Univoque numbers and an avatar of Thue–Morse

by

JEAN-PAUL ALLOUCHE (Orsay) and CHRISTIANE FROUGNY (Paris)

1. Introduction. Komornik and Loreti determined in [17] the smallest *univoque* real number in the interval (1, 2), i.e., the smallest number $\lambda \in (1, 2)$ such that 1 has a unique expansion $1 = \sum_{j\geq 0} a_j/\lambda^{j+1}$ with $a_j \in \{0, 1\}$ for every $j \geq 0$. The word "univoque" in this context seems to have been introduced (with a slightly different meaning) by Daróczy and Kátai in [12, 13], while unique expansions of the real number 1 were characterized by Erdős, Joó, and Komornik in [14]. The first author and Cosnard showed in [4] how the result of [17] parallels (and can be deduced from) their study of a certain set of binary sequences arising in the study of iterations of unimodal continuous functions on the unit interval (see [11, 2, 1]). The relevant sets of binary sequences occurring in [2, 1], resp. [17], can be defined by

$$\begin{split} & \Gamma := \{A \in \{0,1\}^{\mathbb{N}} : \forall k \geq 0, \ \overline{A} \leq \sigma^k A \leq A\}, \\ & \Gamma_{\text{strict}} := \{A \in \{0,1\}^{\mathbb{N}} : \forall k \geq 1, \ \overline{A} < \sigma^k A < A\}, \end{split}$$

where σ is the shift on sequences and the bar operation replaces 0's by 1's and 1's by 0's, i.e., if $A = (A_n)_{n\geq 0}$, then $\sigma A := (a_{n+1})_{n\geq 0}$ and $\overline{A} := (1-a_n)_{n\geq 0}$; furthermore, \leq denotes the lexicographical order on sequences induced by 0 < 1, the notation A < B meaning as usual that $A \leq B$ and $A \neq B$. The smallest univoque number in (1, 2) and the smallest nonperiodic sequence in Γ both involve the Thue–Morse sequence (see for example [6] for more on this sequence).

It is tempting to generalize these sets to alphabets with more than two letters.

DEFINITION 1. For *b* a positive integer, we will say that the real number $\lambda > 1$ is $\{0, 1, \ldots, b\}$ -univoque if the number 1 has a unique expansion as $1 = \sum_{j\geq 0} a_j \lambda^{-(j+1)}$, where $a_j \in \{0, 1, \ldots, b\}$ for all $j \geq 0$. Furthermore, if $\lambda > 1$ is $\{0, 1, \ldots, \lceil \lambda \rceil - 1\}$ -univoque, we will simply say that λ is univoque.

²⁰⁰⁰ Mathematics Subject Classification: 11A63, 11B83, 11B85, 68R15, 11J81.

Key words and phrases: beta-expansion, univoque numbers, iteration of continuous functions, Thue–Morse sequence, uniform morphism, automatic sequence, transcendence.

REMARK 1. If $\lambda > 1$ is $\{0, 1, \ldots, b\}$ -univoque for some positive integer b, then $\lambda \leq b + 1$. Also note that any integer $q \geq 2$ is univoque, since there is exactly one expansion $1 = \sum_{j\geq 0} a_j q^{-(j+1)}$ with $a_j \in \{0, 1, \ldots, q-1\}$, namely $1 = \sum_{j\geq 0} (q-1)q^{-(j+1)}$.

Komornik and Loreti studied in [18] the reals $\lambda \in (1, b + 1]$ that are $\{0, 1, \ldots, b\}$ -univoque. For their study, they introduced *admissible sequences* on the alphabet $\{0, 1, \ldots, b\}$. Denote, as above, by σ the shift on sequences, and by bar the operation that replaces every $t \in \{0, 1, \ldots, b\}$ by b - t, i.e., if $A = (a_n)_{n \ge 0}$, then $\overline{A} := (b - a_n)_{n \ge 0}$. Also denote by \leq the lexicographical order on sequences induced by the natural order on $\{0, 1, \ldots, b\}$. Then a sequence $A = (a_n)_{n \ge 0}$ on $\{0, 1, \ldots, b\}$ is *admissible* if

$$\forall k \ge 0 \text{ such that } a_k < b, \quad \sigma^{k+1}A < A, \\ \forall k \ge 0 \text{ such that } a_k > 0, \quad \sigma^{k+1}A > \overline{A}.$$

