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1. Introduction. Given a real number x ∈ [0, 1], let

x =
1

a1(x) +
1

a2(x) + · · ·

= [a1(x), a2(x), . . .],

be its simple continued fraction expansion, where an(x) ∈ N, n ≥ 1, are
called the partial quotients of x. Let

pn(x)
qn(x)

= [a1(x), . . . , an(x)], n ≥ 1,

denote the convergents of x. Then with the conventions p−1(x) = q0(x) = 1
and q−1(x) = p0(x) = 0, for any n ≥ 0 we have

pn+1(x) = an+1(x)pn(x) + pn−1(x),(1)
qn+1(x) = an+1(x)qn(x) + qn−1(x).(2)

For any n ≥ 1 and (a1, . . . , an) ∈ Nn, let pn(a1, . . . , an) and qn(a1, . . . , an)
be defined by (1) and (2).

In [4], I. J. Good investigated the fractional dimensions of sets of con-
tinued fractions whose partial quotients {an(x) : n ≥ 1} obey various con-
ditions, including the cases when an(x), n ≥ 1, are restricted to belong to
some finite subset of N. Let D ⊆ N be a finite or infinite nonempty set.
Define

ED = {x ∈ [0, 1) : an(x) ∈ D for n ≥ 1}.
When D is finite, I. J. Good showed that

(3) dimHED = lim
n→∞

σD,n,
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where dimH denotes the Hausdorff dimension and σD,n is the real root of∑
(a1,...,an)∈Dn

qn(a1, . . . , an)−2σD,n = 1.

Mauldin and Urbański [9], [10] generalized I. J. Good’s result to all D.
For any nonempty D ⊆ N and s ∈ R, define the pressure function

PD(s) = lim
n→∞

1
n

log
∑

(a1,...,an)∈Dn
qn(a1, . . . , an)−2s.

Mauldin and Urbański proved that

(4) dimHED = sup{dimHEJ : J ⊆ D finite} = inf{s : PD(s) ≤ 0}.

In the case an(x) tends to infinity, I. J. Good [4] proved that

{x ∈ [0, 1] : an(x)→∞ as n→∞}

is of Hausdorff dimension 1/2. Hirst [5] considered the case when an(x)
is further restricted to belong to some sequence of natural numbers. More
precisely, let Λ be an infinite sequence of positive integers λ1 < λ2 < · · ·
and τ(Λ) be the exponent of convergence of the series

∑∞
n=1 1/λn, i.e.,

τ(Λ) = inf
{
s ≥ 0 :

∞∑
n=1

1
λsn

<∞
}
.

Define

E(Λ) = {x ∈ [0, 1] : an(x) ∈ Λ (n ≥ 1) and an(x)→∞ as n→∞}.

Hirst [5] showed that dimHE(Λ) ≤ τ(Λ)/2, and conjectured that equality
holds. In [3], Cusick proved Hirst’s conjecture under a density assumption
on Λ: if there exist constants c, q and r depending only on Λ such that
r < τq and, for all real p ≥ q, the sequence Λ has at least cnτp−r members
in every interval [(n − 1)p, np], then dimHE(Λ) = τ(Λ)/2. In [16], Wang
and the second author confirmed Hirst’s conjecture without any assumption
on Λ, that is,

(5) dimHE(Λ) = τ(Λ)/2 for any Λ ⊆ N.

For continued fractions over the field of formal Laurent series, it is natu-
ral to ask if there are analogous results to (3), (4) and (5). In this paper, we
obtain such analogues for continued fractions over the field of formal Laurent
series. Continued fraction expansion and Diophantine approximation in the
field of formal Laurent series have been studied in [2, 8, 15] and references
therein. Kristensen [7] discussed analogues of the classical questions in Dio-
phantine approximation (Hausdorff dimension and Khinchin type theorem)
in the field of Laurent series. The Hausdorff dimensions of some other sets
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occurring in the continued fraction expansion of Laurent series have been
discussed in [11, 12, 17, 18, 6].

This paper is organized as follows. In Section 2, we introduce some no-
tations and present the main results of this paper. Section 3 is devoted to
the proof of the main results.

2. Statements of main results. In this section, we present the main
results of this paper. We first fix the notation and describe continued frac-
tions over the field of formal Laurent series.

Let p be a prime, q be a power of p, and Fq be a finite field of q elements.
Let Fq((z−1)) denote the field of all formal Laurent series C =

∑∞
n=v cnz

−n

in an indeterminate z, with coefficients cn all lying in the field Fq. Recall
that Fq[z] denotes the ring of polynomials in z with coefficients in Fq.

