Univoque numbers and an avatar of Thue-Morse

by
Jean-Paul Allouche (Orsay) and Christiane Frougny (Paris)

1. Introduction. Komornik and Loreti determined in [17] the smallest univoque real number in the interval (1,2), i.e., the smallest number $\lambda \in$ $(1,2)$ such that 1 has a unique expansion $1=\sum_{j \geq 0} a_{j} / \lambda^{j+1}$ with $a_{j} \in\{0,1\}$ for every $j \geq 0$. The word "univoque" in this context seems to have been introduced (with a slightly different meaning) by Daróczy and Kátai in $[12,13]$, while unique expansions of the real number 1 were characterized by Erdős, Joó, and Komornik in [14]. The first author and Cosnard showed in [4] how the result of [17] parallels (and can be deduced from) their study of a certain set of binary sequences arising in the study of iterations of unimodal continuous functions on the unit interval (see [11, 2, 1]). The relevant sets of binary sequences occurring in [2, 1], resp. [17], can be defined by

$$
\begin{aligned}
\Gamma & :=\left\{A \in\{0,1\}^{\mathbb{N}}: \forall k \geq 0, \bar{A} \leq \sigma^{k} A \leq A\right\} \\
\Gamma_{\text {strict }} & :=\left\{A \in\{0,1\}^{\mathbb{N}}: \forall k \geq 1, \bar{A}<\sigma^{k} A<A\right\}
\end{aligned}
$$

where σ is the shift on sequences and the bar operation replaces 0 's by 1 's and 1 's by 0's, i.e., if $A=\left(A_{n}\right)_{n \geq 0}$, then $\sigma A:=\left(a_{n+1}\right)_{n \geq 0}$ and $\bar{A}:=\left(1-a_{n}\right)_{n \geq 0}$; furthermore, \leq denotes the lexicographical order on sequences induced by $0<1$, the notation $A<B$ meaning as usual that $A \leq B$ and $A \neq B$. The smallest univoque number in $(1,2)$ and the smallest nonperiodic sequence in Γ both involve the Thue-Morse sequence (see for example [6] for more on this sequence).

It is tempting to generalize these sets to alphabets with more than two letters.

Definition 1. For b a positive integer, we will say that the real number $\lambda>1$ is $\{0,1, \ldots, b\}$-univoque if the number 1 has a unique expansion as $1=\sum_{j \geq 0} a_{j} \lambda^{-(j+1)}$, where $a_{j} \in\{0,1, \ldots, b\}$ for all $j \geq 0$. Furthermore, if $\lambda>1$ is $\{0,1, \ldots,\lceil\lambda\rceil-1\}$-univoque, we will simply say that λ is univoque.

2000 Mathematics Subject Classification: 11A63, 11B83, 11B85, 68R15, 11J81.
Key words and phrases: beta-expansion, univoque numbers, iteration of continuous functions, Thue-Morse sequence, uniform morphism, automatic sequence, transcendence.

REMARK 1. If $\lambda>1$ is $\{0,1, \ldots, b\}$-univoque for some positive integer b, then $\lambda \leq b+1$. Also note that any integer $q \geq 2$ is univoque, since there is exactly one expansion $1=\sum_{j \geq 0} a_{j} q^{-(j+1)}$ with $a_{j} \in\{0,1, \ldots, q-1\}$, namely $1=\sum_{j \geq 0}(q-1) q^{-(j+1)}$.

Komornik and Loreti studied in [18] the reals $\lambda \in(1, b+1]$ that are $\{0,1, \ldots, b\}$-univoque. For their study, they introduced admissible sequences on the alphabet $\{0,1, \ldots, b\}$. Denote, as above, by σ the shift on sequences, and by bar the operation that replaces every $t \in\{0,1, \ldots, b\}$ by $b-t$, i.e., if $A=\left(a_{n}\right)_{n \geq 0}$, then $\bar{A}:=\left(b-a_{n}\right)_{n \geq 0}$. Also denote by \leq the lexicographical order on sequences induced by the natural order on $\{0,1, \ldots, b\}$. Then a sequence $A=\left(a_{n}\right)_{n \geq 0}$ on $\{0,1, \ldots, b\}$ is admissible if

$$
\begin{array}{ll}
\forall k \geq 0 \text { such that } a_{k}<b, & \sigma^{k+1} A<A \\
\forall k \geq 0 \text { such that } a_{k}>0, & \sigma^{k+1} A>\bar{A}
\end{array}
$$

(Note that our notation is not exactly the notation of [18], since our sequences are indexed by \mathbb{N} and not $\mathbb{N} \backslash\{0\}$.) These sequences have the following property: the map that associates with a real $\lambda \in(1, b+1]$ the sequence of coefficients $\left(a_{j}\right)_{j \geq 0} \in\{0,1, \ldots, b\}$ of the greedy (i.e., lexicographically largest) expansion of $1,1=\sum_{j \geq 0} a_{j} \lambda^{-(j+1)}$, is a bijection from the set of $\{0,1, \ldots, b\}$-univoque λ 's to the set of admissible sequences on $\{0,1, \ldots, b\}$ (see [18]).

