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Univoque numbers and an avatar of Thue—Morse
by

JEAN-PAUL ALLOUCHE (Orsay) and CHRISTIANE FROUGNY (Paris)

1. Introduction. Komornik and Loreti determined in [17] the smallest
univoque real number in the interval (1,2), i.e., the smallest number \ €
(1,2) such that 1 has a unique expansion 1 = 3., aj /Nt with a; € {0,1}
for every 7 > 0. The word “univoque” in this context seems to have been
introduced (with a slightly different meaning) by Daréczy and Kétai in
[12, 13], while unique expansions of the real number 1 were characterized by
Erdés, Jo, and Komornik in [14]. The first author and Cosnard showed in
[4] how the result of [17] parallels (and can be deduced from) their study of a
certain set of binary sequences arising in the study of iterations of unimodal
continuous functions on the unit interval (see [11, 2, 1]). The relevant sets
of binary sequences occurring in [2, 1], resp. [17], can be defined by

I={Ac{0,1}":Vk>0, A<o"A < A},
Tiricy == {A € {0, 1}N Vk>1, A< oFA< A},

where o is the shift on sequences and the bar operation replaces 0’s by 1’s and
U's by 07s, i.e., if A = (A,)n>0, then A := (a+1)n>0 and A := (1 — ay)n>0;
furthermore, < denotes the lexicographical order on sequences induced by
0 < 1, the notation A < B meaning as usual that A < B and A # B. The
smallest univoque number in (1,2) and the smallest nonperiodic sequence
in I" both involve the Thue-Morse sequence (see for example [6] for more
on this sequence).

It is tempting to generalize these sets to alphabets with more than two
letters.

DEFINITION 1. For b a positive integer, we will say that the real number
A>11is {0,1,...,b}-univogue if the number 1 has a unique expansion as
1= ijo aj)\_(3+1), where a; € {0,1,...,b} for all j > 0. Furthermore, if
A>1is{0,1,...,[A] — 1}-univoque, we will simply say that A is univoque.
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REMARK 1. If A > 1is {0, 1,...,b}-univoque for some positive integer b,
then A < b+ 1. Also note that any integer ¢ > 2 is univoque, since there
is exactly one expansion 1 = Zj>0 ajq_(j+1) with a; € {0,1,...,q — 1},

namely 1 =3".-4(q - 1)g~ U+,

Komornik and Loreti studied in [18] the reals A € (1,b + 1] that are
{0,1,...,b}-univoque. For their study, they introduced admissible sequences
on the alphabet {0,1,...,b}. Denote, as above, by o the shift on sequences,
and by bar the operation that replaces every ¢t € {0,1,...,b} by b—t, i.e., if
A = (an)n>0, then A := (b — ay)n>0. Also denote by < the lexicographical
order on sequences induced by the natural order on {0,1,...,b}. Then a
sequence A = (ap)n>o0 on {0,1,...,b} is admissible if

Vk > 0 such that a < b, oFt1A < A,
Vk > 0 such that a;, >0, o*"1A> A.

(Note that our notation is not exactly the notation of [18], since our se-
quences are indexed by N and not N\ {0}.) These sequences have the follow-
ing property: the map that associates with a real A € (1,b+ 1] the sequence
of coefficients (a;)j>0 € {0,1,...,b} of the greedy (i.e., lexicographically
largest) expansion of 1, 1 = ijo aj)\_(j+1), is a bijection from the set of
{0,1,...,b}-univoque \’s to the set of admissible sequences on {0,1,...,b}
(see [18]).

Now there are two possible generalizations of the result of [17] on the
smallest univoque number in (1,2), i.e., the smallest admissible binary se-
quence. One is to look at the smallest (if any) admissible sequence on the
alphabet {0,1,...,b}, as did Komornik and Loreti in [18], the other is to
look at the smallest (if any) univoque number in (b,b+ 1), as did de Vries
and Komornik in [22].