For a nonzero formal Laurent series C, we may assume that cv 6= 0. Then
the integer v = v(C) is called the order of C. The norm (or valuation) of C is
defined to be ‖C‖ = q−v(C). It is well known that ‖ · ‖ is a non-Archimedean
valuation on the field Fq((z−1)) and Fq((z−1)) is a complete metric space
under the metric % defined by %(C1, C2) = ‖C1 − C2‖.

Remark 2.1. Since the valuation ‖ · ‖ is non-Archimedean, it follows
that if two discs intersect, then one contains the other.

For C =
∑∞

n=v cnz
−n ∈ Fq((z−1)), let [C] =

∑
v≤n≤0 cnz

−n ∈ Fq[z]. We
call [C] the integral part of C. It is evident that the integer −v(C) := −v
is equal to the degree deg[C] of the polynomial [C] provided v ≤ 0, i.e.,
[C] 6= 0.

Let I denote the valuation ideal of Fq((z−1)). It consists of all formal
series

∑∞
n=1 cnz

−n. The ideal I is compact. A natural measure on I is the
normalized Haar measure on

∏∞
n=1 Fq, which we denote by P.

Consider the transformation from I to I defined by

Tx :=
1
x
−
[

1
x

]
, T0 := 0.

This map describes the regular continued fraction over the field of Laurent
series and has been introduced by Artin [1]. As in the classical theory, every
x ∈ I has the following continued fraction expansion:

x =
1

A1(x) +
1

A2(x) + · · ·

:= [A1(x), A2(x), . . .],

where the “digits” Ai(x) are polynomials of strictly positive degree and are
defined by

∀n ≥ 1, An(x) =
[

1
Tn−1(x)

]
.
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Let {Pn(x)/Qn(x) : n ≥ 0} be the sequence of convergents in the expan-
sion of x, i.e.,

Pn(x)
Qn(x)

=
1

A1(x) +
1

A2(x) +
1

· · ·+An(x)

.

The metric properties of continued fractions of Laurent series have been
studied by Paysant-Leroux and Dubois [13], [14] (see also Niederreiter [11]
and Berthé and Nakada [2]). In particular, we have

Lemma 2.2. The following results hold for all x ∈ I outside a set of
Haar measure 0.

(i) For b ∈ Fq[z] and deg b ≥ 1, the digit b has asymptotic frequency
q−2 deg b, i.e.,

lim
n→∞

card{1 ≤ j ≤ n : aj(x) = b}
n

= q−2 deg b.

(ii) There exists a Khinchin-type constant , namely q/(q − 1), such that

lim
n→∞

1
n

n∑
k=1

deg ak(x) =
q

q − 1
.

A good tool to describe the complexity and size of a set with null measure
is Hausdorff dimension. We recall the definition of Hausdorff dimension on I
which is the same as on Rn. Given s > 0 and a subset E of I, the s-dimen-
sional Hausdorff measure is given by

Hs(E) = lim
δ→0

{
inf
∑
j

|Dj |s
}
,

where the infimum is over all covers of E by discs Dj (in the metric %) of
diameter |Dj | at most δ. The Hausdorff dimension of E is defined by

dimHE = inf{s : Hs(E) = 0}.
Niederreiter and Vielhaber [12, Theorem 31] determined the Hausdorff di-
mension of the sets {x ∈ I : degAi(x) ≤ d for all i ≥ 1} for any d ∈ N. The
second author generalized Niederreiter and Vielhaber’s result by proving

Lemma 2.3. Let S be a nonempty finite set of polynomials with positive
degree and coefficients lying in Fq, say S = {a1, . . . , am}. Write

ES = {x ∈ I : Ai(x) ∈ S for all i ≥ 1}.
Then dimHES = t, where t is given by

m∑
k=1

q−2t deg ak = 1.
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In this paper, we consider the following two kinds of sets:

EB = {x ∈ I : An(x) ∈ B for all n ≥ 1},
E(B) = {x : An(x) ∈ B for all n ≥ 1 and degAn(x)→∞},

where B is an infinite set of polynomials with positive degree and coefficients
lying in Fq. We calculate the Hausdorff dimensions of these two sets:

Theorem 2.4. dimHEB = t, where

t = inf
{
s :
∑
b∈B

(q−2 deg b)s ≤ 1
}
.

Theorem 2.5. dimHE(B) = α, where

α = inf
{
s :
∑
b∈B

(q−2 deg b)s <∞
}
.

