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Algebraic relations between
special values of multiple sine functions
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1. Introduction. The algebraicity of a product of division values of
the double sine function S2(α, (1, τ)) at α ∈ Q + Qτ (see [KW], [S], [Tang])
is very interesting from the viewpoint of Kronecker’s Jugendtraum for a
real quadratic field. We expect the similar situation for division values of
multiple sine functions. In this paper, we study algebraic relations between
special values of multiple sine functions. Recall that the multiple sine func-
tion Sr(x, (ω1, . . . , ωr)) is defined by

Sr(x, (ω1, . . . , ωr))

=
∏∐

n1,...,nr≥0

(n1ω1 + · · ·+nrωr + x)
( ∏∐
n1,...,nr≥1

(n1ω1 + · · ·+nrωr − x)
)(−1)r−1

,

where
∏∐

denotes the regularized product of Deninger [D]:∏∐
λ∈Λ

λ = exp
(
− d

ds

∑
λ∈Λ

λ−s
∣∣∣∣
s=0

)
.

We refer to [KoKu], [KuKo], [KW] for the details of the theory of multiple
sine functions. We write Sr(x, (1, . . . , 1)) = Sr(x) for simplicity.

Theorem 1. Let m be a positive integer. Then
m−1∏
k=0

S2m−k(1)(−1)k(m−1
k ) = 1.

Theorem 2. Let

δ(r) :=
{

1 if r is odd ,
0 if r is even.
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Then
[r/2]−1∏
k=0

Sr−k(1)(−1)k
P[r/2]
l=1+k ( r2l)(

l−1
k )

×
[r/2]+δ(r)−1∏

k=0

Sr−k(1/2)(−1)k
P[r/2]+δ(r)
l=1+k ( r

2l−1)(
l−1
k ) = 2.

Theorem 3.

S3(1, (1, 1, 1/2))−8S3(1)2 = 2,(1)
S4(1, (1, 1, 1, 1/2))−16S4(1)10 = 2,(2)
S5(1, (1, 1, 1, 1, 1/2))−128S5(1)8S4(1)82 = 32,(3)
S6(1, (1, 1, 1, 1, 1, 1/2))−256S6(1)−38S5(1)228 = 128.(4)

Remark 1.1. Kurokawa and Koyama [KuKo, Lemma 3.2] calculated
Sr(1). For example, we have

S3(1) = S4(1) = exp
(
ζ(3)
4π2

)
,

S5(1) = exp
(

11
48π2

ζ(3)− ζ(5)
16π4

)
,

S6(1) = exp
(

5
24π2

ζ(3)− ζ(5)
8π4

)
.

Moreover, the value Sr(α) at α ∈ Q−Z was obtained in [Tana, Theorem 1.1].

Set ωk := (
k︷ ︸︸ ︷

ω, . . . , ω) for a positive integer k.

Theorem 4. Let m be a positive integer. Then

S2m(m, (1m, τm)) = S2m(m, (1m, τ
−1

m))−1.

Remark 1.2. Put m = 1 in Theorem 4. Then

S2(1, (1, τ)) = S2(1, (1, τ−1))−1.

In fact, following Koyama, Kurokawa, Tangedal and Wakayama (see [KoKu,
(4) or (5) of Theorem 1], [KW, Lemma 2.2], [Tang, Lemma 6] for details)
we have

S2(1, (1, τ)) =
√
τ .

Theorem 5. Let r ≥ 2 be an integer and τ > 0 be algebraic irrational.

(1) One of the numbers Sr(t+ 1, (1r−1, τ)), t = 1, . . . , r− 1, is transcen-
dental.

(2) One of the numbers Sr((t+ 1)τ + 1/2, (1r−1, τ)), t = 1, . . . , r − 1, is
transcendental.
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(3) One of the numbers
∏N−1
k=1 Sr(t + k/N, (1r−1, τ)), t = 1, . . . , r − 1,

is transcendental. In particular , one of the numbers Sr((2t+ 1)/2,
(1r−1, τ)), t = 1, . . . , r − 1, is transcendental.

(4) Let δ = 1, τ . Then one of the numbers Sr((1 + τ)/2 + tδ, (1r−1, τ)),
t = 1, . . . , r − 1, is transcendental.

Remark 1.3. When r = 2, Theorem 5(1) is a result of Kurokawa and
Wakayama [KW, Theorem 1.2].

Theorem 6.

(1) Let n ≥ 2 be an integer. When τ > 0 is algebraic irrational , the
number S2(1/2 + nτ, (1, τ)) is transcendental.