It so happens that the first author has already studied a generalization of
the set I" to the case of more than two letters (see [1, Part 3]). Interestingly
enough, unlike the study of I', this study was unrelated to iterations of con-
tinuous functions, being just a tempting formal arithmetico-combinatorial
generalization of the study of the set I' of binary sequences to a similar set
of sequences with more than two values.

The purpose of the present paper is threefold:

(1) to show how the 1983 study [1, Part 3, pp. 63-90] gives both the
result of Komornik and Loreti in [18] on the smallest admissible sequence
on {0,1,...,b}, and the result of de Vries and Komornik in [22] on the
smallest univoque number A € (b,b 4 1) where b is any positive integer;

(2) to bring to light a wuniversal morphism that governs the smallest
elements in (1) above, and to show that the infinite sequence generated by
this morphism is an avatar of the Thue-Morse sequence;
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(3) to prove that the smallest univoque number in (b,b+ 1) (where b is
any positive integer) is transcendental.

The paper consists of five sections. In Section 2 we recall some results of
[1, Part 3, pp. 63-90] on the generalization of the set I" to a (b + 1)-letter
alphabet. Then we give some properties of the lexicographically least nonpe-
riodic sequence of this set, completing the results of [1, Part 3, pp. 63-90]. In
Section 3 we give two corollaries of the properties of this least sequence: one
gives the result in [18], the other gives the result in [22]. The transcendence
results are proven in the last section.

2. The generalized ' and [t sets

DEFINITION 2. Let b be a positive integer, and A be a finite ordered set
with b + 1 elements ag < a1 < - -+ < ap. The bar operation is defined on A
by @; = a;—j. We extend this operation to AN by (@), = (@n)n>0. Let
o be the shift on AN, defined by o((an)n>0) := (an+1)n20_.

We define

T(A):={A = (an)n>0 € AV : ap = max A, Vk > 0, A < oA < A},
Tstrict (A) :={A = (an)n>0 € AV : ap = max A, Vk > 1, A < %A < A}.

REMARK 2. The set I'(A) was introduced by the first author in [1,
Part 3, p. 63]. Note that there is a misprint in the definition on p. 66 in [1]:
ag—; should be changed into ag_1_; as confirmed by the rest of the text.

REMARK 3. A sequence belongs to I'yict(A) if and only if it belongs to
I'(A) and is nonperiodic. Indeed, 0% A = A if and only if A is k-periodic; if
oA = A, then 0%* A = A, and the sequence A is 2k-periodic.

REMARK 4. If the set A := {i,i+1,...,i+2}, where i and z are integers,
is equipped with the natural order, then for any x € A, we have T = 2i+2z—=x.
Indeed, following Definition 2 above, we write ag := 4,1 :=1+1,...,q, :=

i + z. Hence, for any j € [0, 2], we have &@; = a,—;, which can be rewritten
i+j=i+z—j,le,foranyxin A, wehave T =i+z— (v —1i) =2i+2—x.

A first result is that the sets Iyyict(A) are closely linked to the set of
admissible sequences whose definition was recalled in the introduction.

PROPOSITION 1. Let A = (an)n>0 be a sequence in {0,1,..., b} such
that ag =t € [0,b] and A # bbb .... Then A is admissible if and only if
2t > b and A € Isict({0—t,b—t+1,...,t}). (The order on {b—t,b—t+1,
..., t} is induced by the order on N. From Remark 4 the bar operation is
given by j=0b—j.)
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Proof. First suppose that 2t > b and A € Frict({0—t,0—t+1,...,t}).
Then, forallk > 1, A < 0¥ A < A, which clearly implies that A is admissible.
Conversely, suppose that A is admissible. We thus have

Vk > 1 such that ay_; <b, oFA< A,
Vk > 1 such that a1 >0, o*A> A.

