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Univoque numbers and an avatar of Thue–Morse

by

Jean-Paul Allouche (Orsay) and Christiane Frougny (Paris)

1. Introduction. Komornik and Loreti determined in [17] the smallest
univoque real number in the interval (1, 2), i.e., the smallest number λ ∈
(1, 2) such that 1 has a unique expansion 1 =

∑
j≥0 aj/λ

j+1 with aj ∈ {0, 1}
for every j ≥ 0. The word “univoque” in this context seems to have been
introduced (with a slightly different meaning) by Daróczy and Kátai in
[12, 13], while unique expansions of the real number 1 were characterized by
Erdős, Joó, and Komornik in [14]. The first author and Cosnard showed in
[4] how the result of [17] parallels (and can be deduced from) their study of a
certain set of binary sequences arising in the study of iterations of unimodal
continuous functions on the unit interval (see [11, 2, 1]). The relevant sets
of binary sequences occurring in [2, 1], resp. [17], can be defined by

Γ := {A ∈ {0, 1}N : ∀k ≥ 0, A ≤ σkA ≤ A},
Γstrict := {A ∈ {0, 1}N : ∀k ≥ 1, A < σkA < A},

where σ is the shift on sequences and the bar operation replaces 0’s by 1’s and
1’s by 0’s, i.e., if A = (An)n≥0, then σA := (an+1)n≥0 and A := (1−an)n≥0;
furthermore, ≤ denotes the lexicographical order on sequences induced by
0 < 1, the notation A < B meaning as usual that A ≤ B and A 6= B. The
smallest univoque number in (1, 2) and the smallest nonperiodic sequence
in Γ both involve the Thue–Morse sequence (see for example [6] for more
on this sequence).

It is tempting to generalize these sets to alphabets with more than two
letters.

Definition 1. For b a positive integer, we will say that the real number
λ > 1 is {0, 1, . . . , b}-univoque if the number 1 has a unique expansion as
1 =

∑
j≥0 ajλ

−(j+1), where aj ∈ {0, 1, . . . , b} for all j ≥ 0. Furthermore, if
λ > 1 is {0, 1, . . . , dλe − 1}-univoque, we will simply say that λ is univoque.

2000 Mathematics Subject Classification: 11A63, 11B83, 11B85, 68R15, 11J81.
Key words and phrases: beta-expansion, univoque numbers, iteration of continuous func-
tions, Thue–Morse sequence, uniform morphism, automatic sequence, transcendence.

DOI: 10.4064/aa136-4-2 [319] c© Instytut Matematyczny PAN, 2009



320 J.-P. Allouche and C. Frougny

Remark 1. If λ > 1 is {0, 1, . . . , b}-univoque for some positive integer b,
then λ ≤ b + 1. Also note that any integer q ≥ 2 is univoque, since there
is exactly one expansion 1 =

∑
j≥0 ajq

−(j+1) with aj ∈ {0, 1, . . . , q − 1},
namely 1 =

∑
j≥0(q − 1)q−(j+1).

Komornik and Loreti studied in [18] the reals λ ∈ (1, b + 1] that are
{0, 1, . . . , b}-univoque. For their study, they introduced admissible sequences
on the alphabet {0, 1, . . . , b}. Denote, as above, by σ the shift on sequences,
and by bar the operation that replaces every t ∈ {0, 1, . . . , b} by b− t, i.e., if
A = (an)n≥0, then A := (b − an)n≥0. Also denote by ≤ the lexicographical
order on sequences induced by the natural order on {0, 1, . . . , b}. Then a
sequence A = (an)n≥0 on {0, 1, . . . , b} is admissible if

∀k ≥ 0 such that ak < b, σk+1A < A,

∀k ≥ 0 such that ak > 0, σk+1A > A.