(2) Let n ≥ 1 and N ≥ 2 be integers. When τ > 0 is algebraic irrational ,
the number

∏N−1
k=1 S2(k/N+n, (1, τ)) is transcendental. In particular ,

S2(1/2 + n, (1, τ)) is transcendental.

Theorem 7. Let n1, n2 be non-negative integers, not both zero. When
τ > 0 is real quadratic irrational , S2((1 + τ)/2 + n1 + n2τ, (1, τ)) is tran-
scendental. When n1 = 0 or n2 = 0, this holds for any algebraic irrational
τ > 0.

Theorem 8. When τ > 0 is rational , the values in Theorems 6 and 7
are algebraic.

Theorem 1.2 of [KW] is shown via the Gelfond–Schneider theorem (see
[Bak, Theorem 2.1]). In the same way we prove Theorems 6 and 7.

2. Proofs of Theorems 1–4

Proof of Theorem 1. First we show that for any non-negative integer k,

(2.1) Sr(x) =
k∏
l=0

Sr−l(x− k)(−1)l(kl).

We recall the quasi-periodicity of multiple sine functions (see [KuKo] for
details):

Lemma 2.1 ([KuKo, Theorem 2.1(a)]). For j = 1, . . . , r,

(2.2) Sr(x+ ωj , (ω1, . . . , ωr)) =
Sr(x, (ω1, . . . , ωr))

Sr−1(x, (ω1, . . . , ωj−1, ωj+1, . . . , ωr))
,

where we put S0(x, ·) = −1.

When k = 1, from (2.2) we have

Sr(x) =
Sr(x− 1)
Sr−1(x− 1)

.
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Inductively suppose (2.1) holds for k. Then using (2.2) we have

Sr(x) =
k∏
l=0

{Sr−l(x− (k + 1))Sr−l−1(x− (k + 1))−1}(−1)l(kl)

= Sr(x− (k + 1))Sr−(k+1)(x− (k + 1))(−1)k+1

×
k∏
l=1

Sr−l(x− (k + 1))(−1)l(kl)

×
k−1∏
l=0

Sr−l−1(x− (k + 1))(−1)l+1(kl)

= Sr(x− (k + 1))Sr−(k+1)(x− (k + 1))(−1)k+1

×
k∏
l=1

Sr−l(x− (k + 1))(−1)l{(kl)+( k
l−1)}

=
k+1∏
l=0

Sr−l(x− (k + 1))(−1)l(k+1
l ).

Hence we obtain (2.1). Put r = 2m, x = m and k = m−1 in (2.1) to obtain

S2m(m) =
m−1∏
l=0

S2m−l(1)(−1)l(m−1
l ).

By the definition of the multiple sine function, we see that

S2m(m) =

∏∐
n1,...,n2m≥0(n1 + · · ·+ n2m +m)∏∐
n1,...,n2m≥0(n1 + · · ·+ n2m +m)

= 1.

Hence, Theorem 1 is proved.

Proof of Theorem 2. First, we recall a lemma.

Lemma 2.2 ([KuKo, Theorem 2.1(c)]). Let N ≥ 2 be an integer. Then

(2.3)
N−1∏

k1,...,kr=0
(k1,...,kr)6=(0,...,0)

Sr

(
k1ω1 + · · ·+ krωr

N
, (ω1, . . . , ωr)

)
= N.

Putting N = 2 and ω1 = · · · = ωr = 1 in (2.3), we get
r∏

k=1

Sr(k/2)(
r
k) = 2.
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Therefore,
[r/2]∏
l=1

Sr(l)(
r
2l)

[r/2]+δ(r)∏
l=1

Sr(l − 1/2)(
r

2l−1) = 2.

From (2.1) we have

Sr(l) =
l−1∏
k=0

Sr−k(1)(−1)k(l−1
k ),

Sr(l − 1/2) =
l−1∏
k=0

Sr−k(1/2)(−1)k(l−1
k ).

Hence,
[r/2]∏
l=1

l−1∏
k=0

Sr−k(1)(−1)k( r2l)(
l−1
k )

[r/2]+δ(r)∏
l=1

l−1∏
k=0

Sr−k(1/2)(−1)k( r
2l−1)(

l−1
k ) = 2.

This formula can be rewritten to give the formula of Theorem 2.

Example 2.1 (Application of Theorem 2).

S2(1/2)2 = 2,(1)
S3(1)3S3(1/2)4S2(1/2)−1 = 2,(2)
S4(1)6S4(1/2)8S3(1/2)−4 = 2,(3)
S5(1)15S4(1)−5S5(1/2)16S4(1/2)−12S3(1/2) = 2,(4)
S6(1)30S5(1)−15S6(1/2)32S5(1/2)−32S4(1/2)6 = 2.(5)

Proof. Putting r = 3, 5 in Theorem 2, we obtain (2) and (4) immediately.
Putting r = 2 in Theorem 2 yields

S2(1)S2(1/2)2 = 2,

and putting m = 1 in Theorem 1 gives

S2(1) = 1.

