# On zeros of approximate functions of the Rankin–Selberg *L*-functions

by

## MASATOSHI SUZUKI (Tokyo)

Notations. As usual,  $\mathbb{Z}$  is the ring of rational integers,  $\mathbb{Z}_{>0}$  the set of positive integers,  $\mathbb{C}$  the field of complex numbers. We denote by  $\mathfrak{h}$  the upper half-plane, and by  $\Gamma$  the full modular group  $\mathrm{PSL}_2(\mathbb{Z})$ . For a complex variable s, we put  $e(s) = e^{2\pi i s}$ ,  $\Gamma_{\mathbb{R}}(s) = \pi^{-s/2} \Gamma(s/2)$  and  $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s} \Gamma(s)$ . We denote by  $\zeta(s)$  and  $\zeta^*(s) = \Gamma_{\mathbb{R}}(s)\zeta(s)$  the Riemann zeta-function and the completed Riemann zeta-function, respectively, and denote by  $\sigma_{\nu}(n) = \sum_{d|n} d^{\nu}$  the divisor function. Throughout the paper, z = x + iy ( $x \in \mathbb{R}$ , y > 0) is a variable on  $\mathfrak{h}$ , and  $s = \sigma + it$  ( $\sigma, t \in \mathbb{R}$ ) is a complex variable. A sum over the empty set is meant to be zero.

# **1. Introduction.** Let C(s) be the trigonometric function

 $C(s) := 2\cos(i(s-1/2)) = e^{s-1/2} + e^{-(s-1/2)}.$ 

It satisfies the (trivial) functional equation C(s) = C(1 - s). A well-known but remarkable fact about C(s) is that it satisfies the Riemann hypothesis: all zeros of C(s) lie on the central line  $\sigma = 1/2$  of its functional equation. We indicate how to prove the Riemann hypothesis for C(s). First, we note the (trivial) decomposition

$$C(s) = \varphi(s) + \varphi(1-s), \quad \varphi(s) = e^{s-1/2}.$$

Then we have

$$C(s) = \varphi(s) \left( 1 + \frac{\varphi(1-s)}{\varphi(s)} \right),$$

and find that

(A) 
$$\varphi(s) \neq 0$$
 for  $\sigma > 1/2$ ,  
(B)  $\left| \frac{\varphi(1-s)}{\varphi(s)} \right| < 1$  for  $\sigma > 1/2$ .

2000 Mathematics Subject Classification: 11M36, 11M41, 11F11, 11F66, 11F67. Key words and phrases: Rankin–Selberg L-functions, zeros, approximate functions. Property (B) implies that

(C) 
$$1 + \frac{\varphi(1-s)}{\varphi(s)} \neq 0$$
 for  $\sigma > 1/2$ .

Therefore,  $C(s) \neq 0$  for  $\sigma > 1/2$  by (A) and (C). The functional equation gives  $C(s) \neq 0$  if  $\sigma \neq 1/2$ . Hence we obtain the Riemann hypothesis for the function C(s). Note that C(s) has at least one zero.

Now let L(s) be an entire function satisfying the functional equation

$$L(s) = L(1-s).$$

The above argument implies that if L(s) has the decomposition

(1.1) 
$$L(s) = \varphi(s) + \varphi(1-s)$$

such that  $\varphi(s)$  satisfies (A) and (B), then the Riemann hypothesis holds for L(s).

The study of zeros of entire functions along this line has a long history. The decomposition (1.1) with the function  $\varphi(s)$  satisfying (A) and (B) is possible in several interesting cases.

Consider the case of the Riemann zeta function. Let

$$\phi(x) = 4 \sum_{n=1}^{\infty} (2\pi^2 n^4 x^{9/2} - 3\pi n^2 x^{5/2}) e^{-\pi n^2 x^2}.$$

Then we have

$$\xi(s) = s(s-1)\zeta^*(s) = \int_1^\infty \phi(x)(x^{s-1/2} + x^{-s+1/2}) \frac{dx}{x}.$$

Replacing  $\phi(x)$  by

$$\phi^*(x) = \pi^2 (x^{9/2} + x^{-9/2}) e^{-\pi (x^2 + x^{-2})},$$

which is asymptotically equivalent to  $\phi(x)$ , we obtain

$$\xi^*(s) = \int_{1}^{\infty} \phi^*(x) (x^{s-1/2} + x^{-s+1/2}) \frac{dx}{x}.$$

The function  $\xi^*(s)$  is similar to  $\xi(s)$  in a suitable sense, and has the decomposition (1.1) such that the corresponding  $\varphi(s)$  satisfies (A) and (B) as well as C(s) [27, pp. 254–291]. For the decomposition of  $\xi(s)$  as in (1.1) see Gonek [4] and Egorov [3].

Other interesting cases are the difference of two zeta functions, the constant term of the nonholomorphic Eisenstein series, Weng's zeta functions and a finite truncation of the Chowla–Selberg formula of Epstein zeta-functions etc. They were studied by several authors, e.g., Pólya [17], Taylor [26], Stark [20], Hejhal [6], Ki [9], Lagarias–Suzuki [10], Weng [31–33], Suzuki [22–24], Hayashi [5], Bauer [1], Müller [13], Velásquez [28] and Suzuki-Weng [25].

Can we find new examples of zeta- and L-functions L(s) having (1.1) and satisfying (A) and (B)? In this paper, we show that the Rankin–Selberg L-function is one of such examples. More precisely, we derive a new formula (Theorem 1) for the Rankin–Selberg L-function attached to a pair of cusp forms on the full modular group by using the holomorphic projection of Sturm [21]. Then the well-known relation between the Rankin–Selberg Lfunction and the symmetric square L-function gives a new formula for the symmetric square L-function (Corollary 1). Using Theorem 1, we define a function which approximates the Rankin–Selberg L-function. We show that such an approximate function has a wide zero-free region (Theorem 2), and this uses the fact that it has the decomposition (1.1) with two properties similar to (A) and (B).

As a special case of Corollary 1, we obtain Noda's identity in [14] which relates the Fourier coefficients of the holomorphic cusp form f and the zeros of the Riemann zeta-function or the zeros of the symmetric square Lfunction of f. In addition, Theorem 1 gives an analytic series expansion of the central value  $L(1/2, f \times g)$ . Note that Mizumoto [12] showed that for every normalized Hecke eigen cusp form  $f \in S_{k_1}$  and every even integer  $k_2$ satisfying  $k_2 \ge k_1$  and  $k_2 \ne 14$ , there exists a normalized Hecke eigen cusp form  $g \in S_{k_2}$  such that  $L(1/2, f \times g) \ne 0$ .

There are nice results of Hoffstein–Lockhart [7], Hoffstein–Ramakrishnan [8] and Ramakrishnan–Wang [18] about the real zeros of the Rankin– Selberg *L*-function. They established the nonexistence of the Siegel zero of the Rankin–Selberg *L*-function attached to a pair of cusp forms on GL(2)and the symmetric square *L*-function of a cusp form on GL(2). Their results contain fairly good zero-free regions of the Rankin–Selberg *L*-function compared with the classical one. We expect that Theorem 1 and improving our proof of Theorem 2, should imply nice results on the distribution of complex zeros of the Rankin–Selberg *L*-function.

This paper is organized as follows. In Section 2, we state main results, Theorems 1 and 2. In Section 3, we apply the results of Section 2 to  $S_{12}$  and  $S_{24}$ . In Section 4, we review the theory of the Poincaré series, Eisenstein series,  $C^{\infty}$ -modular forms and the Rankin–Selberg *L*-function as preliminaries for the proof of Theorems 1 and 2. In Section 5, we give a proof of Theorem 1. In Section 6, we prove Theorem 2. In Section 7, we interpret the argument in Section 5 from the viewpoint of the holomorphic projection of Sturm. In the Appendix, we give an asymptotic expansion of the associated Legendre function of the first kind according to Watson [29].

**2. Statements of results.** Let k be an even integer  $\geq 12$  and  $\neq 14$ . Let  $S_k$  be the vector space of all holomorphic cusp forms of weight k on  $\Gamma$ . We denote by  $d = d_k$  the dimension of  $S_k$ . For two cusp forms f(z) =

 $\sum_{n=1}^{\infty} a_f(n) n^{(k-1)/2} e(nz)$  and  $g(z) = \sum_{n=1}^{\infty} a_g(n) n^{(k-1)/2} e(nz)$ , the Rankin–Selberg L-function  $L(s, f \otimes \overline{g})$  is defined by

(2.1) 
$$L(s, f \otimes \overline{g}) = \sum_{n=1}^{\infty} a_f(n) \,\overline{a_g(n)} \, n^{-s},$$

where bar means complex conjugation. The series on the right-hand side converges absolutely if the real part of s is sufficiently large. In addition, we define

$$L(s, f \times g) = \zeta(2s)L(s, f \otimes \overline{g})$$

and the completed function

$$L^*(s, f \times g) = 2^{-k-1} \Gamma_{\mathbb{C}}(s+k-1) \Gamma_{\mathbb{C}}(s) L(s, f \times \overline{g})$$
  
=  $\pi^{-s} (4\pi)^{-s-k-1} \Gamma(s) \Gamma(s+k-1) L(s, f \times \overline{g}).$ 

Let  $\mathcal{F} = \{f_1, \ldots, f_d\}$  be an orthonormal basis of  $S_k$  and let  $f_j(z) = \sum_{n=1}^{\infty} a_j(n) n^{(k-1)/2} e(nz)$  be the Fourier expansion of  $f_j$   $(1 \leq j \leq d)$  at the cusp  $i\infty$ . Let  $\mathfrak{m} = (m_1, \ldots, m_d) \in \mathbb{Z}_{>0}^d$  with  $0 < m_1 < \cdots < m_d$ . Define

(2.2) 
$$A_{\mathcal{F},\mathfrak{m}} = \begin{pmatrix} a_1(m_1) & \cdots & a_d(m_1) \\ \vdots & \ddots & \vdots \\ a_1(m_d) & \cdots & a_d(m_d) \end{pmatrix}$$

In general, the matrix  $A_{\mathcal{F},\mathfrak{m}}$  is *not* invertible. However, if the set of Poincaré series  $\{P_{m_1},\ldots,P_{m_d}\} \subset S_k$  is a basis of  $S_k$ , then  $A_{\mathcal{F},\mathfrak{m}}$  is invertible. In particular, for the vector  $\mathfrak{m}_0 = (1,\ldots,d)$ , the matrix  $A_{\mathcal{F},\mathfrak{m}_0}$  is invertible by the classical result of Petersson [15, 16] about the basis problem for elliptic modular forms. Thus we can always choose a vector  $\mathfrak{m}$  such that  $A_{\mathcal{F},\mathfrak{m}}$  is invertible.