(Note that our notation is not exactly the notation of [18], since our se-
quences are indexed by N and not N\{0}.) These sequences have the follow-
ing property: the map that associates with a real λ ∈ (1, b+ 1] the sequence
of coefficients (aj)j≥0 ∈ {0, 1, . . . , b} of the greedy (i.e., lexicographically
largest) expansion of 1, 1 =

∑
j≥0 ajλ

−(j+1), is a bijection from the set of
{0, 1, . . . , b}-univoque λ’s to the set of admissible sequences on {0, 1, . . . , b}
(see [18]).

Now there are two possible generalizations of the result of [17] on the
smallest univoque number in (1, 2), i.e., the smallest admissible binary se-
quence. One is to look at the smallest (if any) admissible sequence on the
alphabet {0, 1, . . . , b}, as did Komornik and Loreti in [18], the other is to
look at the smallest (if any) univoque number in (b, b + 1), as did de Vries
and Komornik in [22].

It so happens that the first author has already studied a generalization of
the set Γ to the case of more than two letters (see [1, Part 3]). Interestingly
enough, unlike the study of Γ , this study was unrelated to iterations of con-
tinuous functions, being just a tempting formal arithmetico-combinatorial
generalization of the study of the set Γ of binary sequences to a similar set
of sequences with more than two values.

The purpose of the present paper is threefold:

(1) to show how the 1983 study [1, Part 3, pp. 63–90] gives both the
result of Komornik and Loreti in [18] on the smallest admissible sequence
on {0, 1, . . . , b}, and the result of de Vries and Komornik in [22] on the
smallest univoque number λ ∈ (b, b+ 1) where b is any positive integer;

(2) to bring to light a universal morphism that governs the smallest
elements in (1) above, and to show that the infinite sequence generated by
this morphism is an avatar of the Thue–Morse sequence;
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(3) to prove that the smallest univoque number in (b, b+ 1) (where b is
any positive integer) is transcendental.

The paper consists of five sections. In Section 2 we recall some results of
[1, Part 3, pp. 63–90] on the generalization of the set Γ to a (b + 1)-letter
alphabet. Then we give some properties of the lexicographically least nonpe-
riodic sequence of this set, completing the results of [1, Part 3, pp. 63–90]. In
Section 3 we give two corollaries of the properties of this least sequence: one
gives the result in [18], the other gives the result in [22]. The transcendence
results are proven in the last section.

2. The generalized Γ and Γstrict sets

Definition 2. Let b be a positive integer, and A be a finite ordered set
with b+ 1 elements α0 < α1 < · · · < αb. The bar operation is defined on A
by αj = αb−j . We extend this operation to AN by (an)n≥0 := (an)n≥0. Let
σ be the shift on AN, defined by σ((an)n≥0) := (an+1)n≥0.

We define

Γ (A) := {A = (an)n≥0 ∈ AN : a0 = maxA, ∀k ≥ 0, A ≤ σkA ≤ A},
Γstrict(A) := {A = (an)n≥0 ∈ AN : a0 = maxA, ∀k ≥ 1, A < σkA < A}.

Remark 2. The set Γ (A) was introduced by the first author in [1,
Part 3, p. 63]. Note that there is a misprint in the definition on p. 66 in [1]:
aβ−i should be changed into aβ−1−i as confirmed by the rest of the text.

Remark 3. A sequence belongs to Γstrict(A) if and only if it belongs to
Γ (A) and is nonperiodic. Indeed, σkA = A if and only if A is k-periodic; if
σkA = A, then σ2kA = A, and the sequence A is 2k-periodic.

Remark 4. If the set A := {i, i+1, . . . , i+z}, where i and z are integers,
is equipped with the natural order, then for any x ∈ A, we have x = 2i+z−x.
Indeed, following Definition 2 above, we write α0 := i, α1 := i+ 1, . . . , αz :=
i + z. Hence, for any j ∈ [0, z], we have αj = αz−j , which can be rewritten
i+ j = i+z− j, i.e., for any x in A, we have x = i+z− (x− i) = 2i+z−x.