Hence, (1) is proved. Similarly, put r = 4 and r = 6 in Theorem 2 to get,

S4(1)7S3(1)−1S4(1/2)8S3(1/2)−4 = 2,
S6(1)31S5(1)−17S4(1)S6(1/2)32S5(1/2)−32S4(1/2)6 = 2.

Putting m = 2 and m = 3 in Theorem 1, we see that

S4(1)S3(1)−1 = 1,(2.4)
S6(1)S5(1)−2S4(1) = 1.(2.5)

This yields (3) and (5).

Proof of Theorem 3. We prepare a lemma.



128 H. Tanaka

Lemma 2.3. Let l, N be positive integers. Then

Sr(x, (1r−1, l/N)) =
N−1∏
k=0

Sr(x+ lk/N, (1r−1, l)).

Proof of Lemma 2.3. Using

ζr(s, x, (1r−1, l/N)) :=
∑

n1,...,nr≥0

(x+ n1 + · · ·+ nr−1 + lnr/N)−s

=
N−1∑
k=0

∑
n1,...,nr≥0

(x+ lk/N + n1 + · · ·+ nr−1 + lnr)−s,

we have∏∐
n1,...,nr≥0

(n1 + · · ·+ nr−1 + lnr/N + x)−1

=
N−1∏
k=0

∏∐
n1,...,nr≥0

(n1 + · · ·+ nr−1 + lnr + x+ lk/N)−1.

From∏∐
n1,...,nr≥1

(n1 + · · ·+ nr−1 + lnr/N − x)−1

=
∏∐

n1,...,nr≥0

(n1 + · · ·+ nr−1 + lnr/N + r − 1− x+ l/N)−1

=
N−1∏
k=0

∏∐
n1,...,nr≥0

(n1 + · · ·+ nr−1 + lnr + r − 1− x+ l(k + 1)/N)−1

=
N−1∏
k=0

∏∐
n1,...,nr≥0

(n1 + · · ·+ nr−1 + lnr + r − 1− x+ l(N − k)/N)−1

=
N−1∏
k=0

∏∐
n1,...,nr≥1

(n1 + · · ·+ nr−1 + lnr − x− lk/N)−1

we obtain Lemma 2.3.

Put x = 1, l = 1 and N = 2 in Lemma 2.3 to obtain

(2.6) Sr(1, (1r−1, 1/2)) = Sr(1)Sr(3/2) = Sr(1)Sr(1/2)Sr−1(1/2)−1,

where we used the quasi-periodicity of multiple sine functions:

(2.7) Sr(3/2) = Sr(1/2)Sr−1(1/2)−1.
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Now we show (1) of Theorem 3. When r = 3, from (2.6) and Example
2.1(2) we see that

S3(1, (1, 1, 1/2)) = S3(1)S2(1/2)−1{2S3(1)−3S2(1/2)}1/4.
Since (see Example 2.1(1))

S2(1/2) =
√

2
we obtain (1) of Theorem 3.

Next we show (2) of Theorem 3. When r = 4, from (2.6) and Example
2.1(3) we see that

S4(1, (1, 1, 1, 1/2)) = S4(1)S3(1/2)−1{2S4(1)−6S3(1/2)4}1/8.
Hence, using Example 2.1(2) we have

S4(1, (1, 1, 1, 1/2))8 = 2S4(1)2S3(1/2)−4 = 2S4(1)2{2S3(1)−3S2(1/2)}−1.

Applying (2.4) we obtain (2) of Theorem 3.
Next we show (3) of Theorem 3. From (2.6) for r = 5 and Example 2.1(4)

we see that

S5(1, (1, 1, 1, 1, 1/2))

= S5(1)S4(1/2)−1{2S5(1)−15S4(1)5S4(1/2)12S3(1/2)−1}1/16.

Hence, using Example 2.1(2) & (3) we have

S5(1, (1, 1, 1, 1, 1/2))16 = 2S5(1)S4(1)5S4(1/2)−4S3(1/2)−1

= 2S5(1)S4(1)5S3(1/2)−1{2S4(1)−6S3(1/2)4}−1/2

= 21/2S5(1)S4(1)8S3(1/2)−3

= 21/2S5(1)S4(1)8{2S3(1)−3S2(1/2)}−3/4

= 2−5/8S5(1)S4(1)8S3(1)9/4.