THEOREM 1. Let k be an even integer  $\geq 12$  and  $\neq 14$ . Let  $\mathcal{F} = \{f_1, \ldots, f_d\}$ be an orthonormal basis of  $S_k$  and let  $f_j(z) = \sum_{n=1}^{\infty} a_j(n) n^{(k-1)/2} e(nz)$  be the Fourier expansion of  $f_j$   $(1 \leq j \leq d)$  at the cusp i $\infty$ . Choose  $\mathfrak{m} \in \mathbb{Z}_{>0}^d$ such that the matrix  $A_{\mathcal{F},\mathfrak{m}}$  defined by (2.2) is invertible  $(\det A_{\mathcal{F},\mathfrak{m}} \neq 0)$ . Define the set of numbers  $(\alpha_{ij})_{1\leq i,j\leq d}$  by

(2.3) 
$$A_{\mathcal{F},\mathfrak{m}}^{-1} = (\alpha_{ij})_{1 \le i,j \le d}.$$

Then

$$(2.4) \quad (4\pi)^{-k+1} \Gamma(k-1) L^*(s, f_i \times \overline{f}_j) = (4\pi)^{-s-k+1} \Gamma(s+k-1) \zeta^*(2s) D_{\mathfrak{m},ij}(s) + (4\pi)^{s-k} \Gamma(k-s) \zeta^*(2s-1) D_{\mathfrak{m},ij}(1-s) + (4\pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \{W^+_{\mathfrak{m},ij}(s) + W^-_{\mathfrak{m},ij}(s)\}$$

for all  $1 \leq i \leq j \leq d$  in the vertical strip

(2.5) 
$$|\sigma - 1/2| < k/2 - 1$$

except for the point s = 1/2. Here

(2.6) 
$$D_{\mathfrak{m},ij}(s) = \sum_{h=1}^{d} \alpha_{jh} a_i(m_h) m_h^{-s},$$

(2.7) 
$$W_{\mathfrak{m},ij}^+(s) = \sum_{h=1}^d \sum_{n=1}^\infty \alpha_{jh} a_i(m_h+n) \frac{\tau_{s-1/2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2m_h+n}{n}\right),$$

(2.8) 
$$W_{\mathfrak{m},ij}^{-}(s) = \sum_{h=1}^{d} \sum_{n=1}^{m_h-1} \alpha_{jh} a_i(m_h-n) \frac{\tau_{s-1/2}(n)}{\sqrt{n}} P_{s-1}^{1-k} \left(\frac{2m_h-n}{n}\right),$$

with  $\tau_{\nu}(n) = n^{\nu} \sigma_{-2\nu}(n)$ , and  $P^{\mu}_{\nu}(z)$  is the associated Legendre function of the first kind (see Appendix). Further, at the point s = 1/2,

$$(4\pi)^{-k+1}\Gamma(k-1) L^*(1/2, f_i \times \overline{f}_j)$$
  
=  $(4\pi)^{-k+1/2}\Gamma\left(k-\frac{1}{2}\right) \sum_{h=1}^d \frac{\alpha_{jh}a_i(m_h)}{\sqrt{m_h}} \left\{ \frac{\Gamma'}{\Gamma}\left(k-\frac{1}{2}\right) + \log \frac{e^{\gamma}}{16\pi^2 m_h} \right\}$   
+  $(4\pi)^{-k+1}\Gamma\left(k-\frac{1}{2}\right)^2 \{W^+_{\mathfrak{m},ij}(1/2) + W^-_{\mathfrak{m},ij}(1/2)\}.$ 

The series  $W^+_{\mathfrak{m},ij}(s)$  converges absolutely and uniformly on every compact subset K in (2.5), and has the asymptotic expansion

$$W_{\mathfrak{m},ij}^{+}(s) = \sum_{h=1}^{d} \sum_{n=1}^{N-1} \alpha_{jh} a_i(m_h + n) \frac{\tau_{s-1/2}(n)}{\sqrt{n}} P_{s-1}^{1-k} \left(\frac{2m_h + n}{n}\right) + O(N^{|\sigma - 1/2| - k/2 + 1 + \varepsilon}),$$

where the implied constant depends on  $\mathcal{F}$ ,  $\mathfrak{m}$  and K.

REMARK 1. By definition of  $\alpha_{ij}$ , we have

$$D_{\mathfrak{m},ij}(0) = \sum_{h=1}^d \alpha_{jh} a_i(m_h) = \delta_{ij}.$$

Hence the poles of the first two terms of (2.4) at s = 0, 1 cancel out whenever  $i \neq j$ . This agrees with the fact that the residue of  $L(s, f_i \times \overline{f}_j)$  at s = 1 is a multiple of the Petersson inner product  $(f_i, f_j)$ .

Let  $f(z) = 1 + \sum_{n=2}^{\infty} a_f(n) n^{(k-1)/2} e(nz) \in S_k$  be a normalized Hecke eigen cusp form. The symmetric square L-function  $L(s, \operatorname{sym}^2 f)$  is defined by the Euler product

$$L(s, \text{sym}^2 f) = \prod_p (1 - \alpha_p^2 p^{-s})^{-1} (1 - \alpha_p \beta_p p^{-s})^{-1} (1 - \beta_p^2 p^{-s})^{-1},$$

where  $\alpha_p$  and  $\beta_p$  are determined by  $\alpha_p + \beta_p = a_f(p)$  and  $\alpha_p \beta_p = 1$ . The right-hand side converges absolutely if the real part of s is sufficiently large. The completed L-function  $L^*(s, \text{sym}^2 f)$  is defined by

$$\begin{split} L^*(s, \operatorname{sym}^2 f) &= \pi^{-3s/2} \Gamma\left(\frac{s+1}{2}\right) \Gamma\left(\frac{s+k-1}{2}\right) \Gamma\left(\frac{s+k}{2}\right) L(s, \operatorname{sym}^2 f) \\ &= \pi^k \Gamma_{\mathbb{C}}(s+k-1) \Gamma_{\mathbb{C}}(s) \Gamma_{\mathbb{R}}(s)^{-1} L(s, \operatorname{sym}^2 f). \end{split}$$

It is known that  $L(s, \text{sym}^2 f)$  and  $L(s, f \times \overline{f})$  are related via

$$\zeta(s)L(s, \operatorname{sym}^2 f) = L(s, f \times \overline{f}).$$

Therefore we have the equality

$$2^{-1}(2\pi)^{-k}\zeta^*(s)L^*(s,\text{sym}^2f) = L^*(s,f\times\bar{f}).$$

COROLLARY 1. Let  $\mathcal{F} = \{f_1, \ldots, f_d\}$  be the orthogonal basis of  $S_k$  consisting of normalized Hecke eigen cusp forms. Put  $f_j^* = f_j/(f_j, f_j)^{1/2}$  and  $\mathcal{F}^* = \{f_1^*, \ldots, f_d^*\}$ . Choose  $\mathfrak{m} \in \mathbb{Z}_{>0}^d$  such that  $A_{\mathcal{F}^*,\mathfrak{m}}$  is invertible. Then

(2.9) 
$$2^{-k}(2\pi)^{-2k+1} \frac{\Gamma(k-1)}{(f_j, f_j)} \zeta^*(s) L^*(s, \operatorname{sym}^2 f_j) = (4\pi)^{-s-k+1} \Gamma(s+k-1) \zeta^*(2s) D_{\mathfrak{m},jj}(s) + (4\pi)^{s-k} \Gamma(k-s) \zeta^*(2s-1) D_{\mathfrak{m},jj}(1-s) + (4\pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \{W^+_{\mathfrak{m},jj}(s) + W^-_{\mathfrak{m},jj}(s)\}$$

for all  $1 \leq j \leq d$  and all  $s \neq 1/2$  in the vertical strip (2.5), where  $D_{\mathfrak{m},jj}(s)$ ,  $W^+_{\mathfrak{m},jj}(s)$  and  $W^-_{\mathfrak{m},jj}(s)$  are defined by (2.6)–(2.8) for the basis  $\mathcal{F}^*$  and the vector  $\mathfrak{m}$ .

REMARK 2. In the case  $S_k = \mathbb{C}\Delta_k$  (k = 12, 16, 18, 20, 22 and 26),  $D_{(m),11}(s)$  is just  $m^{-s}$ . Hence, by taking s to be a zero of  $\zeta(s)$  or a zero of  $L(s, \operatorname{sym}^2\Delta_k)$ , we obtain a new proof of the result of Noda [14, Theorem]. His result is an equality which relates the zeros of the Riemann zeta function or the zeros of the symmetric square L-functions with the Fourier coefficients of the holomorphic cusp form  $\Delta_k$ .

COROLLARY 2. Under the notation of Theorem 1, we have the following formula for the central value:

$$\begin{split} L(1/2, f_i \times \bar{f}_j) &= \frac{(4\pi)^{k-1}}{\Gamma(k-1)} \sum_{h=1}^d \frac{\alpha_{jh} a_i(m_h)}{\sqrt{m_h}} \bigg\{ \frac{\Gamma'}{\Gamma} \bigg( k - \frac{1}{2} \bigg) + \log \frac{e^{\gamma}}{16\pi^2 m_h} \bigg\} \\ &+ 4\pi^k \, \frac{\Gamma(2k-2)}{\Gamma(k-1)^2} \, \{ W^+_{\mathfrak{m},ij}(1/2) + W^-_{\mathfrak{m},ij}(1/2) \}. \end{split}$$

On the right-hand side we have

$$W_{\mathfrak{m},ij}^{+}(1/2) = \sum_{h=1}^{d} \sum_{n=1}^{N-1} \alpha_{jh} a_i(m_h + n) \frac{\sigma_0(n)}{\sqrt{n}} P_{-1/2}^{1-k} \left(\frac{2m_h + n}{n}\right) + O(N^{-k/2 + 1 + \varepsilon})$$

for every positive integer N and every positive real number  $\varepsilon$ .