(Note that our notation is not exactly the notation of [18], since our sequences are indexed by N and not $\mathbb{N}\setminus\{0\}$.) These sequences have the following property: the map that associates with a real $\lambda \in (1, b+1]$ the sequence of coefficients $(a_j)_{j\geq 0} \in \{0, 1, \ldots, b\}$ of the greedy (i.e., lexicographically largest) expansion of $1, 1 = \sum_{j\geq 0} a_j \lambda^{-(j+1)}$, is a bijection from the set of $\{0, 1, \ldots, b\}$ -univoque λ 's to the set of admissible sequences on $\{0, 1, \ldots, b\}$ (see [18]).

Now there are two possible generalizations of the result of [17] on the smallest univoque number in (1, 2), i.e., the smallest admissible binary sequence. One is to look at the smallest (if any) admissible sequence on the alphabet $\{0, 1, \ldots, b\}$, as did Komornik and Loreti in [18], the other is to look at the smallest (if any) univoque number in (b, b + 1), as did de Vries and Komornik in [22].

It so happens that the first author has already studied a generalization of the set Γ to the case of more than two letters (see [1, Part 3]). Interestingly enough, unlike the study of Γ , this study was unrelated to iterations of continuous functions, being just a tempting formal arithmetico-combinatorial generalization of the study of the set Γ of binary sequences to a similar set of sequences with more than two values.

The purpose of the present paper is threefold:

(1) to show how the 1983 study [1, Part 3, pp. 63–90] gives both the result of Komornik and Loreti in [18] on the smallest admissible sequence on $\{0, 1, \ldots, b\}$, and the result of de Vries and Komornik in [22] on the smallest univoque number $\lambda \in (b, b+1)$ where b is any positive integer;

(2) to bring to light a *universal* morphism that governs the smallest elements in (1) above, and to show that the infinite sequence generated by this morphism is an avatar of the Thue–Morse sequence;

(3) to prove that the smallest univoque number in (b, b + 1) (where b is any positive integer) is transcendental.

The paper consists of five sections. In Section 2 we recall some results of [1, Part 3, pp. 63–90] on the generalization of the set Γ to a (b + 1)-letter alphabet. Then we give some properties of the lexicographically least nonperiodic sequence of this set, completing the results of [1, Part 3, pp. 63–90]. In Section 3 we give two corollaries of the properties of this least sequence: one gives the result in [18], the other gives the result in [22]. The transcendence results are proven in the last section.

2. The generalized Γ and Γ_{strict} sets

DEFINITION 2. Let b be a positive integer, and \mathcal{A} be a finite ordered set with b + 1 elements $\alpha_0 < \alpha_1 < \cdots < \alpha_b$. The bar operation is defined on \mathcal{A} by $\overline{\alpha}_j = \alpha_{b-j}$. We extend this operation to $\mathcal{A}^{\mathbb{N}}$ by $\overline{(a_n)}_{n\geq 0} := (\overline{a}_n)_{n\geq 0}$. Let σ be the shift on $\mathcal{A}^{\mathbb{N}}$, defined by $\sigma((a_n)_{n\geq 0}) := (a_{n+1})_{n\geq 0}$.

We define

$$\Gamma(\mathcal{A}) := \{ A = (a_n)_{n \ge 0} \in \mathcal{A}^{\mathbb{N}} : a_0 = \max \mathcal{A}, \, \forall k \ge 0, \, \overline{A} \le \sigma^k A \le A \}, \\ \Gamma_{\text{strict}}(\mathcal{A}) := \{ A = (a_n)_{n \ge 0} \in \mathcal{A}^{\mathbb{N}} : a_0 = \max \mathcal{A}, \, \forall k \ge 1, \, \overline{A} < \sigma^k A < A \}.$$

REMARK 2. The set $\Gamma(\mathcal{A})$ was introduced by the first author in [1, Part 3, p. 63]. Note that there is a misprint in the definition on p. 66 in [1]: $a_{\beta-i}$ should be changed into $a_{\beta-1-i}$ as confirmed by the rest of the text.