Now there are two possible generalizations of the result of [17] on the smallest univoque number in $(1,2)$, i.e., the smallest admissible binary sequence. One is to look at the smallest (if any) admissible sequence on the alphabet $\{0,1, \ldots, b\}$, as did Komornik and Loreti in [18], the other is to look at the smallest (if any) univoque number in $(b, b+1)$, as did de Vries and Komornik in [22].

It so happens that the first author has already studied a generalization of the set Γ to the case of more than two letters (see [1, Part 3]). Interestingly enough, unlike the study of Γ, this study was unrelated to iterations of continuous functions, being just a tempting formal arithmetico-combinatorial generalization of the study of the set Γ of binary sequences to a similar set of sequences with more than two values.

The purpose of the present paper is threefold:
(1) to show how the 1983 study [1, Part 3, pp. 63-90] gives both the result of Komornik and Loreti in [18] on the smallest admissible sequence on $\{0,1, \ldots, b\}$, and the result of de Vries and Komornik in [22] on the smallest univoque number $\lambda \in(b, b+1)$ where b is any positive integer;
(2) to bring to light a universal morphism that governs the smallest elements in (1) above, and to show that the infinite sequence generated by this morphism is an avatar of the Thue-Morse sequence;
(3) to prove that the smallest univoque number in $(b, b+1)$ (where b is any positive integer) is transcendental.

The paper consists of five sections. In Section 2 we recall some results of [1, Part 3, pp. 63-90] on the generalization of the set Γ to a $(b+1)$-letter alphabet. Then we give some properties of the lexicographically least nonperiodic sequence of this set, completing the results of [1, Part 3, pp. 63-90]. In Section 3 we give two corollaries of the properties of this least sequence: one gives the result in [18], the other gives the result in [22]. The transcendence results are proven in the last section.

2. The generalized Γ and $\Gamma_{\text {strict }}$ sets

Definition 2. Let b be a positive integer, and \mathcal{A} be a finite ordered set with $b+1$ elements $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{b}$. The bar operation is defined on \mathcal{A} by $\bar{\alpha}_{j}=\alpha_{b-j}$. We extend this operation to $\mathcal{A}^{\mathbb{N}}$ by ${\overline{\left(a_{n}\right)}}_{n \geq 0}:=\left(\bar{a}_{n}\right)_{n \geq 0}$. Let σ be the shift on $\mathcal{A}^{\mathbb{N}}$, defined by $\sigma\left(\left(a_{n}\right)_{n \geq 0}\right):=\left(a_{n+1}\right)_{n \geq 0}$.

We define

$$
\begin{aligned}
\Gamma(\mathcal{A}) & :=\left\{A=\left(a_{n}\right)_{n \geq 0} \in \mathcal{A}^{\mathbb{N}}: a_{0}=\max \mathcal{A}, \forall k \geq 0, \bar{A} \leq \sigma^{k} A \leq A\right\} \\
\Gamma_{\text {strict }}(\mathcal{A}) & :=\left\{A=\left(a_{n}\right)_{n \geq 0} \in \mathcal{A}^{\mathbb{N}}: a_{0}=\max \mathcal{A}, \forall k \geq 1, \bar{A}<\sigma^{k} A<A\right\} .
\end{aligned}
$$

Remark 2. The set $\Gamma(\mathcal{A})$ was introduced by the first author in $[1$, Part 3, p. 63]. Note that there is a misprint in the definition on p. 66 in [1]: $a_{\beta-i}$ should be changed into $a_{\beta-1-i}$ as confirmed by the rest of the text.

REmark 3. A sequence belongs to $\Gamma_{\text {strict }}(\mathcal{A})$ if and only if it belongs to $\Gamma(\mathcal{A})$ and is nonperiodic. Indeed, $\sigma^{k} A=A$ if and only if A is k-periodic; if $\sigma^{k} A=\bar{A}$, then $\sigma^{2 k} A=A$, and the sequence A is $2 k$-periodic.

REmARK 4. If the set $\mathcal{A}:=\{i, i+1, \ldots, i+z\}$, where i and z are integers, is equipped with the natural order, then for any $x \in \mathcal{A}$, we have $\bar{x}=2 i+z-x$. Indeed, following Definition 2 above, we write $\alpha_{0}:=i, \alpha_{1}:=i+1, \ldots, \alpha_{z}:=$ $i+z$. Hence, for any $j \in[0, z]$, we have $\bar{\alpha}_{j}=\alpha_{z-j}$, which can be rewritten $\overline{i+j}=i+z-j$, i.e., for any x in \mathcal{A}, we have $\bar{x}=i+z-(x-i)=2 i+z-x$.