We first prove that if A is not a constant sequence, then
VE>1, A<oA< A

We only prove that o*A < A; the remaining inequalities are proved in a
similar way. If a1 < b, then o*A < A. If a;_; = b, there are two cases:
either

e ag =aj; =--- = ap_; = b; then if a; < b we clearly have o*A < A; if
ap = b, then the sequence o* A begins with some block of b’s followed
by a letter < b, thus it begins with a block of b’s shorter than the
initial block of b’s in A, hence o*A < A; or

e there exists an index ¢ with 1 < £ < k such that ay_1 < b and ay =
Q41 = - = ap_1 = b. As A is admissible, we have 0?4 < A. It thus
suffices to prove that 0¥ A < ¢*A. This is clearly the case if a;, < b. On
the other hand, if aj = b, the sequence 0¥ A begins with a block of b’s
which is shorter than the initial block of s in 0“4, hence o* A < ot A.

Now, since ag = t and oA < A for all k > 1, we have a; < t for all
k > 0. Similarly, since oA > A for all k£ > 1, we have a; > b — t for
all £ > 1. Finally, A > A implies that ¢ = ag > b — t. Thus 2t > b and
AeI({b—t,b—t+1,...,t}). Now, if b = 2¢, then {b—t,b—t+1,...,t} = {t}
and t = t. This implies that A = ¢ ¢ t ..., which is not an admissible
sequence. m

REMARK 5. For b = 1, this (easy) result is given without proof in [14]
and proved in [4].

We need another definition from [1].

DEFINITION 3. Let b be a positive integer, and A be a finite ordered
set with b + 1 elements ap < a3 < --- < ap. We suppose that A is
equipped with a bar operation as in Definition 2. Let A = (an)n>0 be
a periodic sequence of smallest period T, and with ar_; < maxA. Let
ar—1 = «; (thus j < b). Then ®(A) is the 27-periodic sequence beginning
with ag a1 ... ar—_9 ®j41 G G1 - AT—2 Qp_j 1, ie.,

@((ao a ... ar—o Oéj)oo) = (ao ay ... Qr—2 ®j41 Gy G1 ... AT—2 ab,j,l)oo.

We first prove the following easy claim.
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PROPOSITION 2. The smallest element of I'({b—t,b—t+1,...,t}) (where
2t > b) is the 2-periodic sequence (t (b—1))>* =t (b—t)t (b—1t)t ...).

Proof. Since any sequence A = (ap)p>o in I'({b —t,b—t +1,...,t})
begins in ¢, and satisfies cA > A, it must satisfy ap = t and a; > b — t.
Now if a9 = t and a; = b — t, then A must be the 2-periodic sequence
(t (b—1t))> ([1, Lemma 2b, p. 73]). Since this periodic sequence trivially
belongs to I'({b — t,b —t + 1,...,t}), it is its smallest element. m

Denoting as usual by @° the sth iterate of @, we state the following
theorem which is a particular case of the theorem on pp. 72-73 of [1] about
the smallest elements in certain subintervals of I'({0,1,...,b}), and of the
definition of g-mirror sequences given in [1, Section I, 1, p. 67] (here ¢ = 2).

THEOREM 1 ([1]). Define P:=(t (b—t))>*=(t (b—t)t (b—1t)t ...).
The smallest nonperiodic sequence in I'({b —t,b —t + 1,...,t}) (i.e., the
smallest element of Isyyict({b—t,b—t+1,...,t})) is the sequence

M = lim ¢°(P),

S§— 00

that actually takes the (not necessarily distinct) values b—t, b—t+1,t—1, t.
Furthermore, this sequence

M= (mp)nso=t b—t+1 b—t t b—t t—1
can be recursively defined by
Vk Z 0, m22k_1 = t,
Vk Z 0, m22k+171 - b + 1 - t,
Vk>0,Vj€[0,280 — 2], mgen,; =m;.

It was proven in [1] that the sequence lims oo ®°((t (b — t))>° is 2-
automatic (for more about automatic sequences, see [7]). The second author
noted that this sequence is actually a fixed point of a uniform morphism of
length 2 as soon as the cardinality of the set {b —t,b —¢t+1,...,b} is at
least 4, i.e., 2t > b+ 3. (Recall that we always have t > b — ¢, i.e., 2t > b.)
More precisely, we have Theorem 2 below, where the Thue-Morse sequence

pops up, as in [1] and in [18], but also as in [2] and [17]. Before stating this
theorem we give a definition.