REMARK 3. A sequence belongs to $\Gamma_{\text{strict}}(\mathcal{A})$ if and only if it belongs to $\Gamma(\mathcal{A})$ and is nonperiodic. Indeed, $\sigma^k A = A$ if and only if A is k-periodic; if $\sigma^k A = \overline{A}$, then $\sigma^{2k} A = A$, and the sequence A is 2k-periodic.

REMARK 4. If the set $\mathcal{A} := \{i, i+1, \ldots, i+z\}$, where *i* and *z* are integers, is equipped with the natural order, then for any $x \in \mathcal{A}$, we have $\overline{x} = 2i+z-x$. Indeed, following Definition 2 above, we write $\alpha_0 := i, \alpha_1 := i+1, \ldots, \alpha_z :=$ i+z. Hence, for any $j \in [0, z]$, we have $\overline{\alpha}_j = \alpha_{z-j}$, which can be rewritten $\overline{i+j} = i+z-j$, i.e., for any x in \mathcal{A} , we have $\overline{x} = i+z-(x-i)=2i+z-x$.

A first result is that the sets $\Gamma_{\text{strict}}(\mathcal{A})$ are closely linked to the set of admissible sequences whose definition was recalled in the introduction.

PROPOSITION 1. Let $A = (a_n)_{n\geq 0}$ be a sequence in $\{0, 1, \ldots, b\}^{\mathbb{N}}$ such that $a_0 = t \in [0, b]$ and $A \neq b \ b \ b \ \ldots$. Then A is admissible if and only if 2t > b and $A \in \Gamma_{\text{strict}}(\{b-t, b-t+1, \ldots, t\})$. (The order on $\{b-t, b-t+1, \ldots, t\}$ is induced by the order on \mathbb{N} . From Remark 4 the bar operation is given by $\overline{j} = b - j$.)

Proof. First suppose that 2t > b and $A \in \Gamma_{\text{strict}}(\{b-t, b-t+1, \ldots, t\})$. Then, for all $k \ge 1$, $\overline{A} < \sigma^k A < A$, which clearly implies that A is admissible. Conversely, suppose that A is admissible. We thus have

$$\forall k \ge 1 \text{ such that } a_{k-1} < b, \quad \sigma^k A < A, \\ \forall k \ge 1 \text{ such that } a_{k-1} > 0, \quad \sigma^k A > \overline{A}.$$

We first prove that if A is not a constant sequence, then

$$\forall k \ge 1, \quad \overline{A} < \sigma^k A < A.$$

We only prove that $\sigma^k A < A$; the remaining inequalities are proved in a similar way. If $a_{k-1} < b$, then $\sigma^k A < A$. If $a_{k-1} = b$, there are two cases: either

- $a_0 = a_1 = \cdots = a_{k-1} = b$; then if $a_k < b$ we clearly have $\sigma^k A < A$; if $a_k = b$, then the sequence $\sigma^k A$ begins with some block of b's followed by a letter < b, thus it begins with a block of b's shorter than the initial block of b's in A, hence $\sigma^k A < A$; or
- there exists an index ℓ with $1 < \ell < k$ such that $a_{\ell-1} < b$ and $a_{\ell} = a_{\ell+1} = \cdots = a_{k-1} = b$. As A is admissible, we have $\sigma^{\ell}A < A$. It thus suffices to prove that $\sigma^k A \leq \sigma^\ell A$. This is clearly the case if $a_k < b$. On the other hand, if $a_k = b$, the sequence $\sigma^k A$ begins with a block of b's which is shorter than the initial block of b's in $\sigma^\ell A$, hence $\sigma^k A \leq \sigma^\ell A$.

Now, since $a_0 = t$ and $\sigma^k A < A$ for all $k \ge 1$, we have $a_k \le t$ for all $k \ge 0$. Similarly, since $\sigma^k A > \overline{A}$ for all $k \ge 1$, we have $a_k \ge b - t$ for all $k \ge 1$. Finally, $A > \overline{A}$ implies that $t = a_0 \ge b - t$. Thus $2t \ge b$ and $A \in \Gamma(\{b-t, b-t+1, \ldots, t\})$. Now, if b = 2t, then $\{b-t, b-t+1, \ldots, t\} = \{t\}$ and $\overline{t} = t$. This implies that $A = t \ t \ t \ \ldots$, which is not an admissible sequence.