A first result is that the sets $\Gamma_{\text {strict }}(\mathcal{A})$ are closely linked to the set of admissible sequences whose definition was recalled in the introduction.

Proposition 1. Let $A=\left(a_{n}\right)_{n \geq 0}$ be a sequence in $\{0,1, \ldots, b\}^{\mathbb{N}}$ such that $a_{0}=t \in[0, b]$ and $A \neq b b b \ldots$. Then A is admissible if and only if $2 t>b$ and $A \in \Gamma_{\text {strict }}(\{b-t, b-t+1, \ldots, t\})$. (The order on $\{b-t, b-t+1$, $\ldots, t\}$ is induced by the order on \mathbb{N}. From Remark 4 the bar operation is given by $\bar{j}=b-j$.)

Proof. First suppose that $2 t>b$ and $A \in \Gamma_{\text {strict }}(\{b-t, b-t+1, \ldots, t\})$. Then, for all $k \geq 1, \bar{A}<\sigma^{k} A<A$, which clearly implies that A is admissible.

Conversely, suppose that A is admissible. We thus have

$$
\begin{array}{ll}
\forall k \geq 1 \text { such that } a_{k-1}<b, & \sigma^{k} A<A \\
\forall k \geq 1 \text { such that } a_{k-1}>0, & \sigma^{k} A>\bar{A}
\end{array}
$$

We first prove that if A is not a constant sequence, then

$$
\forall k \geq 1, \quad \bar{A}<\sigma^{k} A<A
$$

We only prove that $\sigma^{k} A<A$; the remaining inequalities are proved in a similar way. If $a_{k-1}<b$, then $\sigma^{k} A<A$. If $a_{k-1}=b$, there are two cases: either

- $a_{0}=a_{1}=\cdots=a_{k-1}=b$; then if $a_{k}<b$ we clearly have $\sigma^{k} A<A$; if $a_{k}=b$, then the sequence $\sigma^{k} A$ begins with some block of b 's followed by a letter $<b$, thus it begins with a block of b 's shorter than the initial block of b 's in A, hence $\sigma^{k} A<A$; or
- there exists an index ℓ with $1<\ell<k$ such that $a_{\ell-1}<b$ and $a_{\ell}=$ $a_{\ell+1}=\cdots=a_{k-1}=b$. As A is admissible, we have $\sigma^{\ell} A<A$. It thus suffices to prove that $\sigma^{k} A \leq \sigma^{\ell} A$. This is clearly the case if $a_{k}<b$. On the other hand, if $a_{k}=b$, the sequence $\sigma^{k} A$ begins with a block of b 's which is shorter than the initial block of b 's in $\sigma^{\ell} A$, hence $\sigma^{k} A \leq \sigma^{\ell} A$. Now, since $a_{0}=t$ and $\sigma^{k} A<A$ for all $k \geq 1$, we have $a_{k} \leq t$ for all $k \geq 0$. Similarly, since $\sigma^{k} A>\bar{A}$ for all $k \geq 1$, we have $a_{k} \geq b-t$ for all $k \geq 1$. Finally, $A>\bar{A}$ implies that $t=a_{0} \geq b-t$. Thus $2 t \geq b$ and $A \in \Gamma(\{b-t, b-t+1, \ldots, t\})$. Now, if $b=2 t$, then $\{b-t, b-t+1, \ldots, t\}=\{t\}$ and $\bar{t}=t$. This implies that $A=t t t \ldots$, which is not an admissible sequence.

REmARK 5. For $b=1$, this (easy) result is given without proof in [14] and proved in [4].

We need another definition from [1].
Definition 3. Let b be a positive integer, and \mathcal{A} be a finite ordered set with $b+1$ elements $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{b}$. We suppose that \mathcal{A} is equipped with a bar operation as in Definition 2. Let $A=\left(a_{n}\right)_{n \geq 0}$ be a periodic sequence of smallest period T, and with $a_{T-1}<\max \mathcal{A}$. Let $a_{T-1}=\alpha_{j}$ (thus $j<b$). Then $\Phi(A)$ is the $2 T$-periodic sequence beginning with $a_{0} a_{1} \ldots a_{T-2} \alpha_{j+1} \bar{a}_{0} \bar{a}_{1} \ldots \bar{a}_{T-2} \alpha_{b-j-1}$, i.e.,
$\Phi\left(\left(a_{0} a_{1} \ldots a_{T-2} \alpha_{j}\right)^{\infty}\right):=\left(\begin{array}{llllll}a_{0} & a_{1} & \ldots & a_{T-2} & \alpha_{j+1} & \bar{a}_{0} \\ \bar{a}_{1} & \ldots & \bar{a}_{T-2} & \alpha_{b-j-1}\end{array}\right)^{\infty}$.
We first prove the following easy claim.

Proposition 2. The smallest element of $\Gamma(\{b-t, b-t+1, \ldots, t\})$ (where $2 t>b)$ is the 2-periodic sequence $(t(b-t))^{\infty}=(t(b-t) t(b-t) t \ldots)$.