3. Proofs of the results. In this section, we give the proofs of Theo-
rems 2.4 and 2.5. First, we collect some known results which we are going
to use frequently (see Niederreiter [11] or Berthé and Nakada [2]).

Lemma 3.1. For any x ∈ I, let Pn(x)/Qn(x) denote the nth convergent
of x. Then:

(i) (Pn(x), Qn(x)) = 1;
(ii) 1 = ‖Q0(x)‖ < ‖Q1(x)‖ < ‖Q2(x)‖ < · · · ;

(iii) ‖Qn(x)‖ =
n∏
k=1

‖Ak(x)‖ = q
Pn
k=1 degAk(x);

(iv)
∥∥∥∥x− Pn(x)

Qn(x)

∥∥∥∥ =
1

‖Qn(x)‖ · ‖Qn+1(x)‖
<

1
‖Qn(x)‖2

;

(v) x =
∞∑
n=0

(−1)n

Qn(x)Qn+1(x)
.

Definition 3.2. Let A1, . . . , An ∈ Fq[z] be of strictly positive degree.
Call the set

I(A1, . . . , An) = {x ∈ I : A1(x) = A1, . . . , An(x) = An}
a fundamental n-cylinder.

Lemma 3.3. Every fundamental n-cylinder I(A1, . . . , An) is a disc with
diameter

|I(A1, . . . , An)| = q−2
Pn
k=1 degAk−1

and
P(I(A1, . . . , An)) = q−2

Pn
k=1 degAk ,

where P is the Haar measure on I.
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Now we begin the proof of Theorem 2.4.
Write B = {b1, b2, . . .} and Bn = {b1, . . . , bn} for any n ≥ 1. Let

EB,n = {x ∈ I : Ai(x) ∈ Bn for any i ≥ 1} and tn = dimHEB,n.

Lemma 3.4. limn→∞ tn = t, where t is given in Theorem 2.4.

Proof. From Lemma 2.3, it is clear that tn is increasing and tn ≤ t for
any n ≥ 1. Suppose limn→∞ tn = s. For any n ≥ 1, we have

n∑
k=1

(q−2 deg bk)s ≤
n∑
k=1

(q−2 deg bk)tn = 1.

Thus
∞∑
k=1

(q−2 deg bk)s ≤ 1.

By the definition of t, we have s ≥ t.
Proof of Theorem 2.4. We divide the proof into two parts.

Upper bound. It is clear that

EB =
∞⋂
n=1

⋃
(A1,...,An)∈Bn

I(A1, . . . , An),

where I(A1, . . . , An) is a fundamental n-cylinder as in Definition 3.2.
For any s > t, where t is defined in Theorem 2.4, we have, on writing

s = (s+ t)/2 + (s− t)/2,
∞∑
k=1

(q−2 deg bk)s ≤ q−(s−t)
∞∑
k=1

(q−2 deg bk)(s+t)/2 ≤ q−(s−t).

Therefore by Lemma 3.3,∑
(A1,...,An)∈Bn

|I(A1, . . . , An)|s

≤ q−(s−t)
∑

(A1,...,An−1)∈Bn−1

|I(A1, . . . , An−1)|s,

so by induction on n, the left hand side here is not larger than q−n(s−t), and

Hs(EB) ≤ lim inf
n→∞

∑
(A1,...,An)∈Bn

|I(A1, . . . , An)|s = 0.

Thus dimHEB ≤ s. Since s > t is arbitrary, we have dimHEB ≤ t.
Lower bound. It is clear that EB,n ⊆ EB for any n ≥ 1. Lemma 2.3

implies that dimHEB ≥ tn for any n ≥ 1. By Lemma 3.4, we have

dimHEB ≥ lim
n→∞

tn = t.
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Now we begin the proof of Theorem 2.5.
For any n ≥ 1, let Cn be a set of polynomials with strictly positive

degree. Let

C = {x ∈ I : An(x) ∈ Cn for all n ≥ 1},
CN = {x ∈ I : An(x) ∈ Cn for all n ≥ N}, N ∈ N.

The following lemma is essentially due to I. J. Good [4].

Lemma 3.5. For any N ∈ N, dimHC = dimHCN .

Lemma 3.6. For any n ≥ 1, let Dn = card{b ∈ B : deg b = n}. Then

α = lim sup
n→∞

logDn

2n log q
,

where α is given in Theorem 2.5.