REMARK 5. For b = 1, this (easy) result is given without proof in [14] and proved in [4].

We need another definition from [1].

DEFINITION 3. Let b be a positive integer, and \mathcal{A} be a finite ordered set with b + 1 elements $\alpha_0 < \alpha_1 < \cdots < \alpha_b$. We suppose that \mathcal{A} is equipped with a bar operation as in Definition 2. Let $A = (a_n)_{n\geq 0}$ be a periodic sequence of *smallest* period T, and with $a_{T-1} < \max \mathcal{A}$. Let $a_{T-1} = \alpha_j$ (thus j < b). Then $\Phi(A)$ is the 2T-periodic sequence beginning with $a_0 a_1 \ldots a_{T-2} \alpha_{j+1} \overline{a_0} \overline{a_1} \ldots \overline{a_{T-2}} \alpha_{b-j-1}$, i.e.,

 $\Phi((a_0 \ a_1 \ \dots \ a_{T-2} \ \alpha_j)^{\infty}) := (a_0 \ a_1 \ \dots \ a_{T-2} \ \alpha_{j+1} \ \overline{a}_0 \ \overline{a}_1 \ \dots \ \overline{a}_{T-2} \ \alpha_{b-j-1})^{\infty}.$

We first prove the following easy claim.

PROPOSITION 2. The smallest element of $\Gamma(\{b-t, b-t+1, \ldots, t\})$ (where 2t > b) is the 2-periodic sequence $(t \ (b-t))^{\infty} = (t \ (b-t) \ t \ (b-t) \ t \ \ldots)$.

Proof. Since any sequence $A = (a_n)_{n\geq 0}$ in $\Gamma(\{b-t, b-t+1, \ldots, t\})$ begins in t, and satisfies $\sigma A \geq \overline{A}$, it must satisfy $a_0 = t$ and $a_1 \geq b-t$. Now if $a_0 = t$ and $a_1 = b-t$, then A must be the 2-periodic sequence $(t \ (b-t))^{\infty}$ ([1, Lemma 2b, p. 73]). Since this periodic sequence trivially belongs to $\Gamma(\{b-t, b-t+1, \ldots, t\})$, it is its smallest element.

Denoting as usual by Φ^s the *s*th iterate of Φ , we state the following theorem which is a particular case of the theorem on pp. 72–73 of [1] about the smallest elements in certain subintervals of $\Gamma(\{0, 1, \ldots, b\})$, and of the definition of *q*-mirror sequences given in [1, Section II, 1, p. 67] (here q = 2).

THEOREM 1 ([1]). Define $P := (t \ (b-t))^{\infty} = (t \ (b-t) \ t \ (b-t) \ t \ \dots)$. The smallest nonperiodic sequence in $\Gamma(\{b-t, b-t+1, \dots, t\})$ (i.e., the smallest element of $\Gamma_{\text{strict}}(\{b-t, b-t+1, \dots, t\})$) is the sequence

$$M := \lim_{s \to \infty} \Phi^s(P),$$

that actually takes the (not necessarily distinct) values b-t, b-t+1, t-1, t. Furthermore, this sequence

$$M = (m_n)_{n>0} = t \ b - t + 1 \ b - t \ t \ b - t \ t - 1 \dots$$

can be recursively defined by

$$\begin{aligned} \forall k \ge 0, \quad m_{2^{2k}-1} &= t, \\ \forall k \ge 0, \quad m_{2^{2k+1}-1} &= b+1-t, \\ \forall k \ge 0, \ \forall j \in [0, 2^{k+1}-2], \qquad m_{2^{k+1}+j} &= \overline{m}_j. \end{aligned}$$

It was proven in [1] that the sequence $\lim_{s\to\infty} \Phi^s((t \ (b-t))^\infty)$ is 2automatic (for more about automatic sequences, see [7]). The second author noted that this sequence is actually a fixed point of a uniform morphism of length 2 as soon as the cardinality of the set $\{b-t, b-t+1, \ldots, b\}$ is at least 4, i.e., $2t \ge b+3$. (Recall that we always have $t \ge b-t$, i.e., $2t \ge b$.) More precisely, we have Theorem 2 below, where the Thue–Morse sequence pops up, as in [1] and in [18], but also as in [2] and [17]. Before stating this theorem we give a definition.