Considering equations (2.4) and (2.7), we define

(2.10) 
$$W_{\mathfrak{m},ij}^{+,N}(s) = \sum_{h=1}^{d} \sum_{n=1}^{N} \alpha_{jh} a_i(m_h+n) \frac{\tau_{s-1/2}(n)}{\sqrt{n}} P_{s-1}^{1-k}\left(\frac{2m_h+n}{n}\right)$$

and

(2.11) 
$$L_{\mathfrak{m},ij}^{N}(s) = (4\pi)^{-s-k+1} \Gamma(s+k-1) \zeta^{*}(2s) D_{\mathfrak{m},ij}(s) + (4\pi)^{s-k} \Gamma(k-s) \zeta^{*}(2s-1) D_{\mathfrak{m},ij}(1-s) + (4\pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \{W_{\mathfrak{m},ij}^{+,N}(s) + W_{\mathfrak{m},ij}^{-}(s)\}$$

for a positive integer N. In addition, we define

$$L^{0}_{\mathfrak{m},ij}(s) = (4\pi)^{-s-k+1} \Gamma(s+k-1)\zeta^{*}(2s) D_{\mathfrak{m},ij}(s) + (4\pi)^{s-k} \Gamma(k-s)\zeta^{*}(2s-1) D_{\mathfrak{m},ij}(1-s)$$

for N = 0. The only difference between  $L_{\mathfrak{m},ij}^N(s)$  and the right-hand side of (2.4) is in the bracketed expression  $\{\cdots\}$ . The functional equations  $\tau_{s-1/2}(n) = \tau_{1/2-s}(n)$  and  $P_{s-1}^{1-k}(z) = P_{-s}^{1-k}(z)$  imply that  $L_{\mathfrak{m},ij}^N(s)$  satisfies the functional equation

(2.12) 
$$L^{N}_{\mathfrak{m},ij}(s) = L^{N}_{\mathfrak{m},ij}(1-s).$$

THEOREM 2. Let k be an even integer  $\geq 12$  and  $\neq 14$ . Let  $\mathcal{F} = \{f_1, \ldots, f_d\}$ be an orthonormal basis of  $S_k$ . Choose  $\mathfrak{m} \in \mathbb{Z}_{>0}^d$  such that  $A_{\mathcal{F},\mathfrak{m}}$  is invertible. Further suppose that there exists  $\delta = \delta_{\mathcal{F},\mathfrak{m}}$  such that  $0 < \delta < 1/2$ , and  $D_{\mathfrak{m},ij}(s)$  has only finitely many zeros in the right half-plane  $\sigma \geq 1/2 - \delta$ . Then for every nonnegative integer N and every positive real number a there exists  $C = C_{\mathfrak{m},N,a} > 0$  such that  $L_{\mathfrak{m},ij}^N(s)$  has no zeros in the region

$$\frac{\log\{C\log^{1/2}(|t|+1)\}}{\log(|t|+1)} < \left|\sigma - \frac{1}{2}\right| < a,$$

that is, all zeros of  $L^N_{\mathfrak{m},ij}(s)$  in the strip  $|\sigma - 1/2| < a$  are contained in

$$\left|\sigma - \frac{1}{2}\right| \le \frac{\log\{C \log^{1/2}(|t|+1)\}}{\log(|t|+1)}.$$

In particular,

$$N(T, \sigma_1, \sigma_2) = O_{\sigma_1, \sigma_2}(1)$$

for all  $0 < \sigma_1 < \sigma_2$ , where  $N(T, \sigma_1, \sigma_2)$  is the number of zeros of  $L^N_{\mathfrak{m},ij}(s)$ satisfying  $\sigma_1 \leq \sigma - 1/2 \leq \sigma_2$  and  $|t| \leq T$  counted with multiplicity.

REMARK 3. In the case of the Riemann zeta-function, Selberg established the estimate

$$N(T, 1/2 + 4\delta) \ll T^{1-\delta} \log T$$

uniformly for  $\delta \geq 0$  by using his mollification method. Here N(T, a) is the number of zeros of  $\zeta(s)$  satisfying  $\sigma \geq a$  and  $|t| \leq T$  counted with multiplicity. Hence almost all zeros of  $\zeta(s)$  lie in the region

$$\left|\sigma - \frac{1}{2}\right| \le \frac{\eta(t)}{\log(|t|+3)}$$

where  $\eta(t)$  is any positive function which increases to infinity. Theorem 2 is an analogue of this result.

REMARK 4. As in Remark 2,  $D_{(m),11}(s) = m^{-s}$  if dim  $S_k = 1$ . Hence the assumption in Theorem 2 about the location of zeros of  $D_{\mathfrak{m},ij}(s)$  is always satisfied if dim  $S_k = 1$ . However, in general the location of zeros of  $D_{\mathfrak{m},ij}(s)$  strongly depends on the choice of the vector  $\mathfrak{m}$  (see Section 3).

REMARK 5. The existence of the vector  $\mathbf{m}$  such that  $L_{\mathbf{m},ij}^{N}(s)$  has no zeros in  $0 < |\sigma - 1/2| < 1/2$  for all sufficiently large N implies that the Riemann hypothesis for the Rankin–Selberg *L*-function  $L(s, f_i \times \overline{f}_j)$  is true. Therefore such a result is desired for a pair of Hecke eigen cusp forms  $f_i$ and  $f_j$ . However, our proof of Theorem 2 in Section 6 does not need the condition that  $f_i$  and  $f_j$  are Hecke eigen cusp forms. Hence, a new idea using more precise arithmetic properties of the Fourier coefficients of  $f_i$ and  $f_j$  is needed in order to obtain results in the direction of the Riemann hypothesis.

**3. Examples.** In this section, we calculate the central values of *L*-functions by applying Corollary 2 to  $S_{12}$  and  $S_{24}$ . We calculate the value of the Petersson inner product according to Rankin [19].

**3.1.** The case k = 12. In this case dim  $S_{12} = 1$ . As mentioned in Remark 2, we have  $D_{(m),11}(s) = m^{-s}$  by definition (2.6). All members of  $S_{12}$  are constant multiples of the normalized Hecke eigen cusp form



Fig. 1.  $|L_0(1/2 + it, \Delta \times \Delta)|$  for  $0 \le t \le 30$ . Points • are zeros of  $L(s, \Delta \times \Delta)$  on  $\sigma = 1/2$ .

 $\Delta(z) = e(z) \prod_{n=1}^{\infty} (1 - e(nz))^{24} = \sum_{n=1}^{\infty} \tau(n) e(nz)$ . Put  $f = \Delta/(\Delta, \Delta)^{1/2}$ , and choose  $\mathfrak{m} = (m) = (1)$ . Then we have  $W_{(1),11}^-(s) \equiv 0$ , and

$$\frac{L(1/2, \Delta \times \Delta)}{\sqrt{(\Delta, \Delta)}} = \frac{(4\pi)^{11}}{\Gamma(11)} \left\{ \frac{\Gamma'}{\Gamma} \left( \frac{23}{2} \right) + \log \frac{e^{\gamma}}{16\pi^2} \right\} + \frac{4\pi^{12}\Gamma(22)}{\Gamma(11)^2\Gamma(12)} \sum_{n=1}^{\infty} \frac{\tau(n+1)}{(n+1)^{11}} \frac{\sigma_0(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 12; -\frac{1}{n}\right).$$

Using the value  $(\Delta, \Delta) = 1.03536 \dots \times 10^{-6}$ , we have

 $L(1/2, \Delta \times \Delta) = -7.25563 \dots \times 10^2.$ 

Figure 1 is the graph of the absolute value of

$$L_0(s, \Delta \times \Delta) = \frac{\omega_{12}\sqrt{(\Delta, \Delta)}}{\pi^{-s}(4\pi)^{-s-11}\Gamma(s)\Gamma(s+11)} L^0_{(1), 11}(s)$$

on the critical line  $\sigma = 1/2$ , where  $\omega_{12} = (4\pi)^{11}/\Gamma(11)$  and

$$L^{0}_{(1),11}(s) = (4\pi)^{-s-11} \Gamma(s+11) \zeta^{*}(2s) + (4\pi)^{s-12} \Gamma(12-s) \zeta^{*}(2s-1).$$

Figure 2 is the graph of the absolute value of

$$L_N(s, \Delta \times \Delta) = \frac{\omega_{12}\sqrt{(\Delta, \Delta)}}{\pi^{-s}(4\pi)^{-s-11}\Gamma(s)\Gamma(s+11)} L_{(1), 11}^N(s)$$

for N = 10 on the critical line  $\sigma = 1/2$ , where  $L_{(1),11}^N(s) = (4\pi)^{-s-11} \Gamma(s+11) \zeta^*(2s) + (4\pi)^{s-12} \Gamma(12-s) \zeta^*(2s-1)$  $+ (4\pi)^{-11} \Gamma(s+11) \Gamma(12-s) \sum_{n=1}^N \frac{\tau(n+1)}{(n+1)^{11/2}} \frac{n^{s-1/2} \sigma_{1-2s}(n)}{\sqrt{n}} P_{s-1}^{-11} \left(1 + \frac{2}{n}\right).$ 



Fig. 2.  $|L_{10}(1/2 + it, \Delta \times \Delta)|$  for  $0 \le t \le 30$ . Points • are zeros of  $L(s, \Delta \times \Delta)$  on  $\sigma = 1/2$ .



Fig. 3. The thin line is  $|L_0(1/2 + it, \Delta \times \Delta)|$  for  $0 \le t \le 30$ , the line of medium thickness is  $|L_{10}(1/2 + it, \Delta \times \Delta)|$  for  $0 \le t \le 30$ , and the thick line is  $|L_{100}(1/2 + it, \Delta \times \Delta)|$  for  $0 \le t \le 30$ .

In Figures 1 and 2, dot points • are zeros of  $L(s, \Delta \times \Delta) = \zeta(s)L(s, \operatorname{sym}^2 \Delta)$ on the critical line ([34, Table 3]). Interestingly, we observe that the lower zeros of  $L(s, \Delta \times \Delta)$  on the critical line are approximated by zeros of the sum of the Riemann zeta-function  $L_0(s, \Delta \times \Delta)$ . Needless to say, this is not true for zeros of  $L(s, \Delta \times \Delta)$  whose imaginary part becomes large. Figure 3 is the comparison of the absolute values  $|L_0(s, \Delta \times \Delta)|$ ,  $|L_{10}(s, \Delta \times \Delta)|$  and  $|L_{100}(s, \Delta \times \Delta)|$  on the critical line. It shows that to know the value of  $L(s, \Delta \times \Delta)$  for large |t|, we need many terms in  $W^{\pm}_{\mathfrak{m},ij}(s)$  as large as |t|. **3.2.** The case k = 24. This is the first case in which d > 1. We have dim  $S_{24} = 2$ . Two functions f and g given by

$$f(z) = E_{12}(z)\Delta(z) + 12\left(\frac{27017}{691} + \sqrt{144169}\right)\Delta^2(z)$$
  