Proof. Since any sequence $A=\left(a_{n}\right)_{n \geq 0}$ in $\Gamma(\{b-t, b-t+1, \ldots, t\})$ begins in t, and satisfies $\sigma A \geq \bar{A}$, it must satisfy $a_{0}=t$ and $a_{1} \geq b-t$. Now if $a_{0}=t$ and $a_{1}=b-t$, then A must be the 2 -periodic sequence $(t(b-t))^{\infty}([1$, Lemma $2 \mathrm{~b}, \mathrm{p} .73])$. Since this periodic sequence trivially belongs to $\Gamma(\{b-t, b-t+1, \ldots, t\})$, it is its smallest element.

Denoting as usual by Φ^{s} the s th iterate of Φ, we state the following theorem which is a particular case of the theorem on pp. 72-73 of [1] about the smallest elements in certain subintervals of $\Gamma(\{0,1, \ldots, b\})$, and of the definition of q-mirror sequences given in [1, Section II, 1, p. 67] (here $q=2$).

Theorem $1([1])$. Define $P:=(t(b-t))^{\infty}=(t(b-t) t(b-t) t \ldots)$. The smallest nonperiodic sequence in $\Gamma(\{b-t, b-t+1, \ldots, t\})$ (i.e., the smallest element of $\left.\Gamma_{\text {strict }}(\{b-t, b-t+1, \ldots, t\})\right)$ is the sequence

$$
M:=\lim _{s \rightarrow \infty} \Phi^{s}(P)
$$

that actually takes the (not necessarily distinct) values $b-t, b-t+1, t-1, t$. Furthermore, this sequence

$$
M=\left(m_{n}\right)_{n \geq 0}=t \quad b-t+1 \quad b-t \quad t \quad b-t \quad t-1 \quad \ldots
$$

can be recursively defined by

$$
\begin{aligned}
& \forall k \geq 0, \quad m_{2^{2 k}-1}=t \\
& \forall k \geq 0, \quad m_{2^{2 k+1}-1}=b+1-t \\
& \forall k \geq 0, \quad \forall j \in\left[0,2^{k+1}-2\right], \quad m_{2^{k+1}+j}=\bar{m}_{j}
\end{aligned}
$$

It was proven in [1] that the sequence $\lim _{s \rightarrow \infty} \Phi^{s}\left((t(b-t))^{\infty}\right.$ is 2automatic (for more about automatic sequences, see [7]). The second author noted that this sequence is actually a fixed point of a uniform morphism of length 2 as soon as the cardinality of the set $\{b-t, b-t+1, \ldots, b\}$ is at least 4 , i.e., $2 t \geq b+3$. (Recall that we always have $t \geq b-t$, i.e., $2 t \geq b$.) More precisely, we have Theorem 2 below, where the Thue-Morse sequence pops up, as in [1] and in [18], but also as in [2] and [17]. Before stating this theorem we give a definition.

Definition 4. The "universal" morphism Θ is defined on $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ by

$$
\Theta\left(e_{3}\right):=e_{3} e_{1}, \quad \Theta\left(e_{2}\right):=e_{3} e_{0}, \quad \Theta\left(e_{1}\right):=e_{0} e_{3}, \quad \Theta\left(e_{0}\right):=e_{0} e_{2}
$$

Note that this morphism has an infinite fixed point beginning in e_{3},

$$
\Theta^{\infty}\left(e_{3}\right)=\lim _{k \rightarrow \infty} \Theta^{k}\left(e_{3}\right)=e_{3} e_{1} e_{0} e_{3} e_{0} e_{2} e_{3} e_{1} e_{0} e_{2} \ldots
$$

Theorem 2. Let $\left(\varepsilon_{n}\right)_{n \geq 0}$ be the Thue-Morse sequence defined by $\varepsilon_{0}=0$ and $\varepsilon_{2 k}=\varepsilon_{k}$ and $\varepsilon_{2 k+1}=1-\varepsilon_{k}$ for all $k \geq 0$. Then the smallest nonperiodic sequence $M=\left(m_{n}\right)_{n \geq 0}$ in $\Gamma(\{b-t, b-t+1, \ldots, t\})$ satisfies

$$
\forall n \geq 0, \quad m_{n}=\varepsilon_{n+1}-(2 t-b-1) \varepsilon_{n}+t-1
$$

Using the morphism Θ introduced in Definition 4 above we thus have:

- if $2 t \geq b+3$, then M is the fixed point beginning in t of the morphism deduced from Θ by renaming $e_{0}, e_{1}, e_{2}, e_{3}$ respectively $b-t, b-t+1$, $t-1, t$ (note that the condition $2 t \geq b+3$ implies that these four numbers are distinct);
- if $2 t=b+2$ (thus $b-t+1=t-1$), then M is the pointwise image of the fixed point beginning in e_{3} of the morphism Θ under the map g defined by $g\left(e_{3}\right):=t, g\left(e_{2}\right)=g\left(e_{1}\right):=t-1, g\left(e_{0}\right):=b-t$;
- if $2 t=b+1$ (thus $b-t=t-1$ and $b-t+1=t$), then M is the pointwise image of the fixed point beginning in e_{3} of the morphism Θ under the map h defined by $h\left(e_{3}\right)=h\left(e_{1}\right):=t, h\left(e_{2}\right)=h\left(e_{0}\right):=t-1$.