DEFINITION 4. The “universal” morphism © is defined on {eg, €1, €2, €3}
by

@(63) = €3€1, @(62) = €3€y, @(61) = €p€g, @(60) = epeq.
Note that this morphism has an infinite fixed point beginning in es,

O (e3) = klijgo@k(eg) = e3 €1 €)€3€) €2 €E3€E] €)EY....
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THEOREM 2. Let (ep)n>0 be the Thue-Morse sequence defined by eg =0
and e, = €, and eo9k11 = 1 —¢y, for all k > 0. Then the smallest nonperiodic
sequence M = (mp)n>0 in I'{b—t,b—t+1,...,t}) satisfies

VYn>0, mp=épny1— 2t—b—1)e, +t—1.
Using the morphism O introduced in Definition 4 above we thus have:

e if 2t > b+ 3, then M is the fized point beginning in t of the morphism
deduced from © by renaming eq, ey, eo, e3 respectively b —t,b —t + 1,
t — 1,t (note that the condition 2t > b+ 3 implies that these four
numbers are distinct);

o if2t =b+2 (thusb—t+1=1t—1), then M is the pointwise image
of the fized point beginning in es of the morphism © under the map g
defined by g(es) :=t, g(e2) = gler) :=t — 1, geo) :=b—1;

o f2t =b+1 (thusb—t=t—1andb—t+1=1t), then M is the
pointwise image of the fized point beginning in es of the morphism ©

under the map h defined by h(es) = h(e1) :=t, h(ea) = h(eg) :=t—1.

Proof. Let us first prove that the sequence M = (my),>0 is equal to
the sequence (up)n>0, where u, 1= ep41 — (2t — b — 1)e, +t — 1. It suffices
to prove that (up)n>0 satisfies the recursive relations defining (my,),>0 that
are given in Theorem 1. Recall that ¢, is equal to the parity of the sum
of the binary digits of n (see [6] for example). Hence, for all k > 0, g92x_;
=0, €926+1_7 = 1, and €92t = €921 = 1. This implies that for all £ > 0,
Ug2k_1 = t and Ugak+1_; = b+ 1 — t. Furthermore, for all £ > 0 and j €
0,27 — 2], we have g1y ; = 1 —¢; and egri1y 4y = 1 — gj41. Hence
Ugk+1j = b— Uj = ﬁj.

To show how the “universal” morphism © enters the picture, we study
the sequence (v, )n>0 with values in {0,1}* defined by v, := (5, en41) for
all n > 0. Since vg, = (e, 1 — &) and vop11 = (1 — €p,p41) for all n > 0,
we clearly have

if v, =(0,0), then w9, =(0,1) and wvan+1 = (1,0),
if v, =(0,1), then w9, =(0,1) and wvop41 =(1,1),
if v, =(1,0), then w9, =(1,0) and wa,+1 = (0,0),
if v, =(1,1), then w9, =(1,0) and w41 = (0,1).
This exactly means that (vy,)n>0 is the fixed point beginning in (0,1) of the

2-morphism
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We may define e := (1,0), e; := (1,1), ea := (0,0), eg := (0,1). Then the
above morphism can be written

€3 — e3€1, €2 — €3€q, €1 — €p¢€3, €0 — €0€2,

which is the morphism ©. The above construction shows that the sequence
(Un)n>0 is a fixed point of ©.
Now, define the map w on {0,1}2 by

w((z,y)=y—2t—b—1x+t—1.
We have w(v,) = my, for all n > 0. Thus

e if 2t > b+ 3, the sequence (my,),>0 takes exactly four distinct values,
namely b —¢,b —t + 1,¢t — 1,¢. This implies that (my,),>0 is the fixed
point beginning in ¢ of the morphism obtained from @ by renaming
the letters, i.e., e3 = t, eg — (t—1),e1 — (b—t+1), g — (b—1).
The morphism can thus be written ¢t — ¢ (b—t+1), (t—1) — ¢ (b—1),
b—t+1)—=b-t)t,(b—t)— (b—1t) (t—1);

o if 2t = b+ 2 (resp. 2t = b+ 1) the sequence (my,),>0 takes exactly
three (resp. two) values, namely b —t,t — 1,¢ (resp. t — 1,t). It is still
the pointwise image under © of the sequence (vy,)n>0. Renaming the
fixed point of © under g (resp. h) as in the statement of Theorem 2
only takes into account that the integers b—¢,b—t+1,¢t—1,¢ are not
distinct. m