=  $\sum_{n=1}^{\infty} A_f(n)e(nz),$   
 $g(z) = E_{12}(z)\Delta(z) + 12\left(\frac{27017}{691} - \sqrt{144169}\right)\Delta^2(z)$   
=  $\sum_{n=1}^{\infty} A_g(n)e(nz)$ 

are distinct normalized Hecke eigen cusp forms of  $S_{24}$ , where

$$E_{12}(z) = 1 + \frac{65520}{691} \sum_{n=1}^{\infty} \sigma_{11}(n)e(nz).$$

Put  $\mathcal{F} = \{f/(f, f)^{1/2}, g/(g, g)^{1/2}\}$ . Then  $\mathcal{F}$  is an orthonormal basis of  $S_{24}$ . Applying Corollary 2 to  $\mathfrak{m} = (1, 2)$ , we obtain

$$\begin{split} \frac{L(1/2, f \times f)}{(f, f)} &= \frac{1}{D} \frac{(4\pi)^{23}}{\Gamma(23)} \left\{ \frac{\Gamma'}{\Gamma} \left( \frac{47}{2} \right) \left( A_g(2) - \frac{A_f(2)}{\sqrt{2}} \right) \\ &+ \left( A_g(2) \log \frac{e^{\gamma}}{16\pi^2 m} - \frac{A_f(2)}{\sqrt{2}} \log \frac{e^{\gamma}}{32\pi^2 m} \right) \right\} \\ &+ \frac{1}{D} \frac{4\pi^{24} \Gamma(46)}{\Gamma(23)^2 \Gamma(24)} \left\{ \sum_{n=1}^{\infty} A_g(2) \frac{A_f(n+1)}{(n+1)^{23}} \frac{\sigma_0(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 24; -\frac{1}{n}\right) \\ &- 2^{23} \sum_{n=1}^{\infty} \frac{A_f(n+2)}{(n+2)^{23}} \frac{\sigma_0(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 24; -\frac{2}{n}\right) - 2^{23} F\left(\frac{1}{2}, \frac{1}{2}, 24; -1\right) \right\}, \\ \frac{L(1/2, f \times g)}{\sqrt{(f, f)(g, g)}} &= \frac{A_f(2)}{D} \frac{\sqrt{(g, g)}}{\sqrt{(f, f)}} \frac{(4\pi)^{23}}{\Gamma(23)} \left\{ \frac{\Gamma'}{\Gamma} \left( \frac{47}{2} \right) \left( \frac{1 - \sqrt{2}}{\sqrt{2}} \right) \\ &+ \left( \frac{1}{\sqrt{2}} \log \frac{e^{\gamma}}{32\pi^2 m} - \log \frac{e^{\gamma}}{16\pi^2 m} \right) \right\} \\ &- \frac{1}{D} \frac{4\pi^{24} \Gamma(46)}{\Gamma(23)^2 \Gamma(24)} \frac{\sqrt{(g, g)}}{\sqrt{(f, f)}} \left\{ \sum_{n=1}^{\infty} A_f(2) \frac{A_f(n+1)}{(n+1)^{23}} \frac{\sigma_0(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 24; -\frac{1}{n}\right) \\ &- 2^{23} \sum_{n=1}^{\infty} \frac{A_f(n+2)}{(n+2)^{23}} \frac{\sigma_0(n)}{\sqrt{n}} F\left(\frac{1}{2}, \frac{1}{2}, 24; -\frac{2}{n}\right) - 2^{23} F\left(\frac{1}{2}, \frac{1}{2}, 24; -1\right) \right\} \end{split}$$

and

$$\begin{aligned} \frac{L(1/2,g\times g)}{(g,g)} &= \frac{1}{D} \frac{(4\pi)^{23}}{\Gamma(23)} \left\{ \frac{\Gamma'}{\Gamma} \left( \frac{47}{2} \right) \left( \frac{A_g(2)}{\sqrt{2}} - A_f(2) \right) \\ &+ \left( \frac{A_g(2)}{\sqrt{2}} \log \frac{e^{\gamma}}{32\pi^2 m} - A_f(2) \log \frac{e^{\gamma}}{16\pi^2 m} \right) \right\} \\ &- \frac{1}{D} \frac{4\pi^{24} \Gamma(46)}{\Gamma(23)^2 \Gamma(24)} \left\{ \sum_{n=1}^{\infty} A_f(2) \frac{A_g(n+1)}{(n+1)^{23}} \frac{\sigma_0(n)}{\sqrt{n}} F\left( \frac{1}{2}, \frac{1}{2}, 24; -\frac{1}{n} \right) \\ &- 2^{23} \sum_{n=1}^{\infty} \frac{A_g(n+2)}{(n+2)^{23}} \frac{\sigma_0(n)}{\sqrt{n}} F\left( \frac{1}{2}, \frac{1}{2}, 24; -\frac{2}{n} \right) - 2^{23} F\left( \frac{1}{2}, \frac{1}{2}, 24; -1 \right) \right\}, \end{aligned}$$

where  $D = A_g(2) - A_f(2)$ . As  $(f, f) = 1.28993 \times 10^{-4}$  and  $(g, g) = 1.07837 \times 10^{-4}$ , we obtain the central values

$$L(1/2, f \times f) = -3.07917...,$$
  

$$L(1/2, f \times g) = +9.79843... \times 10^{-3},$$
  

$$L(1/2, g \times g) = -2.55952....$$

Further, if det  $A_{\mathcal{F},\mathfrak{m}} \neq 0$ , we have

$$D_{\mathfrak{m},11}(s) = \frac{1}{D_{\mathfrak{m}}} \left\{ \frac{A_f(m_1)A_g(m_2)}{m_1^s} - \frac{A_f(m_2)A_g(m_1)}{m_2^s} \right\},$$

$$D_{\mathfrak{m},12}(s) = \frac{A_f(m_1)A_f(m_2)}{D_{\mathfrak{m}}} \frac{\sqrt{(g,g)}}{\sqrt{(f,f)}} \left\{ \frac{1}{m_2^s} - \frac{1}{m_1^s} \right\},$$

$$D_{\mathfrak{m},21}(s) = \frac{A_g(m_1)A_g(m_2)}{D_{\mathfrak{m}}} \frac{\sqrt{(f,f)}}{\sqrt{(g,g)}} \left\{ \frac{1}{m_1^s} - \frac{1}{m_2^s} \right\},$$

$$D_{\mathfrak{m},22}(s) = \frac{1}{D_{\mathfrak{m}}} \left\{ \frac{A_f(m_1)A_g(m_2)}{m_2^s} - \frac{A_f(m_2)A_g(m_1)}{m_1^s} \right\},$$

where  $D_{\mathfrak{m}} = A_f(m_1)A_g(m_2) - A_f(m_2)A_g(m_1)$ . We find that  $A_{\mathcal{F},(1,2)}, A_{\mathcal{F},(2,3)}$ and  $A_{\mathcal{F},(3,5)}$  are invertible by calculating their determinants directly. Using (3.1), we can determine the location of zeros of  $D_{\mathfrak{m},11}(s)$  for a given vector  $\mathfrak{m}$ . For example, all zeros of  $D_{\mathfrak{m},11}(s)$  lie on the line  $\sigma = 0.343579...$  for  $\mathfrak{m} =$  $(1,2), \sigma = -5.69519...$  for  $\mathfrak{m} = (2,3)$  and  $\sigma = 1.72665...$  for  $\mathfrak{m} = (3,5)$ . These examples show that the location of zeros of  $D_{\mathfrak{m},ij}(s)$  strongly depends on the choice of the vector  $\mathfrak{m}$ . It is not clear whether we can *always* choose a vector  $\mathfrak{m}$  such that  $D_{\mathfrak{m},ij}(s)$  satisfies the assumption of Theorem 2 in the case of large dimension of  $S_k$ .

### 4. Preliminaries

**4.1.** Poincaré series. Let m be a nonnegative integer. The mth Poincaré series  $P_m(z)$  of weight k on  $\Gamma$  is defined by

$$P_m(z) = \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} j(\gamma, z)^{-k} e(m\gamma z),$$

where  $\Gamma_{\infty} = \{\pm \begin{pmatrix} 1 & n \\ 1 \end{pmatrix} : n \in \mathbb{Z}\} \subset \Gamma$  and  $j(\gamma, z) = cz + d$  for  $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ . If k > 2, the series on the right-hand side converges absolutely and uniformly on every compact subset of  $\mathfrak{h}$ . If  $m \geq 1$ ,  $P_m(z)$  is a cusp form, or may vanish identically. In particular,  $P_m(z)$  vanishes identically for  $k \leq 10$  and k = 14, since a cusp form of weight k on  $\Gamma$  exists only for k = 12 and  $k \geq 16$ . Petersson [15, 16] showed that a basis of  $S_k$  can be chosen from the Poincaré series  $P_m(z)$ , and the set  $\{P_1(z), \ldots, P_d(z)\}$   $(d = \dim S_k)$  is a basis of  $S_k$ .

**4.2.** Nonholomorphic Eisenstein series. The nonholomorphic Eisenstein series E(z, s) is defined by

$$E(z,s) = \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} (\operatorname{Im} \gamma z)^{s} = \frac{1}{2} \sum_{\substack{(c,d) \in \mathbb{Z}^{2} \\ (c,d)=1}} \frac{y^{s}}{|cz+d|^{2s}}$$

The right-hand side converges absolutely for  $\sigma > 1$ . The modified function

$$E^*(z,s) = \zeta^*(2s)E(z,s)$$

is often called the *completed nonholomorphic Eisenstein series*. The function  $E^*(z,s)$  is continued meromorphically to the whole *s*-plane, and is holomorphic except for simple poles at s = 0 and 1. It satisfies the functional equation  $E^*(z,s) = E^*(z,1-s)$ . On the other hand, E((az+b)/(cz+d),s) = E(z,s) for every  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ . Hence, in particular,  $E^*(z,s)$  has the Fourier expansion

$$E^*(z,s) = \sum_{n=0}^{\infty} a_n(y,s) \cos(2\pi nx),$$

where

(4.1) 
$$a_0(y,s) = \begin{cases} \zeta^*(2s)y^s + \zeta^*(2s-1)y^{1-s}, & s \neq 0, 1/2, 1, \\ y^{1/2}\log y + (\gamma - \log 4\pi)y^{1/2}, & s = 1/2, \end{cases}$$

and

(4.2) 
$$a_n(y,s) = 4\sqrt{y} \sum_{n=1}^{\infty} \tau_{s-1/2}(n) K_{s-1/2}(2\pi n y)$$

for  $n \neq 0$ . Here  $\gamma = 0.57721...$  is the Euler constant,  $\tau_{\nu}(n) = n^{\nu}\sigma_{-2\nu}(n)$ ,  $\sigma_{\nu}(n) = \sum_{d|n} d^{\nu}$  and  $K_{\nu}(t)$  is the K-Bessel function.