DEFINITION 4. The "universal" morphism Θ is defined on $\{e_0, e_1, e_2, e_3\}$ by

$$\Theta(e_3) := e_3 e_1, \quad \Theta(e_2) := e_3 e_0, \quad \Theta(e_1) := e_0 e_3, \quad \Theta(e_0) := e_0 e_2.$$

Note that this morphism has an infinite fixed point beginning in e_3 ,

$$\Theta^{\infty}(e_3) = \lim_{k \to \infty} \Theta^k(e_3) = e_3 \ e_1 \ e_0 \ e_3 \ e_0 \ e_2 \ e_3 \ e_1 \ e_0 \ e_2 \dots$$

THEOREM 2. Let $(\varepsilon_n)_{n\geq 0}$ be the Thue–Morse sequence defined by $\varepsilon_0 = 0$ and $\varepsilon_{2k} = \varepsilon_k$ and $\varepsilon_{2k+1} = 1 - \varepsilon_k$ for all $k \geq 0$. Then the smallest nonperiodic sequence $M = (m_n)_{n\geq 0}$ in $\Gamma(\{b-t, b-t+1, \ldots, t\})$ satisfies

 $\forall n \ge 0, \quad m_n = \varepsilon_{n+1} - (2t - b - 1)\varepsilon_n + t - 1.$

Using the morphism Θ introduced in Definition 4 above we thus have:

- if 2t ≥ b + 3, then M is the fixed point beginning in t of the morphism deduced from Θ by renaming e₀, e₁, e₂, e₃ respectively b − t, b − t + 1, t − 1, t (note that the condition 2t ≥ b + 3 implies that these four numbers are distinct);
- if 2t = b + 2 (thus b t + 1 = t 1), then M is the pointwise image of the fixed point beginning in e_3 of the morphism Θ under the map gdefined by $g(e_3) := t$, $g(e_2) = g(e_1) := t - 1$, $g(e_0) := b - t$;
- if 2t = b + 1 (thus b − t = t − 1 and b − t + 1 = t), then M is the pointwise image of the fixed point beginning in e₃ of the morphism Θ under the map h defined by h(e₃) = h(e₁) := t, h(e₂) = h(e₀) := t − 1.

Proof. Let us first prove that the sequence $M = (m_n)_{n\geq 0}$ is equal to the sequence $(u_n)_{n\geq 0}$, where $u_n := \varepsilon_{n+1} - (2t - b - 1)\varepsilon_n + t - 1$. It suffices to prove that $(u_n)_{n\geq 0}$ satisfies the recursive relations defining $(m_n)_{n\geq 0}$ that are given in Theorem 1. Recall that ε_n is equal to the parity of the sum of the binary digits of n (see [6] for example). Hence, for all $k \geq 0$, $\varepsilon_{2^{2k}-1}$ = 0, $\varepsilon_{2^{2k+1}-1} = 1$, and $\varepsilon_{2^{2k}} = \varepsilon_{2^{2k+1}} = 1$. This implies that for all $k \geq 0$, $u_{2^{2k}-1} = t$ and $u_{2^{2k+1}-1} = b + 1 - t$. Furthermore, for all $k \geq 0$ and $j \in$ $[0, 2^{k+1} - 2]$, we have $\varepsilon_{2^{k+1}+j} = 1 - \varepsilon_j$ and $\varepsilon_{2^{k+1}+j+1} = 1 - \varepsilon_{j+1}$. Hence $u_{2^{k+1}+j} = b - u_j = \overline{u}_j$.

To show how the "universal" morphism Θ enters the picture, we study the sequence $(v_n)_{n\geq 0}$ with values in $\{0,1\}^2$ defined by $v_n := (\varepsilon_n, \varepsilon_{n+1})$ for all $n \geq 0$. Since $v_{2n} = (\varepsilon_n, 1 - \varepsilon_n)$ and $v_{2n+1} = (1 - \varepsilon_n, \varepsilon_{n+1})$ for all $n \geq 0$, we clearly have

if
$$v_n = (0,0)$$
, then $v_{2n} = (0,1)$ and $v_{2n+1} = (1,0)$,
if $v_n = (0,1)$, then $v_{2n} = (0,1)$ and $v_{2n+1} = (1,1)$,
if $v_n = (1,0)$, then $v_{2n} = (1,0)$ and $v_{2n+1} = (0,0)$,
if $v_n = (1,1)$, then $v_{2n} = (1,0)$ and $v_{2n+1} = (0,1)$.