A first result is that the sets Γstrict(A) are closely linked to the set of
admissible sequences whose definition was recalled in the introduction.

Proposition 1. Let A = (an)n≥0 be a sequence in {0, 1, . . . , b}N such
that a0 = t ∈ [0, b] and A 6= b b b . . . . Then A is admissible if and only if
2t > b and A ∈ Γstrict({b− t, b− t+ 1, . . . , t}). (The order on {b− t, b− t+ 1,
. . . , t} is induced by the order on N. From Remark 4 the bar operation is
given by j = b− j.)
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Proof. First suppose that 2t > b and A ∈ Γstrict({b− t, b− t+ 1, . . . , t}).
Then, for all k ≥ 1, A < σkA < A, which clearly implies that A is admissible.

Conversely, suppose that A is admissible. We thus have

∀k ≥ 1 such that ak−1 < b, σkA < A,

∀k ≥ 1 such that ak−1 > 0, σkA > A.

We first prove that if A is not a constant sequence, then

∀k ≥ 1, A < σkA < A.

We only prove that σkA < A; the remaining inequalities are proved in a
similar way. If ak−1 < b, then σkA < A. If ak−1 = b, there are two cases:
either

• a0 = a1 = · · · = ak−1 = b; then if ak < b we clearly have σkA < A; if
ak = b, then the sequence σkA begins with some block of b’s followed
by a letter < b, thus it begins with a block of b’s shorter than the
initial block of b’s in A, hence σkA < A; or
• there exists an index ` with 1 < ` < k such that a`−1 < b and a` =
a`+1 = · · · = ak−1 = b. As A is admissible, we have σ`A < A. It thus
suffices to prove that σkA ≤ σ`A. This is clearly the case if ak < b. On
the other hand, if ak = b, the sequence σkA begins with a block of b’s
which is shorter than the initial block of b’s in σ`A, hence σkA ≤ σ`A.

Now, since a0 = t and σkA < A for all k ≥ 1, we have ak ≤ t for all
k ≥ 0. Similarly, since σkA > A for all k ≥ 1, we have ak ≥ b − t for
all k ≥ 1. Finally, A > A implies that t = a0 ≥ b − t. Thus 2t ≥ b and
A ∈ Γ ({b−t, b−t+1, . . . , t}). Now, if b = 2t, then {b−t, b−t+1, . . . , t} = {t}
and t̄ = t. This implies that A = t t t . . . , which is not an admissible
sequence.

Remark 5. For b = 1, this (easy) result is given without proof in [14]
and proved in [4].

We need another definition from [1].

Definition 3. Let b be a positive integer, and A be a finite ordered
set with b + 1 elements α0 < α1 < · · · < αb. We suppose that A is
equipped with a bar operation as in Definition 2. Let A = (an)n≥0 be
a periodic sequence of smallest period T , and with aT−1 < maxA. Let
aT−1 = αj (thus j < b). Then Φ(A) is the 2T -periodic sequence beginning
with a0 a1 . . . aT−2 αj+1 a0 a1 . . . aT−2 αb−j−1, i.e.,

Φ((a0 a1 . . . aT−2 αj)∞) := (a0 a1 . . . aT−2 αj+1 a0 a1 . . . aT−2 αb−j−1)∞.

We first prove the following easy claim.
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Proposition 2. The smallest element of Γ ({b−t, b−t+1, . . . , t}) (where
2t > b) is the 2-periodic sequence (t (b− t))∞ = (t (b− t) t (b− t) t . . .).

Proof. Since any sequence A = (an)n≥0 in Γ ({b − t, b − t + 1, . . . , t})
begins in t, and satisfies σA ≥ A, it must satisfy a0 = t and a1 ≥ b − t.
Now if a0 = t and a1 = b − t, then A must be the 2-periodic sequence
(t (b − t))∞ ([1, Lemma 2b, p. 73]). Since this periodic sequence trivially
belongs to Γ ({b− t, b− t+ 1, . . . , t}), it is its smallest element.