**4.3.**  $C^{\infty}$ -modular forms. A smooth function f on  $\mathfrak{h}$  satisfying  $f(\gamma z) = j(\gamma, z)^k f(z)$  for every  $\gamma \in \Gamma$  is called a  $C^{\infty}$ -modular form of weight k. The Petersson inner product (f, g) of  $C^{\infty}$ -modular forms f and g is defined by

$$(f,g) := \int\limits_{\Gamma ackslash \mathfrak{h}} f(z) \, \overline{g(z)} \, y^{k-2} \, dx \, dy,$$

if the right-hand side converges. In particular, (f, g) is defined if one of fand g belongs to  $M_k$ , and the other to  $S_k$ , where  $M_k$  is the space of all holomorphic modular forms of weight k on  $\Gamma$ . A  $C^{\infty}$ -modular form f of weight k is called a  $C^{\infty}$ -modular form of bounded growth if

(4.3) 
$$\int_{0}^{\infty} \int_{0}^{1} |f(z)| y^{k-2} e^{-\varepsilon y} \, dx \, dy < \infty \quad \text{for every } \varepsilon > 0.$$

**4.4.** Inner product with Poincaré series. Let  $f(z) = \sum_{n \in \mathbb{Z}} a_n(y)e(nx)$  be a  $C^{\infty}$ -modular form of bounded growth. By the unfolding method we derive

$$(f, P_m) = \int_0^\infty \int_0^1 f(z)e(-m\overline{z})y^{k-2} \, dx \, dy$$

for all  $m \ge 0$ . Substituting the Fourier expansion of f for the right-hand side, we obtain

(4.4) 
$$(f, P_m) = \int_0^\infty a_m(y) e^{-2\pi m y} y^{k-2} dy \quad (m \ge 0).$$

Interchanging integration and summation is justified by the growth condition (4.3) ([21, Proposition 1]). Hence, equality (4.4) holds for all  $C^{\infty}$ modular forms of bounded growth. Thus we have

$$(f, P_m) = a_f(m)m^{(k-1)/2} \int_0^\infty e^{-4\pi my} y^{k-2} \, dy$$
$$= (4\pi)^{-k+1} \Gamma(k-1)a_f(m)m^{-(k-1)/2}$$

for every nonnegative integer m, since the holomorphic cusp form  $f(z) = \sum_{n=1}^{\infty} a_f(n) n^{(k-1)/2} e(nz)$  satisfies the condition (4.3).

**4.5.** Rankin–Selberg L-functions. Let  $f(z) = \sum_{n=1}^{\infty} a_f(n) n^{(k-1)/2} e(nz)$ and  $g(z) = \sum_{n=0}^{\infty} a_g(n) n^{(k-1)/2} e(nz)$  be modular forms in  $S_k$  and  $M_k$ , respectively. The Rankin–Selberg L-function  $L(s, f \otimes \overline{g})$  is defined by (2.1) if the real part of s is sufficiently large. The function  $F(z) = y^k f(z) \overline{g(z)}$  is a bounded  $\Gamma$ -invariant function on  $\mathfrak{h}$  with rapid decay as  $y \to +\infty$ . Its Fourier expansion is

$$F(x+iy) = y^k f(z) \overline{g(z)}$$
  
=  $y^k \sum_{n \in \mathbb{Z}} \left( \sum_{m=1-n}^{\infty} a_f(m+n) \overline{a_g(m)} (m+n)^{(k-1)/2} m^{(k-1)/2} e^{-2\pi (2m+n)y} \right) e(nx).$ 

Therefore we obtain

$$\begin{split} \int_{\Gamma \setminus \mathfrak{h}} y^k f(z) \,\overline{g(z)} \, E(z,s) \, d\mu(z) \\ &= \int_0^\infty \Bigl( \sum_{n=1}^\infty a_f(n) \,\overline{a_g(n)} \, n^{k-1} e^{-4\pi ny} \Bigr) y^{s+k-1} \, \frac{dy}{y} \end{split}$$

for  $\sigma > 1$  by the unfolding method. The right-hand side is equal to

$$(4\pi)^{-s-k+1}\Gamma(s+k-1)\sum_{m=1}^{\infty}a_f(n)\,\overline{a_g(n)}\,n^{-s}$$

for  $\sigma > k/2 + 1$ , since the series converges absolutely there by the estimates  $a_f(n) = O(n^{1/2})$  and  $a_g(n) = O(n^{(k-1)/2})$ . Hence we obtain

(4.5) 
$$(fE_s^*, g) = \int_{\Gamma \setminus \mathfrak{h}} y^k f(z) \overline{g(z)} E^*(z, s) d\mu(z)$$
$$= \pi^{-s} (4\pi)^{-s-k+1} \Gamma(s) \Gamma(s+k-1) L(s, f \times \overline{g})$$

for  $\sigma > k/2 + 1$ , where  $E_s^*(z) = E^*(z, s)$ . The left-hand side is defined for all  $s \in \mathbb{C}$  except for the poles of  $E^*(z, s)$ , since f is a cusp form. Therefore (4.5) gives the meromorphic continuation of  $L(s, f \times \overline{g})$  to  $\mathbb{C}$ .

5. Proof of Theorem 1. Theorem 1 is a consequence of the following proposition.

PROPOSITION 1. Let  $\mathcal{F} = \{f_1, \ldots, f_d\}$  be an orthonormal basis of  $S_k$ , and let  $f_j(z) = \sum_{n=1}^{\infty} a_j(n) n^{(k-1)/2} e(nz)$  be the Fourier expansion of  $f_j$ at  $i\infty$ . For every  $f \in S_k$ ,

$$(5.1) \quad (4\pi)^{-k+1}\Gamma(k-1)\sum_{j=1}^{d} a_j(m)L^*(s, f \times \bar{f}_j) = a_f(m)[(4\pi)^{-s-k+1}\Gamma(s+k-1)\zeta^*(2s)m^{-s} + (4\pi)^{s-k}\Gamma(k-s)\zeta^*(2s-1)m^{s-1}] + (4\pi)^{-k+1}\Gamma(s+k-1)\Gamma(k-s) \times \sum_{n=1}^{m-1} a_f(m-n)\frac{\tau_{s-1/2}(n)}{\sqrt{n}}P_{s-1}^{1-k}\left(\frac{2m-n}{n}\right) + (4\pi)^{-k+1}\Gamma(s+k-1)\Gamma(k-s) \times \sum_{n=1}^{\infty} a_f(m+n)\frac{\tau_{s-1/2}(n)}{\sqrt{n}}P_{s-1}^{1-k}\left(\frac{2m+n}{n}\right)$$

in the strip (2.5) if the first term  $a_f(m)[\cdots]$  in (5.1) is replaced by

$$a_f(m)(4\pi)^{-k+1/2}\Gamma\left(k-\frac{1}{2}\right)\left\{\frac{\Gamma'}{\Gamma}\left(k-\frac{1}{2}\right)+\log\frac{e^{\gamma}}{16\pi^2 m}\right\}\frac{1}{\sqrt{m}}$$

at the point s = 1/2. The series on the right-hand side of (5.1) converges absolutely and uniformly on every compact subset of the vertical strip (2.5).

*Proof.* We denote  $E^*(z, s)$  by  $E^*_s(z)$ . Calculating the Petersson inner product  $(fE^*_s, P_m)$  in two ways, we will obtain Proposition 1.

Let *m* be a positive integer, and let  $\mathcal{F} = \{f_1, \ldots, f_d\}$  be an orthonormal basis of  $S_k$ . Expanding  $P_m(z)$  with respect to the basis  $\mathcal{F}$ , we have

$$P_m(z) = (4\pi)^{-k+1} \Gamma(k-1) m^{-(k-1)/2} \sum_{j=1}^d \overline{a_j(m)} f_j(z).$$

where  $a_j(m)$  is the *m*th Fourier coefficient of  $f_j$ . Using this expansion, we obtain the first formula

(5.2) 
$$(fE_s^*, P_m) = (4\pi)^{-k+1} \Gamma(k-1) m^{-(k-1)/2} \sum_{j=1}^d a_j(m) L^*(s, f \times \overline{f}_j)$$

for  $\sigma > 1$ . Further (5.2) holds for all  $s \in \mathbb{C}$ , since f is a cusp form. By Lemma 1 of [14], the product f(z)E(z,s) is a  $C^{\infty}$ -modular form of bounded growth for  $0 < \sigma < 1$ . Hence, by (4.4), we have

(5.3) 
$$(fE_s^*, P_m) = \int_0^\infty \left(\sum_{n=1}^\infty a_f(n)a_{m-n}(y, s)n^{(k-1)/2}e^{-2\pi ny}\right)e^{-2\pi my}y^{k-2}\,dy$$

for  $0 < \sigma < 1$ , where  $a_n(y, s)$  is the *n*th Fourier coefficient of  $E^*(z, s)$  given in (4.1) and (4.2). Formally, the right-hand side of (5.3) is equal to

$$\sum_{n=0}^{m-1} a_f(m-n)(m-n)^{(k-1)/2} \int_0^\infty a_n(y,s) e^{-2\pi(2m-n)y} y^{k-2} \, dy + \sum_{n=1}^\infty a_f(m+n)(m+n)^{(k-1)/2} \int_0^\infty a_n(y,s) e^{-2\pi(2m+n)y} y^{k-2} \, dy.$$

This formal calculation is justified, since interchanging summation and integration is allowed by the estimates

$$|a_0(y,s)| \ll y^{\sigma} + y^{1-\sigma},$$
  
 $|a_n(y,s)| \ll y^{\sigma} |\sigma_{1-2s}(n)| e^{-\pi n y/2} \quad (n \neq 0),$ 

and Fubini's theorem. For n=0 and  $s\neq 0,1/2,1,$  we have

(5.4) 
$$\int_{0}^{\infty} a_{0}(y,s)e^{-4\pi m y}y^{k-2} dy$$
$$= \zeta^{*}(2s)\int_{0}^{\infty} e^{-4\pi m y}y^{k+s-2} dy + \zeta^{*}(2s-1)\int_{0}^{\infty} e^{-4\pi m y}y^{k-s-1} dy$$
$$= (4\pi m)^{-s-k+1}\Gamma(s+k-1)\zeta^{*}(2s) + (4\pi m)^{s-k}\Gamma(k-s)\zeta^{*}(2s-1).$$

For n = 0 and s = 1/2, we have

(5.5) 
$$\int_{0}^{\infty} a_{0}(y, 1/2)e^{-4\pi m y}y^{k-2} dy$$
$$= \int_{0}^{\infty} e^{-4\pi m y}y^{k-3/2}\log y \, dy + (\gamma - \log 4\pi)\int_{0}^{\infty} e^{-4\pi m y}y^{k-3/2} \, dy$$
$$= (4\pi m)^{-k+1/2}\Gamma\left(k - \frac{1}{2}\right)\left\{\frac{\Gamma'}{\Gamma}\left(k - \frac{1}{2}\right) + \log \frac{e^{\gamma}}{16\pi^{2}m}\right\}.$$