Applying (2.4) we obtain (3) of Theorem 3.
Finally, we show (4) of Theorem 3. From (2.6) for r = 6 and Example

2.1(5) we see that

S6(1, (1, 1, 1, 1, 1, 1/2))

= S6(1)S5(1/2)−1{2S6(1)−30S5(1)15S5(1/2)32S4(1/2)−6}1/32.

Hence, using Example 2.1(2) & (3) we have

S6(1, (1, 1, 1, 1, 1, 1/2))32 = 2S6(1)2S5(1)15S4(1/2)−6

= 2S6(1)2S5(1)15{2S4(1)−6S3(1/2)4}−3/4

= 21/4S6(1)2S5(1)15S4(1)9/2S3(1/2)−3

= 21/4S6(1)2S5(1)15S4(1)9/2{2S3(1)−3S2(1/2)}−3/4

= 2−7/8S6(1)2S5(1)15S4(1)27/4.

Applying (2.5) we obtain (4) of Theorem 3.
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Proof of Theorem 4. Using the homogeneity (see [KuKo] for details)

Sr(cx, (cω1, . . . , cωr)) = Sr(x, (ω1, . . . , ωr))

and the construction of S2m we obtain

S2m(m, (1m, τm)) = S2m(m/τ, (1m, τ
−1

m)) = S2m(m, (1m, τ
−1

m))−1.

3. Proofs of Theorems 5–8. First, we show Theorems 6–8. We express
certain special values of double sine functions via products of usual sine or
cosine functions.

Lemma 3.1.

(1) Let n be a positive integer. Then

S2

(
1
2

+ nτ, (1, τ)
)

=
√

2
n∏
l=0

(2 cos(lπτ))−1,

S2

(
1 + τ

2
+ nτ, (1, τ)

)
=

2n−1∏
l=1
l : odd

(
2 cos

(
lπ

2
τ

))−1

and

S2

(
1 + τ

2
+ n, (1, τ)

)
=

2n−1∏
l=1
l : odd

(
2 cos

(
lπ

2τ

))−1

.

(2) Let n ≥ 1 and N ≥ 2 be integers. Then
N−1∏
k=1

S2

(
k

N
+ n, (1, τ)

)
=
√
N

N−1∏
k=1

n−1∏
l=0

(
2 sin

(
π

τ

(
k

N
+ l

)))−1

.

(3) Let n1, n2 be positive integers. Then

S2

(
1 + τ

2
+ n1 + n2τ, (1, τ)

)
= (−1)n1n2

2n1−1∏
l1=1
l1 : odd

(
2 cos

(
l1π

2
1
τ

))−1

×
2n2−1∏
l2=1
l2 : odd

(
2 cos

(
l2π

2
τ

))−1

.

Proof. From the quasi-periodicity of multiple sine functions we have

S2

(
1
2

+ nτ, (1, τ)
)

= S2

(
1
2
, (1, τ)

) n−1∏
l=0

S1

(
1
2

+ lτ

)−1

,
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S2

(
1 + τ

2
+ nτ, (1, τ)

)
=

n−1∏
l=0

S1

(
1 + τ

2
+ lτ

)−1

,

S2

(
k

N
+ n, (1, τ)

)
= S2

(
k

N
, (1, τ)

) n−1∏
l=0

S1

(
k

N
+ l, (τ)

)−1

,

S2

(
1 + τ

2
+ n1 + n2τ, (1, τ)

)
=

n1−1∏
l1=0

S1

(
1 + τ

2
+ l1, (τ)

)−1

×
n2−1∏
l2=0

S1

(
1 + τ

2
+ n1 + l2τ

)−1

,

where we used

S2

(
1 + τ

2
, (1, τ)

)
= 1.

Since S1(x) = 2 sin(πx), which is obtained from Lerch’s formula [L], and by
the homogeneity of multiple sine functions we obtain

S1

(
1
2

+ lτ

)
= 2 cos(lπτ),

S1

(
1 + τ

2
+ lτ

)
= 2 cos

(
(2l + 1)π

2
τ

)
,

S1

(
k

N
+ l, (τ)

)
= 2 sin

(
π

τ

(
k

N
+ l

))
,

S1

(
1 + τ

2
+ l1, (τ)

)
= 2 cos

(
(2l1 + 1)π

2τ

)
,

S1

(
1 + τ

2
+ n1 + l2τ

)
= (−1)n12 cos

(
(2l2 + 1)π

2
τ

)
.

Hence (3) of Lemma 3.1 is proved.
Now we show N−1∏

k=1

S2

(
kω1

N
, (ω1, ω2)

)
=
√
N.