Proof. Let us first prove that the sequence $M=\left(m_{n}\right)_{n \geq 0}$ is equal to the sequence $\left(u_{n}\right)_{n \geq 0}$, where $u_{n}:=\varepsilon_{n+1}-(2 t-b-1) \varepsilon_{n}+t-1$. It suffices to prove that $\left(u_{n}\right)_{n \geq 0}$ satisfies the recursive relations defining $\left(m_{n}\right)_{n \geq 0}$ that are given in Theorem 1. Recall that ε_{n} is equal to the parity of the sum of the binary digits of n (see [6] for example). Hence, for all $k \geq 0, \varepsilon_{2^{2 k}-1}$ $=0, \varepsilon_{2^{2 k+1}-1}=1$, and $\varepsilon_{2^{2 k}}=\varepsilon_{2^{2 k+1}}=1$. This implies that for all $k \geq 0$, $u_{2^{2 k}-1}=t$ and $u_{2^{2 k+1}-1}=b+1-t$. Furthermore, for all $k \geq 0$ and $j \in$ $\left[0,2^{k+1}-2\right]$, we have $\varepsilon_{2^{k+1}+j}=1-\varepsilon_{j}$ and $\varepsilon_{2^{k+1}+j+1}=1-\varepsilon_{j+1}$. Hence $u_{2^{k+1}+j}=b-u_{j}=\bar{u}_{j}$.

To show how the "universal" morphism Θ enters the picture, we study the sequence $\left(v_{n}\right)_{n \geq 0}$ with values in $\{0,1\}^{2}$ defined by $v_{n}:=\left(\varepsilon_{n}, \varepsilon_{n+1}\right)$ for all $n \geq 0$. Since $v_{2 n}=\left(\varepsilon_{n}, 1-\varepsilon_{n}\right)$ and $v_{2 n+1}=\left(1-\varepsilon_{n}, \varepsilon_{n+1}\right)$ for all $n \geq 0$, we clearly have

$$
\begin{aligned}
& \text { if } \quad v_{n}=(0,0), \quad \text { then } \quad v_{2 n}=(0,1) \quad \text { and } \quad v_{2 n+1}=(1,0), \\
& \text { if } \quad v_{n}=(0,1), \\
& \text { then } \\
& \text { if } \\
& \text { if } \\
& v_{n}=(1,0), \\
& \text { then } \\
& \text { if } \\
& \text { in }
\end{aligned} v_{2 n}=(1,1) \quad \text { and } \quad v_{2 n+1}=(1,0) \text { and } \quad v_{2 n+1}=(0,0), \text { then } \quad v_{2 n}=(1,0) \quad \text { and } \quad v_{2 n+1}=(0,1) . .
$$

This exactly means that $\left(v_{n}\right)_{n \geq 0}$ is the fixed point beginning in $(0,1)$ of the 2-morphism

$$
\begin{aligned}
(0,0) & \rightarrow(0,1)(1,0), \\
(0,1) & \rightarrow(0,1)(1,1) \\
(1,0) & \rightarrow(1,0)(0,0), \\
(1,1) & \rightarrow(1,0)(0,1)
\end{aligned}
$$

We may define $e_{0}:=(1,0), e_{1}:=(1,1), e_{2}:=(0,0), e_{3}:=(0,1)$. Then the above morphism can be written

$$
e_{3} \rightarrow e_{3} e_{1}, \quad e_{2} \rightarrow e_{3} e_{0}, \quad e_{1} \rightarrow e_{0} e_{3}, \quad e_{0} \rightarrow e_{0} e_{2}
$$

which is the morphism Θ. The above construction shows that the sequence $\left(v_{n}\right)_{n \geq 0}$ is a fixed point of Θ.