For  $n \geq 1$ , we have

(5.6) 
$$\int_{0}^{\infty} a_{n}(y,s)e^{-2\pi(2m\pm n)y}y^{k-2} dy$$
$$= 2\tau_{s-1/2}(n)\int_{0}^{\infty} K_{s-1/2}(2\pi ny)e^{-2\pi(2m\pm n)y}y^{k-3/2} dy$$
$$= (4\pi)^{-k+1}m^{-k+1}\Gamma(s+k-1)\Gamma(k-s)$$
$$\times \frac{\tau_{s-1/2}(n)}{\sqrt{n}} \left(\frac{m}{m\pm n}\right)^{(k-1)/2} P_{s-1}^{1-k}\left(\frac{2m\pm n}{n}\right)$$

by using the formula

$$\int_{0}^{\infty} K_{\nu}(x) e^{-ax} x^{\mu-1} \, dx = \sqrt{\frac{\pi}{2}} \, \frac{\Gamma(\mu+\nu)\Gamma(\mu-\nu)}{(a^2-1)^{\mu/2-1/4}} \, P_{\nu-1/2}^{-\mu+1/2}(a)$$

for  $\operatorname{Re}(a) > -1$  and  $\operatorname{Re}(\mu) > |\operatorname{Re}(\nu)|$  ([30, p. 388]). By (5.3), (5.4) and (5.6), we obtain the second formula

$$(5.7) \quad (fE_s^*, P_m) = m^{-(k-1)/2} a_f(m) [(4\pi)^{-s-k+1} m^{-s} \Gamma(s+k-1)\zeta^*(2s) + (4\pi)^{s-k} m^{s-1} \Gamma(k-s)\zeta^*(2s-1)] + m^{-(k-1)/2} (4\pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \times \sum_{n=1}^{m-1} a_f(m-n) \frac{\tau_{s-1/2}(n)}{\sqrt{n}} P_{s-1}^{1-k} \left(\frac{2m-n}{n}\right) + m^{-(k-1)/2} (4\pi)^{-k+1} \Gamma(s+k-1) \Gamma(k-s) \times \sum_{n=1}^{\infty} a_f(m+n) \frac{\tau_{s-1/2}(n)}{\sqrt{n}} P_{s-1}^{1-k} \left(\frac{2m+n}{n}\right).$$

Combining (5.2) and (5.7), we obtain (5.1) for  $0 < \sigma < 1$  except for s = 1/2. For s = 1/2, we use (5.5) instead of (5.4).

To complete the proof of Proposition 1, it suffices to show that the series on the right-hand side of (5.1) converges absolutely in the vertical strip (2.5), since the left-hand side of (5.1) is defined for all  $s \in \mathbb{C}$  except for the possible poles at s = 1 and 0. Moreover, it suffices to show that the series

(5.8) 
$$\sum_{n=1}^{\infty} a_f(m+n) \frac{\tau_{s-1/2}(n)}{\sqrt{n}} P_{s-1}^{k-1}\left(\frac{2m+n}{n}\right)$$

converges absolutely in the strip (2.5), since

$$P_{s-1}^{1-k}(z) = \frac{\Gamma(s-k+1)}{\Gamma(s+k-1)} P_{s-1}^{k-1}(z)$$

for every positive integer  $k \ge 2$ . Suppose that  $|a_f(n)| \ll n^{1/2-\alpha+\varepsilon}$  for some real number  $0 \le \alpha \le 1/2$ . Then

$$\begin{split} \sum_{n=1}^{\infty} |a_f(m+n)| \, \frac{|\tau_{s-1/2}(n)|}{\sqrt{n}} \left| P_{s-1}^{k-1} \left( \frac{2m+n}{n} \right) \right| \\ \ll_m \sum_{n=1}^{\infty} n^{|\sigma-1/2|-\alpha+\varepsilon} \left| P_{s-1}^{k-1} \left( \frac{2m+n}{n} \right) \right|, \end{split}$$

since  $|\tau_{s-1/2}(n)| = |n^{s-1/2}\sigma_{1-2s}(n)| \ll_{\varepsilon} n^{|\sigma-1/2|+\varepsilon}$ . Using the formula

$$P_{s-1}^{k-1}(z) = \frac{\Gamma(s+k-1)(z^2-1)^{(k-1)/2}}{2^{k-1}\sqrt{\pi}\,\Gamma(k-1/2)\Gamma(s-k+1)} \\ \times \int_{0}^{\pi} (z+\sqrt{z^2-1}\cos\theta)^{s-k}\sin^{2k-2}\theta\,d\theta$$

for  $\operatorname{Re}(z)>0$  and  $k\geq 1$  ([11, p. 199]), we have

$$\left| P_{s-1}^{k-1} \left( \frac{2m+n}{n} \right) \right| \ll_m n^{-(k-1)/2}$$

36

Hence we obtain

|series (5.8)| 
$$\ll_m \sum_{n=1}^{\infty} n^{|\sigma-1/2|-(k-1)/2-\alpha+\varepsilon}$$
.

The right-hand side converges absolutely for  $2 - k/2 - \alpha < \operatorname{Re}(s) < k/2 + \alpha - 1$ . Hence the Ramanujan–Deligne estimate  $|a_f(n)| \ll_{\varepsilon} n^{\varepsilon}$  implies that the series on the right-hand side of (5.1) converges absolutely in the vertical strip (2.5).

Proof of Theorem 1. Let  $\mathcal{F} = \{f_1, \ldots, f_d\}$ ,  $\mathfrak{m} = (m_1, \ldots, m_d) \in \mathbb{Z}_{>0}^d$ with  $0 < m_1 < \cdots < m_d$  and  $\{\alpha_{ij}\}$  be as in the statement of the theorem. By Proposition 1,

(5.9) 
$$(4\pi)^{-k+1} \Gamma(k-1) A_{\mathcal{F},\mathfrak{m}} \mathcal{L}_{\mathcal{F},f}(s) = \mathcal{N}_{\mathfrak{m},f}(s),$$

where

$$\mathcal{L}_{\mathcal{F},f}(s) = \begin{pmatrix} L^*(s, f \times \overline{f}_1) \\ \vdots \\ L^*(s, f \times \overline{f}_d) \end{pmatrix}, \quad \mathcal{N}_{\mathfrak{m},f}(s) = \begin{pmatrix} N_f(s, m_1) \\ \vdots \\ N_f(s, m_d) \end{pmatrix},$$

and

$$N_{f}(s, m_{h}) = a_{f}(m_{h})[(4\pi)^{-s-k+1}\Gamma(s+k-1)\zeta^{*}(2s)m_{h}^{-s} + (4\pi)^{s-k}\Gamma(k-s)\zeta^{*}(2s-1)m_{h}^{s-1}] + (4\pi)^{-k+1}\Gamma(s+k-1)\Gamma(k-s) \times \sum_{n=1}^{m_{h}-1} a_{f}(m_{h}-n)\frac{\tau_{s-1/2}(n)}{\sqrt{n}}P_{s-1}^{1-k}\left(\frac{2m_{h}-n}{n}\right) + (4\pi)^{-k+1}\Gamma(s+k-1)\Gamma(k-s) \times \sum_{n=1}^{\infty} a_{f}(m_{h}+n)\frac{\tau_{s-1/2}(n)}{\sqrt{n}}P_{s-1}^{1-k}\left(\frac{2m_{h}+n}{n}\right).$$

Multiplying (5.9) by the inverse matrix  $A_{\mathcal{F},\mathfrak{m}}^{-1}$ , we have

$$(4\pi)^{-k+1}\Gamma(k-1)\mathcal{L}_{\mathcal{F},f}(s) = A_{\mathcal{F},\mathfrak{m}}^{-1}\mathcal{N}_{\mathfrak{m},f}(s).$$

Comparing the jth components of both sides, we obtain

$$(4\pi)^{-k+1}\Gamma(k-1)L^*(s, f \times \bar{f}_j) = \sum_{h=1}^d \alpha_{jh} N_f(s, m_h).$$

Taking  $f = f_i$ , we obtain equality (2.4) of Theorem 1.

6. Proof of Theorem 2. It suffices to investigate the zeros of  $L_{\mathfrak{m},ij}^N(s)$  in  $\sigma \geq 1/2$ , because of the functional equation (2.12) of  $L_{\mathfrak{m},ij}^N(s)$ . By definition

(2.11) of  $L^N_{\mathfrak{m},ij}(s)$ , we have

(6.1) 
$$L_{\mathfrak{m},ij}^{N}(s) = (4\pi)^{-s-k+1} \Gamma(s+k-1) \zeta^{*}(2s) D_{\mathfrak{m},ij}(s) \{1+R_{\mathfrak{m},ij}^{N}(s)\},\$$

where

$$R_{\mathfrak{m},ij}^{N}(s) = (4\pi)^{2s-1} \frac{\Gamma(k-s)\zeta^{*}(2s-1)}{\Gamma(s+k-1)\zeta^{*}(2s)} \frac{D_{\mathfrak{m},ij}(1-s)}{D_{\mathfrak{m},ij}(s)} + (4\pi)^{s} \frac{\Gamma(k-s)\{W_{\mathfrak{m},ij}^{+,N}(s) + W_{\mathfrak{m},ij}^{-}(s)\}}{\zeta^{*}(2s)D_{\mathfrak{m},ij}(s)}.$$

By the assumption on the location of zeros of  $D_{\mathfrak{m},ij}(s)$  in Theorem 2, the factor  $\zeta^*(2s)D_{\mathfrak{m},ij}(s)$  in (6.1) has only finitely many zeros in  $\sigma \geq 1/2$ . Hence, if the inequality

$$|R^N_{\mathfrak{m},ij}(s)| < 1$$

is valid for  $1/2 < \sigma \leq a$  and sufficiently large |t|, then  $L^N_{\mathfrak{m},ij}(s) \neq 0$  in that region. Now we show that there exists  $T_{N,a,\varepsilon} > 1$  such that

(6.2) 
$$|R_{\mathfrak{m},ij}^N(\sigma+it)| \ll |t|^{1-2\sigma} \log |t|$$

for  $1/2 \leq \sigma \leq a$  and  $|t| \geq T_{N,a,\varepsilon}$ . We define

(6.3) 
$$I_{\mathfrak{m},ij}(s) = (4\pi)^{2s-1} \frac{\Gamma(k-s)\zeta^*(2s-1)}{\Gamma(s+k-1)\zeta^*(2s)} \frac{D_{\mathfrak{m},ij}(1-s)}{D_{\mathfrak{m},ij}(s)}$$

(6.4) 
$$J_{\mathfrak{m},ij}^{N}(s) = (4\pi)^{s} \frac{\Gamma(k-s)\{W_{\mathfrak{m},ij}^{+,N}(s) + W_{\mathfrak{m},ij}^{-}(s)\}}{\zeta^{*}(2s)D_{\mathfrak{m},ij}(s)}$$

so that

(6.5) 
$$R^{N}_{\mathfrak{m},ij}(s) = I_{\mathfrak{m},ij}(s) + J^{N}_{\mathfrak{m},ij}(s).$$

For  $I_{\mathfrak{m},ij}(s)$  and  $J_{\mathfrak{m},ij}^{N}(s)$ , we obtain the following estimates.

