chowla-Selberg formula for several automorphic lfunctions, in: Probability and Number Theory (Kanazawa, 2005), Adv. Stud. Pure Math. 49, Math. Soc. Japan, Tokyo, 2007, 479-506.
[23] -, A proof of the Riemann hypothesis for the Weng zeta function of rank 3 for the rationals, in: The Conference on L-Functions, World Sci., Hackensack, NJ, 2007, 175-199.
[24] -, The Riemann hypothesis for Weng's zeta function of $\operatorname{Sp}(4)$ over \mathbb{Q}, with an appendix by L. Weng, J. Number Theory, to appear.
[25] M. Suzuki and L. Weng, Zeta functions for G_{2} and their zeros, Int. Math. Res. Notices, to appear.
[26] P. R. Taylor, On the Riemann zeta function, Quart. J. Math. Oxford Ser. 16 (1945), 1-21.
[27] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, New York, 1986.
[28] O. C. Velásquez, Majoration du nombre de zéros d'une fonction méromorphe en dehors d'une droite verticale et applications, prepublication, 2007, http://arxiv.org/ abs/0712.1266.
[29] G. N. Watson, Asymptotic expansions of hypergeometric functions, Trans. Cambridge Philos. Soc. 22 (1918), 277-308.
[30] -, A Treatise on the Theory of Bessel Functions, Cambridge Math. Library, Cambridge Univ. Press, Cambridge, 1995 (reprint of the second 1944 edition).
[31] L. Weng, A rank two zeta and its zeros, J. Ramanujan Math. Soc. 21 (2006), 205266.
[32] -, A geometric approach to L-functions, in: The Conference on L-Functions, World Sci., Hackensack, NJ, 2007, 219-370.
[33] -, Symmetries and the Riemann hypothesis, in: Algebraic and Arithmetic Structure of Moduli Spaces, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, to appear.
[34] H. Yoshida, On calculations of zeros of L-functions related with Ramanujan's discriminant function on the critical line, J. Ramanujan Math. Soc. 3 (1988), 87-95.

Graduate School of Mathematical Sciences
The University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153-8914, Japan
E-mail: msuzuki@ms.u-tokyo.ac.jp

Received on 8.1.2008
and in revised form on 22.8.2008

[^0]: 2000 Mathematics Subject Classification: 11M36, 11M41, 11F11, 11F66, 11F67.
 Key words and phrases: Rankin-Selberg L-functions, zeros, approximate functions.