Now, define the map ω on $\{0,1\}^{2}$ by

$$
\omega((x, y)):=y-(2 t-b-1) x+t-1 .
$$

We have $\omega\left(v_{n}\right)=m_{n}$ for all $n \geq 0$. Thus

- if $2 t \geq b+3$, the sequence $\left(m_{n}\right)_{n \geq 0}$ takes exactly four distinct values, namely $b-t, b-t+1, t-1, t$. This implies that $\left(m_{n}\right)_{n \geq 0}$ is the fixed point beginning in t of the morphism obtained from Θ by renaming the letters, i.e., $e_{3} \rightarrow t, e_{2} \rightarrow(t-1), e_{1} \rightarrow(b-t+1), e_{0} \rightarrow(b-t)$. The morphism can thus be written $t \rightarrow t(b-t+1),(t-1) \rightarrow t(b-t)$, $(b-t+1) \rightarrow(b-t) t,(b-t) \rightarrow(b-t)(t-1) ;$
- if $2 t=b+2$ (resp. $2 t=b+1$) the sequence $\left(m_{n}\right)_{n \geq 0}$ takes exactly three (resp. two) values, namely $b-t, t-1, t$ (resp. $t-1, t$). It is still the pointwise image under Θ of the sequence $\left(v_{n}\right)_{n \geq 0}$. Renaming the fixed point of Θ under g (resp. h) as in the statement of Theorem 2 only takes into account that the integers $b-t, b-t+1, t-1, t$ are not distinct.

Remark 6. The reason for the choice of indices for $e_{3}, e_{2}, e_{1}, e_{0}$ is that the order of indices is the same as the natural order on the integers $t, t-1$, $b-t+1, b-t$ to which they correspond when $2 t \geq b+3$. In particular, if $b=t=3$, the morphism reads: $3 \rightarrow 31,2 \rightarrow 30,1 \rightarrow 03,0 \rightarrow 02$. Interestingly enough, though not surprisingly, this morphism also occurs (up to renaming the letters once more) in the study of infinite square-free sequences on a 3 -letter alphabet. Namely, in [9], Berstel proves that the square-free Istrail sequence [15], originally defined (with no mention of the Thue-Morse sequence) as the fixed point of the (nonuniform) morphism $0 \rightarrow 12,1 \rightarrow 102,2 \rightarrow 0$, is actually the pointwise image of the fixed point beginning in 1 of a 2 -morphism Θ^{\prime} on the 4 -letter alphabet $\{0,1,2,3\}$ under the map $0 \rightarrow 0,1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 0$. The morphism Θ^{\prime} is given by

$$
\Theta^{\prime}(0)=12, \quad \Theta^{\prime}(1)=13, \quad \Theta^{\prime}(2)=20, \quad \Theta^{\prime}(3)=21 .
$$

The reader will note immediately that Θ^{\prime} is another avatar of Θ obtained by renaming letters as follows: $0 \rightarrow 2,1 \rightarrow 3,2 \rightarrow 0,3 \rightarrow 1$. This, in particular, shows that the sequence $\left(m_{n}\right)_{n \geq 0}$, in the case where $2 t=b+2$, is the fixed point of the nonuniform morphism $t \rightarrow t(t-1)(b-t),(t-1) \rightarrow t(b-t)$, $(b-t) \rightarrow(t-1)$, i.e., an avatar of Istrail's square-free sequence. Furthermore, it follows from [9] that this sequence on three letters cannot be the fixed point
of a uniform morphism. A last remark is that the square-free Braunholtz sequence on three letters given in [10] (see also [9, p. 18-07]) is exactly our sequence $\left(m_{n}\right)_{n \geq 0}$ when $t=b=2$, i.e., the sequence $210201210120 \ldots$

3. Small admissible sequences and small univoque numbers with given integer part

3.1. Small admissible sequences with values in $\{0,1, \ldots, b\}$. In [18] the authors are interested in the smallest admissible sequence with values in $\{0,1, \ldots, b\}$, where b is an integer ≥ 1. They prove in particular the following result, which is an immediate corollary of our Theorem 2.

Corollary 1 (Theorems 4.3 and 5.1 of [18]). Let b be an integer ≥ 1. The smallest admissible sequence with values in $\{0,1, \ldots, b\}$ is the sequence $\left(z+\varepsilon_{n+1}\right)_{n \geq 0}$ if $b=2 z+1$, and $\left(z+\varepsilon_{n+1}-\varepsilon_{n}\right)_{n \geq 0}$ if $b=2 z$.

Proof. Let $A=\left(a_{n}\right)_{n \geq 0}$ be the smallest (nonconstant) admissible sequence with values in $\{0,1, \ldots, b\}$. Since $A>\bar{A}$, we must have $a_{0} \geq \bar{a}_{0}=$ $b-a_{0}$.

Thus, if $b=2 z+1$ we have $a_{0} \geq z+1$. We also have, for all $i \geq 0$, $\bar{a}_{0} \leq a_{i} \leq a_{0}$. Now the smallest element of $\Gamma(\{b-z-1, b-z, \ldots, z-1, z+1\})$ is the smallest admissible sequence on $\{0,1, \ldots, b\}$ that begins in $z+1$. Hence this is the smallest admissible sequence with values in $\{0,1, \ldots, b\}$. Theorem 2 shows that this sequence is $\left(m_{n}\right)_{n \geq 0}$ with $m_{n}=\varepsilon_{n+1}+z$ for all $n \geq 0$.