LEMMA 1. There exists  $T_1 > 0$  such that

$$|I_{\mathfrak{m},ij}(s)| = O(|t|^{1-2\sigma})$$

for  $1/2 \leq \sigma \leq a$  and  $|t| \geq T_1$ , where the implied constant depends on  $\mathfrak{m}$ , i and j.

LEMMA 2. There exists  $T_2 > 0$  such that

$$|J_{\mathfrak{m},ij}^N(s)| = O(|t|^{1-2\sigma} \log |t|)$$

for  $1/2 \leq \sigma \leq a$  and  $|t| \geq T_2$ , where the implied constant depends on N,  $\mathfrak{m}$ , *i* and *j*.

Lemma 1, Lemma 2 and (6.5) imply (6.2). Hence the proof of Theorem 2 will be completed if we prove Lemmas 1 and 2. To do that, we use the following lemma.

LEMMA 3. Let g(s) be an exponential polynomial having the form

$$g(s) = \sum_{j=1}^{n} p_j e^{\beta_j s}, \quad 0 = \beta_0 < \beta_1 < \dots < \beta_n,$$

where  $0 \neq p_j \in \mathbb{C}$   $(0 \leq j \leq n)$ . Then |g(s)| is uniformly bounded away from zero if s is uniformly separated from the zeros of g(s).

*Proof.* See Theorem 12.6 of [2].

Proof of Lemma 1. Let  $\xi(s) = s(s-1)\zeta^*(s)$ . We have

$$\left| (4\pi)^{2s-1} \frac{\Gamma(k-s)\zeta^*(2s-1)}{\Gamma(s+k-1)\zeta^*(2s)} \right| = \left| \frac{t}{4\pi} \right|^{1-2\sigma} \frac{1+O(|t|^{-1})}{1+O(|t|^{-1})} \left| \frac{s}{s-1} \right| \left| \frac{\xi(2s-1)}{\xi(2s)} \right|$$

for  $1/2 \le \sigma \le a$  and  $|t| \ge 1$  by using Stirling's formula

$$|\Gamma(\sigma + it)| = \sqrt{2\pi} |t|^{\sigma - 1/2} e^{-(\pi/2)|t|} (1 + O(|t|^{-1}))$$

for  $\sigma_1 \leq \sigma \leq \sigma_2$  and  $|t| \geq 1$ . By the proof of Theorem 2 in [10], we have

$$\left|\frac{\xi(2s-1)}{\xi(2s)}\right| \le 1$$

for  $\sigma \geq 1/2$ . Hence, we obtain

(6.6) 
$$\left| (4\pi)^{2s-1} \frac{\Gamma(k-s)\zeta^*(2s-1)}{\Gamma(s+k-1)\zeta^*(2s)} \right| = O(|t|^{1-2\sigma})$$

for  $1/2 \le \sigma \le a$  and  $|t| \ge t_1$  (> 1). By Lemma 3 and the assumption on the location of zeros of  $D_{\mathfrak{m},ij}(s)$ , we have

(6.7) 
$$\left|\frac{D_{\mathfrak{m},ij}(1-s)}{D_{\mathfrak{m},ij}(s)}\right| = O(1)$$

for  $1/2 \leq \sigma \leq a$  and  $|t| \geq t_2$ . By (6.3), (6.6) and (6.7), we obtain the estimate in Lemma 1.

Proof of Lemma 2. The asymptotic formula (A.1) of the Appendix yields

$$(4\pi)^{s} \frac{\Gamma(k-s)}{\zeta^{*}(2s)} P_{s-1}^{1-k}(\cosh \zeta)$$

$$= \frac{(2\pi)^{2s}}{\sqrt{\pi}} \frac{\Gamma(k-s)}{\Gamma(s+k-1)} \frac{1}{\zeta(2s)} \frac{1}{(s-1)^{1/2}} \frac{e^{-\zeta/2}}{\sqrt{1-e^{-2\zeta}}}$$

$$\times [e^{(s-1/2)\zeta} + e^{\pm \pi i(k-1/2)}e^{(-s+1/2)\zeta} + O(|s-1|^{-1})],$$

where the implied constant depends on  $\zeta > 0$ . Therefore,

$$\left| (4\pi)^s \frac{\Gamma(k-s)}{\zeta^*(2s)} P_{s-1}^{1-k}(\cosh\zeta) \right|$$

$$= \frac{(2\pi)^{2\sigma}}{\sqrt{\pi}} \left| \frac{\Gamma(k-s)}{\Gamma(s+k-1)} \right| \frac{1}{|\zeta(2s)|} \frac{1}{\sqrt{|s-1|}}$$

$$\times \frac{e^{-\zeta/2}}{\sqrt{1-e^{-2\zeta}}} \left[ e^{(\sigma-1/2)\zeta} + e^{(-\sigma+1/2)\zeta} + O(|s-1|^{-1}) \right].$$

Using Stirling's formula, we have

$$\left|\frac{\Gamma(k-s)}{\Gamma(s+k-1)}\right| = |t|^{1-2\sigma} \frac{1+O(|t|^{-1})}{1+O(|t|^{-1})} \ll |t|^{1-2\sigma}$$

for  $1/2 \leq \sigma < a$  and  $|t| \geq t_3$ . On the other hand,

$$\frac{1}{|\zeta(s)|} = O(\log(|t|+2))$$

for  $\sigma \geq 1-A/{\rm log}(|t|+2)$  ([27, p. 60]). Hence we have

(6.8) 
$$\left| (4\pi)^s \frac{\Gamma(k-s)}{\zeta^*(2s)} P_{s-1}^{1-k}(\cosh \zeta) \right| = O(|t|^{1-2\sigma} \log |t|)$$

for  $1/2 - A'/\log |t| \le \sigma \le a$  and  $|t| \ge t_4$ . By Lemma 3 and the assumption on the location of zeros of  $D_{\mathfrak{m},ij}(s)$ , we have

(6.9) 
$$\left|\frac{1}{D_{\mathfrak{m},ij}(s)}\right| = O(1)$$

for  $1/2 \leq \sigma \leq a$  and  $|t| \geq t_5$ . Here we note that

(6.10) 
$$1 + \frac{2}{m_h - 1} < \frac{2m_h - n}{n} < 2m_h - 1 \quad (1 \le n \le m_h - 1, 1 \le h \le d),$$
$$1 + \frac{2m_h}{N} < \frac{2m_h + n}{n} < 2m_h + 1 \quad (1 \le n \le N, 1 \le h \le d)$$

for fixed  $\mathfrak{m} = (m_1, \dots, m_d)$ . Combining (2.10), (6.4), (6.8), (6.9) and (6.10), we obtain Lemma 2.

7. Relation with the holomorphic projection. In this section, we reconsider the argument of Section 5 from the viewpoint of the holomorphic projection of Sturm [21]. Let  $\mathcal{F} = \{f_1, \ldots, f_d\}$  be an orthonormal basis of  $S_k$ . Define

(7.1) 
$$K(z,w) = \sum_{i=1}^{d} f_i(z) \overline{f_i(w)}.$$

Then K(z, w) belongs to  $S_k$  as a function of  $z \in \mathfrak{h}$  for every fixed  $w \in \mathfrak{h}$ , and has the reproducing property:

(7.2) 
$$(g(z), K(z, w)) = g(w) \quad \text{for any } g \in S_k.$$

For a  $C^{\infty}$ -modular form F of bounded growth, we define

$$\pi(F)(w) := (F(z), K(z, w)).$$

Then  $\pi(F)(w)$  belongs to  $S_k$ , and is called the *holomorphic projection* of F. Using the formula

(7.3) 
$$K(z,w) = \sum_{m=1}^{\infty} \frac{(4\pi m)^{k-1}}{\Gamma(k-1)} P_m(z) e(-m\overline{w})$$

([21, p. 333]), we obtain

(7.4) 
$$\pi(F)(w) = \sum_{m=1}^{\infty} \frac{(4\pi m)^{k-1}}{\Gamma(k-1)} (F, P_m) e(mw),$$

where the inner product  $(F, P_m)$  is given by (4.4). Using (7.2), we have

$$((F(z), K(z, w)), g(w)) = (F(z), (g(w), K(w, z))) = (F(z), g(z)).$$

Hence, we obtain

(7.5) 
$$(F, g) = (\pi(F), g).$$
  
Applying (7.5) to  $F(z) = (fE_s^*)(z) := f(z)E^*(z, s)$ , we have  
(7.6)  $L^*(s, f \times \overline{g}) = (\pi(fE_s^*), g)$ 

by (4.5) (compare (7.6) with (2.10) of [12]). By (7.3) and (7.5), we have

(7.7) 
$$(F,g) = (\pi(F),g) = \sum_{m=1}^{\infty} \frac{(4\pi m)^{k-1}}{\Gamma(k-1)} \phi_m(g)(F,P_m),$$

where

$$\phi_m(g) = \int_{\Gamma \setminus \mathfrak{h}} \overline{g(w)} \, e(mw) \, d\mu(w).$$

Applying (7.7) to  $F = f E_s^*$ , we obtain

(7.8) 
$$L^*(s, f \times \overline{g}) = \sum_{m=1}^{\infty} \frac{(4\pi m)^{k-1}}{\Gamma(k-1)} \phi_m(g)(fE_s^*, P_m)$$

by (7.6). However, this formula for  $L(s, f \times \overline{g})$  is not useful for application, because each  $\phi_m(g)$  depends on a choice of a fundamental domain of  $\Gamma$ .

To improve formula (7.8) of  $L(s, f \times \overline{g})$ , we consider the Fourier coefficients of  $\pi(fE_s^*)$ . Let  $\mathcal{F} = \{f_1, \ldots, f_d\}$  be an orthogonal basis of  $S_k$ . Applying (7.4) to  $F = fE_s^*$ , we have

(7.9) 
$$\pi(fE_s^*)(z) = \sum_{m=1}^{\infty} \frac{(4\pi m)^{k-1}}{\Gamma(k-1)} (fE_s^*, P_m)e(mz).$$

Because  $\pi(fE_s^*) \in S_k$ , there exist functions  $C_j(s)$  of s such that

(7.10) 
$$\pi(fE_s^*)(z) = \sum_{j=1}^d C_j(s)f_j(z).$$

By (7.1) and (7.6), we have

(7.11) 
$$C_j(s) = \frac{1}{(f_j, f_j)} \left( \pi(fE_s^*), f_j \right) = \frac{1}{(f_j, f_j)} L^*(s, f \times \overline{f}_j).$$

Here we have used the Fourier expansion  $f_j(z) = \sum_{n=1}^{\infty} a_j(n) n^{(k-1)/2} e(nz)$ . Combining (7.9)–(7.11), and comparing the *m*th Fourier coefficients of both sides, we obtain

$$\begin{split} \sum_{j=1}^{d} C_j(s) a_j(m) &= \sum_{j=1}^{d} \frac{a_j(m)}{(f_j, f_j)} L^*(s, f \times \overline{f}_j) = \frac{(4\pi m)^{k-1}}{\Gamma(k-1)} \left( f E_s^*, P_m \right) \\ &= \frac{a_f(m)}{(f, f)} \bigg\{ (4\pi m)^{-s} \frac{\Gamma(s+k-1)}{\Gamma(k-1)} \zeta^*(2s) + (4\pi m)^{s-1} \frac{\Gamma(k-s)}{\Gamma(k-1)} \zeta^*(2s-1) \\ &+ \frac{\Gamma(s+k-1)\Gamma(k-s)}{\Gamma(k-1)} \sum_{n=1}^{m-1} \frac{a_f(m-n)}{a_f(m)} \frac{\tau_s(n)}{\sqrt{n}} P_{s-1}^{1-k} \bigg( \frac{2m-n}{n} \bigg) \\ &+ \frac{\Gamma(s+k-1)\Gamma(k-s)}{\Gamma(k-1)} \sum_{n=1}^{\infty} \frac{a_f(m+n)}{a_f(m)} \frac{\tau_s(n)}{\sqrt{n}} P_{s-1}^{1-k} \bigg( \frac{2m+n}{n} \bigg) \bigg\}. \end{split}$$

This is nothing other than equality (5.1).