This exactly means that $(v_n)_{n\geq 0}$ is the fixed point beginning in (0,1) of the 2-morphism

$$\begin{array}{l} (0,0) \rightarrow (0,1)(1,0), \\ (0,1) \rightarrow (0,1)(1,1), \\ (1,0) \rightarrow (1,0)(0,0), \\ (1,1) \rightarrow (1,0)(0,1). \end{array}$$

We may define $e_0 := (1,0), e_1 := (1,1), e_2 := (0,0), e_3 := (0,1)$. Then the above morphism can be written

$$e_3 \rightarrow e_3 e_1, \quad e_2 \rightarrow e_3 e_0, \quad e_1 \rightarrow e_0 e_3, \quad e_0 \rightarrow e_0 e_2,$$

which is the morphism Θ . The above construction shows that the sequence $(v_n)_{n>0}$ is a fixed point of Θ .

Now, define the map ω on $\{0,1\}^2$ by

$$\omega((x,y)) := y - (2t - b - 1)x + t - 1.$$

We have $\omega(v_n) = m_n$ for all $n \ge 0$. Thus

- if $2t \ge b+3$, the sequence $(m_n)_{n\ge 0}$ takes exactly four distinct values, namely b-t, b-t+1, t-1, t. This implies that $(m_n)_{n\ge 0}$ is the fixed point beginning in t of the morphism obtained from Θ by renaming the letters, i.e., $e_3 \to t$, $e_2 \to (t-1)$, $e_1 \to (b-t+1)$, $e_0 \to (b-t)$. The morphism can thus be written $t \to t \ (b-t+1), \ (t-1) \to t \ (b-t),$ $(b-t+1) \to (b-t) t, \ (b-t) \to (b-t) \ (t-1);$
- if 2t = b + 2 (resp. 2t = b + 1) the sequence $(m_n)_{n \ge 0}$ takes exactly three (resp. two) values, namely b t, t 1, t (resp. t 1, t). It is still the pointwise image under Θ of the sequence $(v_n)_{n \ge 0}$. Renaming the fixed point of Θ under g (resp. h) as in the statement of Theorem 2 only takes into account that the integers b t, b t + 1, t 1, t are not distinct.

REMARK 6. The reason for the choice of indices for e_3, e_2, e_1, e_0 is that the order of indices is the same as the natural order on the integers t, t-1, b-t+1, b-t to which they correspond when $2t \ge b+3$. In particular, if b = t = 3, the morphism reads: $3 \rightarrow 31, 2 \rightarrow 30, 1 \rightarrow 03, 0 \rightarrow 02$. Interestingly enough, though not surprisingly, this morphism also occurs (up to renaming the letters once more) in the study of infinite square-free sequences on a 3-letter alphabet. Namely, in [9], Berstel proves that the square-free Istrail sequence [15], originally defined (with no mention of the Thue-Morse sequence) as the fixed point of the (nonuniform) morphism $0 \rightarrow 12, 1 \rightarrow 102, 2 \rightarrow 0$, is actually the pointwise image of the fixed point beginning in 1 of a 2-morphism Θ' on the 4-letter alphabet $\{0, 1, 2, 3\}$ under the map $0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 0$. The morphism Θ' is given by

$$\Theta'(0) = 12, \quad \Theta'(1) = 13, \quad \Theta'(2) = 20, \quad \Theta'(3) = 21.$$