If $b=2 z$, we have $a_{0} \geq z$. But if $a_{0}=z$, then $\bar{a}_{0}=z$, and the condition of admissibility implies that $a_{n}=z$ for all $n \geq 0$ and $\left(a_{n}\right)_{n \geq 0}$ would be the constant sequence $(z z z \ldots)$. Hence we must have $a_{0} \geq z+1$. Now the smallest element of $\Gamma(\{b-z-1, b-z, \ldots, z-1, z+1\})$ is the smallest admissible sequence on $\{0,1, \ldots, b\}$ that begins in $z+1$. Hence this is the smallest admissible sequence with values in $\{0,1, \ldots, b\}$. Theorem 2 implies that this sequence is $\left(m_{n}\right)_{n \geq 0}$ with $m_{n}=\varepsilon_{n+1}-\varepsilon_{n}+z$ for all $n \geq 0$.
3.2. Small univoque numbers with given integer part. We are interested here in the univoque numbers λ in an interval $(b, b+1]$ with b a positive integer. This set was studied in [16], where it was proved to have Lebesgue measure 0 . Since $1=\sum_{j \geq 0} a_{j} \lambda^{-(j+1)}$ and $\lambda \in(b, b+1]$, and $a_{0} \leq b$, the fact that the expansion of 1 is unique, hence equal to the greedy expansion, implies that $a_{0}=b$. In other words, we study the admissible sequences with values in $\{0,1, \ldots, b\}$ that begin in b, i.e., the set $\Gamma_{\text {strict }}(\{0,1, \ldots, b\})$. A corollary of Theorem 2 is that, for any positive integer b, there exists a smallest univoque number belonging to $(b, b+1]$. This result was obtained in [22] (see the penultimate remark in that paper); it generalizes the result obtained for $b=1$ in [17].

Corollary 2. For any positive integer b, there exists a smallest univoque number in $(b, b+1]$. It is the solution of the equation $1=\sum_{n \geq 0} d_{n} \lambda^{-n-1}$, where $d_{n}:=\varepsilon_{n+1}-(b-1) \varepsilon_{n}+b-1$ for all $n \geq 0$.

Proof. It suffices to apply Theorem 2 with $t=b$.
4. Transcendence results. We now prove, mimicking the proof given in [3], that numbers λ such that the λ-expansion of 1 is given by the sequence $\left(m_{n}\right)_{n \geq 0}$ are transcendental. This generalizes the transcendence results of [3] and [18].

Theorem 3. Let b be an integer ≥ 1 and $t \in[0, b]$ be an integer such that $2 t \geq b+1$. Define the sequence $\left(m_{n}\right)_{n \geq 0}$ as in Theorem 2 by m_{n} $:=\varepsilon_{n+1}-(2 t-b-1) \varepsilon_{n}+t-1$ for all $n \geq 0$, thus $\left(m_{n}\right)_{n \geq 0}$ begins with $t b-t+1 b-t t b-t t-1 \ldots$ Then the number $\lambda \in(1, b+1)$ defined by $1=\sum_{n \geq 0} m_{n} \lambda^{-n-1}$ is transcendental.

Proof. Define the ± 1 Thue-Morse sequence $\left(r_{n}\right)$ by $r_{n}:=(-1)^{\varepsilon_{n}}$. We clearly have $r_{n}=1-2 \varepsilon_{n}$ (recall that ε_{n} is 0 or 1). It is also immediate that the function F defined for the complex numbers X with $|X|<1$ by $F(X)=\sum_{n \geq 0} r_{n} X^{n}$ satisfies $F(X)=\prod_{k \geq 0}\left(1-X^{2^{k}}\right)$ (see, e.g., [6]). Since

$$
2 m_{n}=2 \varepsilon_{n+1}-2(2 t-b-1) \varepsilon_{n}+2 t-2=b-r_{n+1}+(2 t-b-1) r_{n}
$$

we have, for $|X|<1$,

$$
2 X \sum_{n \geq 0} m_{n} X^{n}=((2 t-b-1) X-1) F(X)+1+\frac{b X}{1-X}
$$

Taking $X=1 / \lambda$ where $1=\sum_{n \geq 0} m_{n} \lambda^{-n-1}$, we get the equation

$$
2=\left((2 t-b-1) \lambda^{-1}-1\right) F(1 / \lambda)+1+\frac{b}{\lambda-1}
$$

Now, if λ were algebraic, then this equation shows that $F(1 / \lambda)$ would be an algebraic number. But, since $1 / \lambda$ would then be an algebraic number in $(0,1)$, the quantity $F(1 / \lambda)$ would be transcendental from a result of Mahler [19], giving a contradiction.