Appendix. Asymptotic expansion of  $P^{\mu}_{\nu}(z)$ . In this section, we give an asymptotic expansion of the associated Legendre functions  $P^{\mu}_{\nu}(z)$  for large  $|\nu|$  according to Watson [29], where  $\nu$  and  $\mu$  do not have to be integers. The associated Legendre function  $P^{\mu}_{\nu}(z)$  of the first kind is defined by

$$P^{\mu}_{\nu}(z) = \frac{1}{\Gamma(1-\mu)} \left(\frac{z+1}{z-1}\right)^{\mu/2} F\left(-\nu,\nu+1,1-\mu;\frac{1-z}{2}\right)$$

for  $z - 1 \in \mathbb{C} \setminus (-\infty, 0]$ . We write  $z = \cosh \zeta$ ,  $\zeta = \xi + i\eta \ (\xi, \eta \in \mathbb{R})$  for  $z - 1 \in \mathbb{C} \setminus (-\infty, 0]$ , and define the values  $\omega_i = \omega_i(z) \ (i = 1, 2)$  by

$$\omega_1 = -\arctan\left(\frac{\eta - \pi}{\xi}\right), \quad \omega_2 = \arctan\left(\frac{\eta}{\xi}\right)$$

if  $\eta \geq 0$ , and by

$$\omega_1 = -\arctan\left(\frac{\eta}{\xi}\right), \quad \omega_2 = -\arctan\left(\frac{\eta+\pi}{\xi}\right)$$

if  $\eta \leq 0$ . In each case arctan denotes an acute angle, positive or negative. Define

$$\tau = \log\left(\frac{t-z}{t^2-1}\right) + \log(2e^{\zeta}).$$

We define the numbers  $c_n$  and  $d_n$  by using the expansion

$$(1-t)^{\mu}(1+t)^{-\mu}(z-t)^{-1}\frac{dt}{d\tau} = \pm C\sum_{n=0}^{\infty}c_n\tau^{n-1/2} + \sum_{n=0}^{\infty}d_n\tau^n$$

where  $C = 2^{-1}(1 - e^{\zeta})^{\mu+1/2}(1 + e^{\zeta})^{1/2-\mu}(z - e^{\zeta})^{-1}$  and multiple-valued functions are specified by the conventions

$$|\arg(1-e^{\zeta})| < \pi, \quad |\arg(1+e^{\zeta})| < \pi.$$

In particular,

$$c_0 = 1$$
,  $c_1 = \frac{8\mu^2 - 3 + 3e^{2\zeta}}{4(1 - e^{2\zeta})}$ 

We define the numbers  $c'_n$  from  $c_n$  by changing the sign of  $\zeta$ . In particular,

$$c'_0 = 1, \quad c'_1 = \frac{8\mu^2 - 3 + 3e^{-2\zeta}}{4(1 - e^{-2\zeta})},$$

PROPOSITION 2 (Watson). Let z be a complex number such that  $z-1 \in \mathbb{C} \setminus (-\infty, 0]$ . In the range of  $\arg \nu$  depending on z and given by

$$-\frac{\pi}{2} - \omega_2 + \delta \le \arg \nu \le \frac{\pi}{2} + \omega_1 + \delta,$$

the associated Legendre function  $P^{\mu}_{\nu}(z)$  has the asymptotic expansion

(A.1) 
$$P_{\nu}^{\mu}(z) = \frac{\Gamma(\nu+1)}{\Gamma(\nu-\mu+1)} \frac{e^{-\zeta/2}}{(\nu\pi)^{1/2}(1-e^{-2\zeta})^{1/2}} \\ \times \left[ e^{(\nu+1/2)\zeta} \sum_{n=0}^{N-1} \frac{\Gamma(n+1/2)}{\Gamma(1/2)} c_n \nu^{-n} + e^{\mp\pi i(\mu-1/2)} e^{-(\nu+1/2)\zeta} \sum_{n=0}^{N-1} \frac{\Gamma(n+1/2)}{\Gamma(1/2)} c'_n \nu^{-n} + O(|\nu|^{-N}) \right]$$

as  $|\nu| \to +\infty$ , where the implied constant depends on z and  $\mu$ .

### References

- [1] H. Bauer, Zeros of Asai-Eisenstein series, Math. Z. 254 (2006), 219–237.
- [2] R. Bellman and K. L. Cooke, *Differential-Difference Equations*, Academic Press, New York, 1963.
- [3] A. V. Egorov, A remark on the distribution of the zeros of the Riemann zeta function and a continuous analogue of Kakeya's theorem, Mat. Sb. 194 (2003), no. 10, 107–116 (in Russian).

- S. M. Gonek, Finite Euler products and the Riemann hypothesis, prepublication, 2007, http://arxiv.org/abs/0704.3448.
- T. Hayashi, Computation of Weng's rank 2 zeta function over an algebraic number field, J. Number Theory 125 (2007), 473–527.
- [6] D. A. Hejhal, On a result of G. Pólya concerning the Riemann ξ-function, J. Anal. Math. 55 (1990), 59–95.
- [7] J. Hoffstein and P. Lockhart, *Coefficients of Maass forms and the Siegel zero*, Ann. of Math. (2) 140 (1994), 161–181 (with an appendix by D. Goldfeld, J. Hoffstein and D. Lieman).
- [8] J. Hoffstein and D. Ramakrishnan, Siegel zeros and cusp forms, Int. Math. Res. Notices 1995, no. 6, 279–308.
- [9] H. Ki, All but finitely many non-trivial zeros of the approximations of the Epstein zeta function are simple and on the critical line, Proc. London Math. Soc. (3) 90 (2005), 321–344.
- [10] J. C. Lagarias and M. Suzuki, The Riemann hypothesis for certain integrals of Eisenstein series, J. Number Theory 118 (2006), 98–122.
- [11] N. N. Lebedev, Special Functions and Their Applications, Dover Publ., New York, 1972.
- [12] S. Mizumoto, Certain L-functions at s = 1/2, Acta Arith. 88 (1999), 51–66.
- [13] W. Müller, A spectral interpretation of the zeros of the constant term of certain Eisenstein series, J. Reine Angew. Math. 620 (2008), 67–84.
- T. Noda, An application of the projections of C<sup>∞</sup> automorphic forms, Acta Arith. 72 (1995), 229–234.
- [15] H. Petersson, Die linearen Relationen zwischen den ganzen Poincaréschen Reihen von reeller Dimension zur Modulgruppe, Abh. Math. Sem. Hansischen Univ. 12 (1938), 414–472.
- [16] —, Über eine Metrisierung der ganzen Modulformen, Jber. Deutsch. Math. Verein. 49 (1939), 49–75.
- [17] G. Pólya, Bemerkung über die Integraldarstellung der Riemannschen ζ-Funktion, Acta Math. 48 (1926), 305–317.
- [18] D. Ramakrishnan and S. Wang, On the exceptional zeros of Rankin–Selberg Lfunctions, Compos. Math. 135 (2003), 211–244.
- [19] R. A. Rankin, The scalar product of modular forms, Proc. London Math. Soc. (3) 2 (1952), 198–217.
- [20] H. M. Stark, On the zeros of Epstein's zeta function, Mathematika 14 (1967), 47–55.
- J. Sturm, The critical values of zeta functions associated to the symplectic group, Duke Math. J. 48 (1981), 327–350.
- [22] M. Suzuki, An analogue of the Chowla–Selberg formula for several automorphic lfunctions, in: Probability and Number Theory (Kanazawa, 2005), Adv. Stud. Pure Math. 49, Math. Soc. Japan, Tokyo, 2007, 479–506.
- [23] —, A proof of the Riemann hypothesis for the Weng zeta function of rank 3 for the rationals, in: The Conference on L-Functions, World Sci., Hackensack, NJ, 2007, 175–199.
- [24] —, The Riemann hypothesis for Weng's zeta function of Sp(4) over  $\mathbb{Q}$ , with an appendix by L. Weng, J. Number Theory, to appear.
- [25] M. Suzuki and L. Weng, Zeta functions for  $G_2$  and their zeros, Int. Math. Res. Notices, to appear.
- [26] P. R. Taylor, On the Riemann zeta function, Quart. J. Math. Oxford Ser. 16 (1945), 1–21.
- [27] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, New York, 1986.

- [28] O. C. Velásquez, Majoration du nombre de zéros d'une fonction méromorphe en dehors d'une droite verticale et applications, prepublication, 2007, http://arxiv.org/ abs/0712.1266.
- [29] G. N. Watson, Asymptotic expansions of hypergeometric functions, Trans. Cambridge Philos. Soc. 22 (1918), 277–308.
- [30] —, A Treatise on the Theory of Bessel Functions, Cambridge Math. Library, Cambridge Univ. Press, Cambridge, 1995 (reprint of the second 1944 edition).
- [31] L. Weng, A rank two zeta and its zeros, J. Ramanujan Math. Soc. 21 (2006), 205– 266.
- [32] —, A geometric approach to L-functions, in: The Conference on L-Functions, World Sci., Hackensack, NJ, 2007, 219–370.
- [33] —, Symmetries and the Riemann hypothesis, in: Algebraic and Arithmetic Structure of Moduli Spaces, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, to appear.
- [34] H. Yoshida, On calculations of zeros of L-functions related with Ramanujan's discriminant function on the critical line, J. Ramanujan Math. Soc. 3 (1988), 87–95.

Graduate School of Mathematical Sciences The University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8914, Japan E-mail: msuzuki@ms.u-tokyo.ac.jp

> Received on 8.1.2008 and in revised form on 22.8.2008

(5605)