Denoting as usual by Φs the sth iterate of Φ, we state the following
theorem which is a particular case of the theorem on pp. 72–73 of [1] about
the smallest elements in certain subintervals of Γ ({0, 1, . . . , b}), and of the
definition of q-mirror sequences given in [1, Section II, 1, p. 67] (here q = 2).

Theorem 1 ([1]). Define P := (t (b− t))∞ = (t (b− t) t (b− t) t . . .).
The smallest nonperiodic sequence in Γ ({b − t, b − t + 1, . . . , t}) (i.e., the
smallest element of Γstrict({b− t, b− t+ 1, . . . , t})) is the sequence

M := lim
s→∞

Φs(P ),

that actually takes the (not necessarily distinct) values b−t, b−t+1, t−1, t.
Furthermore, this sequence

M = (mn)n≥0 = t b− t+ 1 b− t t b− t t− 1 . . .

can be recursively defined by

∀k ≥ 0, m22k−1 = t,

∀k ≥ 0, m22k+1−1 = b+ 1− t,
∀k ≥ 0, ∀j ∈ [0, 2k+1 − 2], m2k+1+j = mj .

It was proven in [1] that the sequence lims→∞ Φ
s((t (b − t))∞ is 2-

automatic (for more about automatic sequences, see [7]). The second author
noted that this sequence is actually a fixed point of a uniform morphism of
length 2 as soon as the cardinality of the set {b − t, b − t + 1, . . . , b} is at
least 4, i.e., 2t ≥ b + 3. (Recall that we always have t ≥ b − t, i.e., 2t ≥ b.)
More precisely, we have Theorem 2 below, where the Thue–Morse sequence
pops up, as in [1] and in [18], but also as in [2] and [17]. Before stating this
theorem we give a definition.

Definition 4. The “universal” morphism Θ is defined on {e0, e1, e2, e3}
by

Θ(e3) := e3e1, Θ(e2) := e3e0, Θ(e1) := e0e3, Θ(e0) := e0e2.

Note that this morphism has an infinite fixed point beginning in e3,

Θ∞(e3) = lim
k→∞

Θk(e3) = e3 e1 e0 e3 e0 e2 e3 e1 e0 e2 . . . .
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Theorem 2. Let (εn)n≥0 be the Thue–Morse sequence defined by ε0 = 0
and ε2k = εk and ε2k+1 = 1−εk for all k ≥ 0. Then the smallest nonperiodic
sequence M = (mn)n≥0 in Γ ({b− t, b− t+ 1, . . . , t}) satisfies

∀n ≥ 0, mn = εn+1 − (2t− b− 1)εn + t− 1.

Using the morphism Θ introduced in Definition 4 above we thus have:

• if 2t ≥ b+ 3, then M is the fixed point beginning in t of the morphism
deduced from Θ by renaming e0, e1, e2, e3 respectively b − t, b − t + 1,
t − 1, t (note that the condition 2t ≥ b + 3 implies that these four
numbers are distinct);
• if 2t = b + 2 (thus b − t + 1 = t − 1), then M is the pointwise image

of the fixed point beginning in e3 of the morphism Θ under the map g
defined by g(e3) := t, g(e2) = g(e1) := t− 1, g(e0) := b− t;

• if 2t = b + 1 (thus b − t = t − 1 and b − t + 1 = t), then M is the
pointwise image of the fixed point beginning in e3 of the morphism Θ
under the map h defined by h(e3) = h(e1) := t, h(e2) = h(e0) := t− 1.