REMARK 6. The reason for the choice of indices for ez, €9, €1, e is that
the order of indices is the same as the natural order on the integers ¢,¢t — 1,
b—t+ 1,b—t to which they correspond when 2t > b 4+ 3. In particular,
if b = t = 3, the morphism reads: 3 — 31, 2 — 30, 1 — 03, 0 — 02.
Interestingly enough, though not surprisingly, this morphism also occurs
(up to renaming the letters once more) in the study of infinite square-free
sequences on a 3-letter alphabet. Namely, in [9], Berstel proves that the
square-free Istrail sequence [15], originally defined (with no mention of the
Thue-Morse sequence) as the fixed point of the (nonuniform) morphism
0— 12,1 — 102, 2 — 0, is actually the pointwise image of the fixed point
beginning in 1 of a 2-morphism @’ on the 4-letter alphabet {0, 1,2, 3} under
the map 0 — 0, 1 — 1, 2 — 2, 3 — 0. The morphism @’ is given by

o'(0)=12, ©'(1)=13, 6O'(2)=20, 6©'(3)=21.

The reader will note immediately that ©' is another avatar of © obtained by
renaming letters as follows: 0 — 2, 1 — 3, 2 — 0, 3 — 1. This, in particular,
shows that the sequence (my)n>0, in the case where 2t = b+ 2, is the fized
point of the nonuniform morphismt — 1t (t—1) (b—1t), (t—1) =t (b—1t),
(b—t) — (t—1), i.e., an avatar of Istrail’s square-free sequence. Furthermore,
it follows from [9] that this sequence on three letters cannot be the fixed point
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of a uniform morphism. A last remark is that the square-free Braunholtz
sequence on three letters given in [10] (see also [9, p. 18-07]) is exactly our
sequence (Mmy,)n>0 whent = b = 2, i.e., the sequence210201210120 ...

3. Small admissible sequences and small univoque numbers
with given integer part

3.1. Small admissible sequences with values in {0,1,...,b}. In [18] the
authors are interested in the smallest admissible sequence with values in
{0,1,...,b}, where b is an integer > 1. They prove in particular the following
result, which is an immediate corollary of our Theorem 2.

COROLLARY 1 (Theorems 4.3 and 5.1 of [18]). Let b be an integer > 1.
The smallest admissible sequence with values in {0,1,...,b} is the sequence
(Z + 5n+1)n20 ifb=2z+1, and (Z +ent1 — 5n)n20 ifb=2z.

Proof. Let A = (an)n>0 be the smallest (nonconstant) admissible se-
quence with values in {0,1,...,b}. Since A > A, we must have ag > @y =
b—ag.

Thus, if b = 2z + 1 we have ag > z + 1. We also have, for all ¢ > 0,
ao < a; < ap. Now the smallest element of I'({b—z—1,b—z2,...,2—1,2z+1})
is the smallest admissible sequence on {0,1,...,b} that begins in z + 1.
Hence this is the smallest admissible sequence with values in {0,1,...,b}.
Theorem 2 shows that this sequence is (my,),>0 with m, = e,41 + 2 for all
n > 0.