REMARK 7. In particular the $\{0,1, \ldots, b\}$-univoque number corresponding to the smallest admissible sequence with values in $\{0,1, \ldots, b\}$ is transcendental, as proved in [18] (Theorems 4.3 and 5.9). Also the smallest univoque number belonging to $(b, b+1)$ is transcendental.
5. Conclusion. There are many papers dealing with univoque numbers. We just mention here the study of univoque Pisot numbers. The authors together with K. G. Hare determined in [5] the smallest univoque Pisot number, which happens to have algebraic degree 14 . Note that the number
corresponding to the sequence of Proposition 2 is the larger real root of the polynomial $X^{2}-t X-(b-t+1)$ ，hence a Pisot number（which is unitary if $t=b$ ）．Also note that for any $b \geq 2$ ，the real number β such that the β－expansion of 1 is $b 1^{\infty}$ is a univoque Pisot number in（ $b, b+1$ ）．It would be interesting to determine the smallest univoque Pisot number in $(b, b+1)$ ：the case $b=1$ was addressed in［5］，but the proof uses heavily the fine structure of Pisot numbers in $(1,2)$（see［8，20，21］）．A similar study of Pisot numbers in $(b, b+1)$ would certainly help．

Acknowledgments．The authors thank M．de Vries and V．Komornik for their remarks on a previous version of this paper．

References

［1］J．－P．Allouche，Théorie des Nombres et Automates，Thèse d＇État，Bordeaux，1983， http：／／tel．archives－ouvertes．fr／tel－00343206／fr／．
［2］J．－P．Allouche et M．Cosnard，Itérations de fonctions unimodales et suites en－ gendrées par automates，C．R．Acad．Sci．Paris Sér．I 296 （1983），159－162．
［3］－，－，The Komornik－Loreti constant is transcendental，Amer．Math．Monthly 107 （2000），448－449．
［4］－，一，Non－integer bases，iteration of continuous real maps，and an arithmetic self－ similar set，Acta Math．Hungar． 91 （2001），325－332．
［5］J．－P．Allouche，Ch．Frougny and K．Hare，On univoque Pisot numbers，Math．Comp． 76 （2007），1639－1660．
［6］J．－P．Allouche and J．Shallit，The ubiquitous Prouhet－Thue－Morse sequence，in： C．Ding et al．（eds．），Sequences and Their Applications（Singapore，1998），Springer， 1999，1－16．
［7］－，一，Automatic Sequences．Theory，Applications，Generalizations，Cambridge Univ．Press，Cambridge， 2003.
［8］M．Amara，Ensembles fermés de nombres algébriques，Ann．Sci．École Norm．Sup． 83 （1966），215－270．
［9］J．Berstel，Sur la construction de mots sans carré，Sém．Théor．Nombres Bordeaux （1978－1979），Exp．18，18－01－18－15．
［10］C．H．Braunholtz，An infinite sequence on 3 symbols with no adjacent repeats（Solu－ tion to Problem 439 posed by H．Noland），Amer．Math．Monthly 70 （1963），675－676．
［11］M．Cosnard，Étude de la classification topologique des fonctions unimodales，Ann． Inst．Fourier（Grenoble） 35 （1985），59－77．
［12］Z．Daróczy and I．Kátai，Univoque sequences，Publ．Math．Debrecen 42 （1993）， 397－407．
［13］－，一，On the structure of univoque numbers，ibid． 46 （1995），385－408．
［14］P．Erdős，I．Joó and V．Komornik，Characterization of the unique expansions $1=$ $\sum_{i=1}^{\infty} q^{-n_{i}}$ ，and related problems，Bull．Soc．Math．France 118 （1990），377－390．
［15］S．Istrail，On irreductible［sic］languages and nonrational numbers，Bull．Math．Soc． Sci．Math．R．S．Roumanie 21 （1977），301－308．
［16］I．Kátai and G．Kallós，On the set for which 1 is univoque，Publ．Math．Debrecen 58 （2001），743－750．
［17］V．Komornik and P．Loreti，Unique developments in non－integer bases，Amer．Math． Monthly 105 （1998），636－639．
[18] V. Komornik and P. Loreti, Subexpansions, superexpansions and uniqueness properties in non-integer bases, Period. Math. Hungar. 44 (2002), 197-218.
[19] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366; Corrigendum, ibid. 103 (1930), 532.
[20] F. L. Talmoudi, Sur les nombres de $S \cap[1,2]$, C. R. Acad. Sci. Paris Sér. Math. 285 (1977), 969-971.
[21] —, Sur les nombres de $S \cap$ [1, 2[, ibid. 287 (1978), 739-741.
[22] M. de Vries and V. Komornik, Unique expansions of real numbers, preprint, 2007, http://arxiv.org/abs/math/0609708v3.

CNRS, LRI, UMR 8623
LIAFA, CNRS UMR 7089
Université Paris-Sud, Bâtiment 490
Case 7014
F-91405 Orsay Cedex, France
F-75205 Paris Cedex 13, France
E-mail: allouche@lri.fr
and
Université Paris 8
E-mail: Christiane.Frougny@liafa.jussieu.fr

Received on 9.11.2007
and in revised form on 5.10.2008