Proof. Let us first prove that the sequence M = (mn)n≥0 is equal to
the sequence (un)n≥0, where un := εn+1 − (2t− b− 1)εn + t− 1. It suffices
to prove that (un)n≥0 satisfies the recursive relations defining (mn)n≥0 that
are given in Theorem 1. Recall that εn is equal to the parity of the sum
of the binary digits of n (see [6] for example). Hence, for all k ≥ 0, ε22k−1

= 0, ε22k+1−1 = 1, and ε22k = ε22k+1 = 1. This implies that for all k ≥ 0,
u22k−1 = t and u22k+1−1 = b + 1 − t. Furthermore, for all k ≥ 0 and j ∈
[0, 2k+1 − 2], we have ε2k+1+j = 1 − εj and ε2k+1+j+1 = 1 − εj+1. Hence
u2k+1+j = b− uj = uj .

To show how the “universal” morphism Θ enters the picture, we study
the sequence (vn)n≥0 with values in {0, 1}2 defined by vn := (εn, εn+1) for
all n ≥ 0. Since v2n = (εn, 1− εn) and v2n+1 = (1− εn, εn+1) for all n ≥ 0,
we clearly have

if vn = (0, 0), then v2n = (0, 1) and v2n+1 = (1, 0),
if vn = (0, 1), then v2n = (0, 1) and v2n+1 = (1, 1),
if vn = (1, 0), then v2n = (1, 0) and v2n+1 = (0, 0),
if vn = (1, 1), then v2n = (1, 0) and v2n+1 = (0, 1).

This exactly means that (vn)n≥0 is the fixed point beginning in (0, 1) of the
2-morphism

(0, 0)→ (0, 1)(1, 0),
(0, 1)→ (0, 1)(1, 1),
(1, 0)→ (1, 0)(0, 0),
(1, 1)→ (1, 0)(0, 1).
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We may define e0 := (1, 0), e1 := (1, 1), e2 := (0, 0), e3 := (0, 1). Then the
above morphism can be written

e3 → e3e1, e2 → e3e0, e1 → e0e3, e0 → e0e2,

which is the morphism Θ. The above construction shows that the sequence
(vn)n≥0 is a fixed point of Θ.

Now, define the map ω on {0, 1}2 by

ω((x, y)) := y − (2t− b− 1)x+ t− 1.

We have ω(vn) = mn for all n ≥ 0. Thus

• if 2t ≥ b+ 3, the sequence (mn)n≥0 takes exactly four distinct values,
namely b− t, b− t+ 1, t− 1, t. This implies that (mn)n≥0 is the fixed
point beginning in t of the morphism obtained from Θ by renaming
the letters, i.e., e3 → t, e2 → (t − 1), e1 → (b − t + 1), e0 → (b − t).
The morphism can thus be written t→ t (b− t+1), (t−1)→ t (b− t),
(b− t+ 1)→ (b− t) t, (b− t)→ (b− t) (t− 1);
• if 2t = b + 2 (resp. 2t = b + 1) the sequence (mn)n≥0 takes exactly

three (resp. two) values, namely b− t, t− 1, t (resp. t− 1, t). It is still
the pointwise image under Θ of the sequence (vn)n≥0. Renaming the
fixed point of Θ under g (resp. h) as in the statement of Theorem 2
only takes into account that the integers b− t, b− t+ 1, t− 1, t are not
distinct.

Remark 6. The reason for the choice of indices for e3, e2, e1, e0 is that
the order of indices is the same as the natural order on the integers t, t− 1,
b − t + 1, b − t to which they correspond when 2t ≥ b + 3. In particular,
if b = t = 3, the morphism reads: 3 → 31, 2 → 30, 1 → 03, 0 → 02.
Interestingly enough, though not surprisingly, this morphism also occurs
(up to renaming the letters once more) in the study of infinite square-free
sequences on a 3-letter alphabet. Namely, in [9], Berstel proves that the
square-free Istrail sequence [15], originally defined (with no mention of the
Thue–Morse sequence) as the fixed point of the (nonuniform) morphism
0 → 12, 1 → 102, 2 → 0, is actually the pointwise image of the fixed point
beginning in 1 of a 2-morphism Θ′ on the 4-letter alphabet {0, 1, 2, 3} under
the map 0→ 0, 1→ 1, 2→ 2, 3→ 0. The morphism Θ′ is given by

Θ′(0) = 12, Θ′(1) = 13, Θ′(2) = 20, Θ′(3) = 21.