Proof. For any η < α, since
∑

A∈B(q−2 degA)η =
∑∞

n=1Dnq
−2nη di-

verges, there exist infinitely many n, say {nk : k ≥ 1}, such that

Dnkq
−2nkη ≥ 1

n2
k

,

which implies

lim sup
n→∞

logDn

2n log q
≥ η.

On the other hand, for anyβ>α, since
∑

A∈B(q−2 degA)β=
∑∞

n=1Dnq
−2nβ

<∞, we have Dnq
−2nβ ≤ 1 when n is large enough. Thus

lim sup
n→∞

logDn

2n log q
≤ β.

Proof of Theorem 2.5. We divide the proof into two parts.

Upper bound. For any β > α, since
∑

A∈B(q−2 degA)β <∞, there exists
Mβ ∈ N such that ∑

A∈B, degA≥Mβ

(q−2 degA)β ≤ 1.

Notice that

E(B) =
∞⋂
m=1

∞⋃
N=1

E(B,N,m),

where

E(B,N,m) = {x ∈ I : An(x) ∈ B for all n ≥ 1, and
degAn(x) ≥ m for all n ≥ N}.

From Lemma 3.5, we have

dimHE(B) ≤ inf
m≥1

dimHE(B, 1,m) ≤ dimHE(B, 1,Mβ).
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Since

E(B, 1,Mβ) = {x ∈ I : An(x) ∈ B and degAn(x) ≥Mβ for all n ≥ 1}

=
∞⋂
n=1

⋃
(A1,...,An)∈Bn

degAi≥Mβ , i=1,...,n

I(A1, . . . , An),

we have

Hβ(E(B, 1,Mβ)) ≤ lim inf
n→∞

∑
(A1,...,An)∈Bn

degAi≥Mβ , i=1,...,n

|I(A1, . . . , An)|β

≤ lim inf
n→∞

∑
(A1,...,An−1)∈Bn−1

degAi≥Mβ , i=1,...,n−1

∑
An∈B

degAn≥Mβ

|I(A1, . . . , An)|β

≤ lim inf
n→∞

∑
(A1,...,An−1)∈Bn−1

degAi≥Mβ , i=1,...,n−1

( ∑
A∈B

degA≥Mβ

q−2β degA
)
|I(A1, . . . , An−1)|β

≤ lim inf
n→∞

( ∑
A∈B

degA≥Mβ

q−2β degA
)n
≤ 1.

Thus dimHE(B) ≤ dimHE(B, 1,Mβ) ≤ β. Since β > α is arbitrary, we
have dimHE(B) ≤ α.

Lower bound. Now we prove dimHE(B) ≥ α. If α = 0, we have the
desired result. Assume α > 0. Let n0 = min{deg b : b ∈ B}.

For any ε > 0 satisfying α − ε > 0, from Lemma 3.6, there exist n0 <
n1 < n2 < · · · such that for any k ≥ 1,

(6) Dnk ≥ q
2nk(α−ε).

Choose an integer sequence {tk : k ≥ 0} satisfying

(7) t0 = 0, and tk = n2
k+1 for any k ≥ 1.

Let

E∗(B) =
{
x ∈ I : An(x) ∈ B for any n ≥ 1, and if

k∑
i=0

ti ≤ n <
k+1∑
i=0

ti

for some k ≥ 0, then nk ≤ degAn(x) ≤ nk+1

}
.

It is clear that E∗(B) is compact and E∗(B) ⊆ E(B).
For any s ≥ 0 and any covering system W = {w1, w2, . . .} of E∗(B),

write Λs(W ) =
∑∞

i=1 |wi|s.
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Claim. If there exists η > 0 such that Λs(W ) ≥ η for any finite covering
system W which consists of fundamental cylinders, then dimHE

∗(B) ≥ s.
Proof of Claim. For any δ > 0, by (7), there exists K0 ∈ N such that for

any k ≥ K0,

(8)
snk+1∑k
i=1 tini−1

< δ.

Let U = {u1, u2, . . .} be any disc covering system of E∗(B) such that

(9) |ui| < q−2
PK0+1
j=1 tjnj for any i ≥ 1.

Since E∗(B) is compact, we can find a finite subsystem which also covers
E∗(B) and each disc of this subsystem intersects E∗(B). It is clear that this
subsystem, say V = {v1, v2, . . .}, satisfies

Λs−δ(U) ≥ Λs−δ(V ).