In fact, by the definition of S2 we have

S2(x, (ω1, ω2))S2(ω1 + ω2 − x, (ω1, ω2)) = 1.

Let x = kω1/N . Then
N−1∏
k=1

S2

(
kω1

N
, (ω1, ω2)

)N−1∏
k=1

S2

(
ω1 −

kω1

N
, (ω1, ω2)

)

=
N−1∏
k=1

S1

(
ω1 −

kω1

N
, (ω1)

)
.
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This gives (N−1∏
k=1

S2

(
kω1

N
, (ω1, ω2)

))2

=
N−1∏
k=1

2 sin
(
k

N
π

)
= N.

Hence (2) of Lemma 3.1 is proved.
When N = 2, we have

S2(ω1/2, (ω1, ω2)) =
√

2,

which was obtained by Koyama and Kurokawa [KoKu, Theorem 1(2)]. More-
over, from the homogeneity of multiple sine functions and

S2

(
1 + τ

2
+ nτ, (1, τ)

)
=

2n−1∏
l=1
l : odd

(
2 cos

(
lπ

2
τ

))−1

,

we have

S2

(
1 + τ

2
+ n, (1, τ)

)
=

2n−1∏
l=1
l : odd

(
2 cos

(
lπ

2τ

))−1

.

Thus, we obtain (1) of Lemma 3.1.

Lemma 3.2.

(1) Let n ≥ 2 be an integer and τ ∈ Q−Q. Then
n−1∏
l=0

cos(lπτ) 6∈ Q.

(2) Let n be a positive integer and τ ∈ Q−Q. Then
2n−1∏
l=1
l : odd

cos
(
lπ

2
τ

)
6∈ Q and

2n−1∏
l=1
l : odd

cos
(
lπ

2τ

)
6∈ Q.

(3) Let n ≥ 1 and N ≥ 2 be integers and τ ∈ Q−Q. Then
N−1∏
k=1

n−1∏
l=0

sin
(
π

τ

(
k

N
+ l

))
6∈ Q.

(4) Let n1, n2 be positive integers and τ 6= 0 be quadratic irrational.
Then

2n1−1∏
l1=1
l1 : odd

cos
(
l1π

2
1
τ

) 2n2−1∏
l2=1
l2 : odd

cos
(
l2π

2
τ

)
6∈ Q.
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Proof. First we prove (1). Suppose otherwise. Put q = eπiτ . Then
n−1∏
l=0

(ql + q−l) ∈ Q.

Hence there is a Q-algebraic equation for q. However, the Gelfond–Schneider
theorem (see [Bak, Theorem 2.1]) gives q = (−1)τ 6∈ Q. The contradiction
proves (1).

Next we prove (2). Suppose otherwise. Put q = e
πi
2
τ or q = e

πi
2τ . Then

2n−1∏
l=1
l : odd

(ql + q−l) ∈ Q.

Similarly, this gives a contradiction.
Next we prove (3). Suppose otherwise. Put q = e

πi
Nτ . Then

N−1∏
k=1

n−1∏
l=0

(qk+lN − q−(k+lN)) ∈ Q.

Similarly, this gives a contradiction.
Finally, we prove (4). Since τ is a quadratic irrational number, there are

integers N,M such that τ = N
M

1
τ . Suppose otherwise. Put q = e

πi
2Mτ . Then

2n1−1∏
l1=1
l1 : odd

(qMl1 + q−Ml1)
2n2−1∏
l2=1
l2 : odd

(qNl2 + q−Nl2) ∈ Q.

Similarly, this gives a contradiction.

Proofs of Theorems 6 and 7. The theorems follow from Lemmas 3.1
and 3.2.

Proof of Theorem 8. When α is rational, sin(απ), cos(απ) ∈ Q. Hence
Theorem 8 follows.

Proof of Theorem 5. We prove (1) of Theorem 5 by induction on r =
2, 3, . . . . When r = 2, from the result of Kurokawa and Wakayama [KW,
Theorem 1.2] we see that S2(2, (1, τ)), is transcendental. Assume that one
of the numbers Sr(t+ 1, (1r−1, τ)), t = 1, . . . , r − 1 is transcendental. Then
from the quasi-periodicity of multiple sine functions for k = 3, . . . , r + 1 we
have

Sr+1(k, (1r, τ))Sr+1(k − 1, (1r, τ))−1 = Sr(k − 1, (1r−1, τ))−1.

So, one of the r numbers Sr+1(t+ 1, (1r, τ)), t = 1, . . . , r, is transcendental.
Similarly, from Theorem 6(1) & (2) and Theorem 7 we have (2), (3) and (4)
of Theorem 5 respectively.
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