The reader will note immediately that Θ′ is another avatar of Θ obtained by
renaming letters as follows: 0→ 2, 1→ 3, 2→ 0, 3→ 1. This, in particular,
shows that the sequence (mn)n≥0, in the case where 2t = b+ 2, is the fixed
point of the nonuniform morphism t→ t (t− 1) (b− t), (t− 1)→ t (b− t),
(b−t)→ (t−1), i.e., an avatar of Istrail’s square-free sequence. Furthermore,
it follows from [9] that this sequence on three letters cannot be the fixed point
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of a uniform morphism. A last remark is that the square-free Braunholtz
sequence on three letters given in [10] (see also [9, p. 18-07]) is exactly our
sequence (mn)n≥0 when t = b = 2, i.e., the sequence 2 1 0 2 0 1 2 1 0 1 2 0 . . .

3. Small admissible sequences and small univoque numbers
with given integer part

3.1. Small admissible sequences with values in {0, 1, . . . , b}. In [18] the
authors are interested in the smallest admissible sequence with values in
{0, 1, . . . , b}, where b is an integer ≥ 1. They prove in particular the following
result, which is an immediate corollary of our Theorem 2.

Corollary 1 (Theorems 4.3 and 5.1 of [18]). Let b be an integer ≥ 1.
The smallest admissible sequence with values in {0, 1, . . . , b} is the sequence
(z + εn+1)n≥0 if b = 2z + 1, and (z + εn+1 − εn)n≥0 if b = 2z.

Proof. Let A = (an)n≥0 be the smallest (nonconstant) admissible se-
quence with values in {0, 1, . . . , b}. Since A > A, we must have a0 ≥ a0 =
b− a0.

Thus, if b = 2z + 1 we have a0 ≥ z + 1. We also have, for all i ≥ 0,
a0 ≤ ai ≤ a0. Now the smallest element of Γ ({b−z−1, b−z, . . . , z−1, z+1})
is the smallest admissible sequence on {0, 1, . . . , b} that begins in z + 1.
Hence this is the smallest admissible sequence with values in {0, 1, . . . , b}.
Theorem 2 shows that this sequence is (mn)n≥0 with mn = εn+1 + z for all
n ≥ 0.

If b = 2z, we have a0 ≥ z. But if a0 = z, then a0 = z, and the condition
of admissibility implies that an = z for all n ≥ 0 and (an)n≥0 would be
the constant sequence (z z z . . .). Hence we must have a0 ≥ z + 1. Now
the smallest element of Γ ({b− z − 1, b− z, . . . , z − 1, z + 1}) is the smallest
admissible sequence on {0, 1, . . . , b} that begins in z + 1. Hence this is the
smallest admissible sequence with values in {0, 1, . . . , b}. Theorem 2 implies
that this sequence is (mn)n≥0 with mn = εn+1 − εn + z for all n ≥ 0.

3.2. Small univoque numbers with given integer part. We are interested
here in the univoque numbers λ in an interval (b, b + 1] with b a positive
integer. This set was studied in [16], where it was proved to have Lebesgue
measure 0. Since 1 =

∑
j≥0 ajλ

−(j+1) and λ ∈ (b, b + 1], and a0 ≤ b, the
fact that the expansion of 1 is unique, hence equal to the greedy expansion,
implies that a0 = b. In other words, we study the admissible sequences
with values in {0, 1, . . . , b} that begin in b, i.e., the set Γstrict({0, 1, . . . , b}).
A corollary of Theorem 2 is that, for any positive integer b, there exists a
smallest univoque number belonging to (b, b + 1]. This result was obtained
in [22] (see the penultimate remark in that paper); it generalizes the result
obtained for b = 1 in [17].
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Corollary 2. For any positive integer b, there exists a smallest univo-
que number in (b, b+1]. It is the solution of the equation 1 =

∑
n≥0 dnλ

−n−1,
where dn := εn+1 − (b− 1)εn + b− 1 for all n ≥ 0.