For any J ∈ V , choose x ∈ E∗(B) ∩ J . Suppose the continued fraction
expansion of x is [A1, A2,, . . .]. From Remark 2.1, there exists a unique n =
n(J) such that

I(A1, . . . , An) ⊆ J ⊆ I(A1, . . . , An−1).

Suppose
∑k

i=0 ti ≤ n <
∑k+1

i=0 ti for some k ≥ 0. Since x ∈ E∗(B), by the
definition of E∗(B) and Lemma 3.3 we have

|J | ≥ |I(A1, . . . , An)| = q−2
Pn
i=1 degAi−1 ≥ q−2

Pk+1
i=1 tini .

From (9), we have

(10) k ≥ K0.

Write IJ = I(A1, . . . , An−1). Since

|J |s ≥ |I(A1, . . . , An)|s = q−2sdegAn |I(A1, . . . , An−1)|s = q−2sdegAn |IJ |s,
by (8) we have

|IJ |s ≤ q2s degAn |J |s ≤ q2s degAn−2δ(degA1+···+degAn−1)|J |s−δ(11)

≤ q2snk+1−2δ(t1n0+t2n1+···+tknk−1)|J |s−δ ≤ |J |s−δ.

Let W̃ = {IJ : J ∈ V }. We select all those discs in W̃ which are maximal
(IJ is maximal if there is no J ′ ∈ V such that IJ ⊆ IJ ′ and J 6= J ′). Let W
be the set consisting of all maximal discs in W̃ . It is obvious that W is a
covering system of E∗(B) by fundamental cylinders. By (11), we have

Λs−δ(U) ≥ Λs−δ(V ) ≥ Λs(W ) ≥ η.
Since δ > 0 is arbitrary, we have dimHE

∗(B) ≥ s, and the proof of the
Claim is finished.

From the Claim, we need only verify that Λα−ε(W ) ≥ η > 0 for any
finite covering system of E∗(B) made up of fundamental cylinders, where
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η > 0 is some fixed constant. Without loss of generality, we can assume that
each element of W is maximal.

Suppose the largest order of the fundamental cylinders in W is κ. Then
there exists I(A1, . . . , Aκ) ∈ W . Suppose

∑k
i=0 ti ≤ κ <

∑k+1
i=0 ti for some

k ≥ 0. If κ > 0, since each fundamental cylinder I(A1, . . . , Aκ−1, T ), where
T ∈ B and nk ≤ deg T ≤ nk+1, contains infinitely many points in E∗(B),
the fundamental cylinders I(A1, . . . , Aκ−1, R) with R ∈ B and nk ≤ degR ≤
nk+1 must all be elements of W . By (6), we have∑

R∈B,nk≤degR<nk+1

|I(A1, . . . , Aκ−1, R)|α−ε

=
∑

R∈B,nk≤degR<nk+1

q−2(α−ε) degR|I(A1, . . . , Aκ−1)|α−ε

≥ Dnkq
−2nk(α−ε)|I(A1, . . . , Aκ−1)|α−ε ≥ |I(A1, . . . , Aκ−1)|α−ε.

Denote by L the new covering system of E∗(B) obtained by just replac-
ing all fundamental cylinders I(A1, . . . , Aκ−1, Aκ) ∈W by the fundamental
cylinder I(A1, . . . , Aκ−1). Then

Λα−ε(W ) ≥ Λα−ε(L).

Proceeding in this manner, after a finite number of steps we reach a system
whose largest order is zero, thus

Λα−ε(W ) ≥ Λα−ε(L) ≥ · · · ≥ |I|α−ε = q−(α−ε).

By the Claim, we have

dimHE
∗(B) ≥ α− ε.

Since ε > 0 is arbitrary and E∗(B) ⊆ E(B), we have

dimHE(B) ≥ α.
The proof of Theorem 2.5 is finished.
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[9] R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated func-
tion systems, Proc. London Math. Soc. 73 (1996), 105–154.

[10] —, —, Conformal iterated function systems with applications to the geometry of
continued fractions, Trans. Amer. Math. Soc. 351 (1999), 4995–5025.

[11] H. Niederreiter, The probabilistic theory of linear complexity, in: Advances in Crypto-
logy-EUROCRYPT’88, C. G. Günther (ed.), Lecture Notes in Computer Sci. 330,
1988, 191–209.

[12] H. Niederreiter and M. Vielhaber, Linear complexity profiles: Hausdorff dimensions
for almost perfect profiles and measures for general profiles, J. Complexity 13 (1997),
353–383.

[13] R. Paysant-Leroux et E. Dubois, Algorithme de Jacobi–Perron dans un corps de
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