If b = 2z, we have ag > z. But if ap = z, then ap = z, and the condition
of admissibility implies that a,, = z for all n > 0 and (ay)p>0 would be
the constant sequence (z z z...). Hence we must have ag > z + 1. Now
the smallest element of I'({b—2z—1,b—2,...,2— 1,2+ 1}) is the smallest
admissible sequence on {0,1,...,b} that begins in z + 1. Hence this is the
smallest admissible sequence with values in {0,1,...,b}. Theorem 2 implies
that this sequence is (my)n>0 with m, =e,41 —e, + 2z for alln > 0. u

3.2. Small univoque numbers with given integer part. We are interested
here in the univoque numbers A in an interval (b,b + 1] with b a positive
integer. This set was studied in [16], where it was proved to have Lebesgue
measure 0. Since 1 = 3. a;A"U) and A € (b,b+ 1], and ag < b, the
fact that the expansion of 1 is unique, hence equal to the greedy expansion,
implies that ag = b. In other words, we study the admissible sequences
with values in {0,1,...,b} that begin in b, i.e., the set I'sict({0,1,...,0}).
A corollary of Theorem 2 is that, for any positive integer b, there exists a
smallest univoque number belonging to (b,b + 1]. This result was obtained
in [22] (see the penultimate remark in that paper); it generalizes the result
obtained for b =1 in [17].
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COROLLARY 2. For any positive integer b, there exists a smallest univo-
que number in (b,b+1]. It is the solution of the equation1 =" o d, A7 L,
where dy, == epy1 — (b—1D)ep +b—1 for alln > 0.

Proof. It suffices to apply Theorem 2 with ¢ =b.

4. Transcendence results. We now prove, mimicking the proof given
in [3], that numbers A such that the A\-expansion of 1 is given by the sequence
(M )n>0 are transcendental. This generalizes the transcendence results of [3]
and [18].

THEOREM 3. Let b be an integer > 1 and t € [0,b] be an integer such
that 2t > b+ 1. Define the sequence (my)n>0 as in Theorem 2 by my,
=cepnt1 — 2t —=b—1De, +t—1 for all n > 0, thus (my)n>0 begins with
tb—t+1b—ttb—tt—1 .... Then the number A € (1,b+ 1) defined by
1= oomnA "1 is transcendental.

Proof. Define the £1 Thue-Morse sequence (ry,) by 7, := (—1)**. We
clearly have r, = 1 — 2¢, (recall that ¢, is 0 or 1). It is also immediate
that the function F' defined for the complex numbers X with |X| < 1 by
F(X) =350 X" satisfies F'(X) = [[50(1 — X2 (see, e.g., [6]). Since

2mp =241 — 22t —b—1)ey, +2t —2=b—rp 1 + 2t —0—-1)r,
we have, for | X| < 1,

X
2X 3 ma X" = (2t —b— )X — )F(X) + 1+ 1”_7)(
n>0

Taking X = 1/A where 1 =3_ - ma A", we get the equation

2= (2t —b—1)A" = )F(1/\) + 1+ %

Now, if A\ were algebraic, then this equation shows that F'(1/\) would be
an algebraic number. But, since 1/\ would then be an algebraic number
in (0,1), the quantity F'(1/)\) would be transcendental from a result of
Mabhler [19], giving a contradiction. =

REMARK 7. In particular the {0, 1,...,b}-univoque number correspond-
ing to the smallest admissible sequence with values in {0, 1,...,b} is tran-
scendental, as proved in [18] (Theorems 4.3 and 5.9). Also the smallest
univoque number belonging to (b,b 4+ 1) is transcendental.

5. Conclusion. There are many papers dealing with univoque numbers.
We just mention here the study of univoque Pisot numbers. The authors
together with K. G. Hare determined in [5] the smallest univoque Pisot
number, which happens to have algebraic degree 14. Note that the number
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corresponding to the sequence of Proposition 2 is the larger real root of the
polynomial X2 —tX — (b —t 4 1), hence a Pisot number (which is unitary
if t = b). Also note that for any b > 2, the real number [ such that the
[-expansion of 1 is b1°° is a univoque Pisot number in (b,b+1). It would be
interesting to determine the smallest univoque Pisot number in (b,b+1): the
case b = 1 was addressed in [5], but the proof uses heavily the fine structure
of Pisot numbers in (1,2) (see [8, 20, 21]). A similar study of Pisot numbers
in (b,b+ 1) would certainly help.

Acknowledgments. The authors thank M. de Vries and V. Komornik

for their remarks on a previous version of this paper.
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