Proof. It suffices to apply Theorem 2 with t = b.

4. Transcendence results. We now prove, mimicking the proof given
in [3], that numbers λ such that the λ-expansion of 1 is given by the sequence
(mn)n≥0 are transcendental. This generalizes the transcendence results of [3]
and [18].

Theorem 3. Let b be an integer ≥ 1 and t ∈ [0, b] be an integer such
that 2t ≥ b + 1. Define the sequence (mn)n≥0 as in Theorem 2 by mn

:= εn+1 − (2t − b − 1)εn + t − 1 for all n ≥ 0, thus (mn)n≥0 begins with
t b− t+ 1 b− t t b− t t− 1 . . . . Then the number λ ∈ (1, b+ 1) defined by
1 =

∑
n≥0mnλ

−n−1 is transcendental.

Proof. Define the ±1 Thue–Morse sequence (rn) by rn := (−1)εn . We
clearly have rn = 1 − 2εn (recall that εn is 0 or 1). It is also immediate
that the function F defined for the complex numbers X with |X| < 1 by
F (X) =

∑
n≥0 rnX

n satisfies F (X) =
∏
k≥0(1−X2k

) (see, e.g., [6]). Since

2mn = 2εn+1 − 2(2t− b− 1)εn + 2t− 2 = b− rn+1 + (2t− b− 1)rn
we have, for |X| < 1,

2X
∑
n≥0

mnX
n = ((2t− b− 1)X − 1)F (X) + 1 +

bX

1−X
·

Taking X = 1/λ where 1 =
∑

n≥0mnλ
−n−1, we get the equation

2 = ((2t− b− 1)λ−1 − 1)F (1/λ) + 1 +
b

λ− 1
·

Now, if λ were algebraic, then this equation shows that F (1/λ) would be
an algebraic number. But, since 1/λ would then be an algebraic number
in (0, 1), the quantity F (1/λ) would be transcendental from a result of
Mahler [19], giving a contradiction.

Remark 7. In particular the {0, 1, . . . , b}-univoque number correspond-
ing to the smallest admissible sequence with values in {0, 1, . . . , b} is tran-
scendental, as proved in [18] (Theorems 4.3 and 5.9). Also the smallest
univoque number belonging to (b, b+ 1) is transcendental.

5. Conclusion. There are many papers dealing with univoque numbers.
We just mention here the study of univoque Pisot numbers. The authors
together with K. G. Hare determined in [5] the smallest univoque Pisot
number, which happens to have algebraic degree 14. Note that the number
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corresponding to the sequence of Proposition 2 is the larger real root of the
polynomial X2 − tX − (b− t + 1), hence a Pisot number (which is unitary
if t = b). Also note that for any b ≥ 2, the real number β such that the
β-expansion of 1 is b1∞ is a univoque Pisot number in (b, b+1). It would be
interesting to determine the smallest univoque Pisot number in (b, b+1): the
case b = 1 was addressed in [5], but the proof uses heavily the fine structure
of Pisot numbers in (1, 2) (see [8, 20, 21]). A similar study of Pisot numbers
in (b, b+ 1) would certainly help.
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Université Paris-Sud, Bâtiment 490
F-91405 Orsay Cedex, France
E-mail: allouche@lri.fr

LIAFA, CNRS UMR 7089
Case 7014

F-75205 Paris Cedex 13, France
and

Université Paris 8
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