The reader will note immediately that Θ' is another avatar of Θ obtained by renaming letters as follows: $0 \to 2, 1 \to 3, 2 \to 0, 3 \to 1$. This, in particular, shows that the sequence $(m_n)_{n\geq 0}$, in the case where 2t = b + 2, is the fixed point of the nonuniform morphism $t \to t$ (t-1) (b-t), $(t-1) \to t$ (b-t), $(b-t) \to (t-1)$, i.e., an avatar of Istrail's square-free sequence. Furthermore, it follows from [9] that this sequence on three letters cannot be the fixed point of a uniform morphism. A last remark is that the square-free Braunholtz sequence on three letters given in [10] (see also [9, p. 18-07]) is exactly our sequence $(m_n)_{n>0}$ when t = b = 2, i.e., the sequence $2 \ 1 \ 0 \ 2 \ 0 \ 1 \ 2 \ 1 \ 0 \ 1 \ 2 \ 0 \dots$

3. Small admissible sequences and small univoque numbers with given integer part

3.1. Small admissible sequences with values in $\{0, 1, \ldots, b\}$. In [18] the authors are interested in the smallest admissible sequence with values in $\{0, 1, \ldots, b\}$, where b is an integer ≥ 1 . They prove in particular the following result, which is an immediate corollary of our Theorem 2.

COROLLARY 1 (Theorems 4.3 and 5.1 of [18]). Let b be an integer ≥ 1 . The smallest admissible sequence with values in $\{0, 1, \ldots, b\}$ is the sequence $(z + \varepsilon_{n+1})_{n\geq 0}$ if b = 2z + 1, and $(z + \varepsilon_{n+1} - \varepsilon_n)_{n\geq 0}$ if b = 2z.

Proof. Let $A = (a_n)_{n \ge 0}$ be the smallest (nonconstant) admissible sequence with values in $\{0, 1, \ldots, b\}$. Since $A > \overline{A}$, we must have $a_0 \ge \overline{a}_0 = b - a_0$.

Thus, if b = 2z + 1 we have $a_0 \ge z + 1$. We also have, for all $i \ge 0$, $\overline{a}_0 \le a_i \le a_0$. Now the smallest element of $\Gamma(\{b-z-1, b-z, \ldots, z-1, z+1\})$ is the smallest admissible sequence on $\{0, 1, \ldots, b\}$ that begins in z + 1. Hence this is the smallest admissible sequence with values in $\{0, 1, \ldots, b\}$. Theorem 2 shows that this sequence is $(m_n)_{n\ge 0}$ with $m_n = \varepsilon_{n+1} + z$ for all $n \ge 0$.

If b = 2z, we have $a_0 \ge z$. But if $a_0 = z$, then $\overline{a}_0 = z$, and the condition of admissibility implies that $a_n = z$ for all $n \ge 0$ and $(a_n)_{n\ge 0}$ would be the constant sequence $(z \ z \ z \dots)$. Hence we must have $a_0 \ge z + 1$. Now the smallest element of $\Gamma(\{b-z-1, b-z, \dots, z-1, z+1\})$ is the smallest admissible sequence on $\{0, 1, \dots, b\}$ that begins in z + 1. Hence this is the smallest admissible sequence with values in $\{0, 1, \dots, b\}$. Theorem 2 implies that this sequence is $(m_n)_{n\ge 0}$ with $m_n = \varepsilon_{n+1} - \varepsilon_n + z$ for all $n \ge 0$.

3.2. Small univoque numbers with given integer part. We are interested here in the univoque numbers λ in an interval (b, b + 1] with b a positive integer. This set was studied in [16], where it was proved to have Lebesgue measure 0. Since $1 = \sum_{j\geq 0} a_j \lambda^{-(j+1)}$ and $\lambda \in (b, b+1]$, and $a_0 \leq b$, the fact that the expansion of 1 is unique, hence equal to the greedy expansion, implies that $a_0 = b$. In other words, we study the admissible sequences with values in $\{0, 1, \ldots, b\}$ that begin in b, i.e., the set $\Gamma_{\text{strict}}(\{0, 1, \ldots, b\})$. A corollary of Theorem 2 is that, for any positive integer b, there exists a smallest univoque number belonging to (b, b + 1]. This result was obtained in [22] (see the penultimate remark in that paper); it generalizes the result obtained for b = 1 in [17].

COROLLARY 2. For any positive integer b, there exists a smallest univoque number in (b, b+1]. It is the solution of the equation $1 = \sum_{n\geq 0} d_n \lambda^{-n-1}$, where $d_n := \varepsilon_{n+1} - (b-1)\varepsilon_n + b - 1$ for all $n \geq 0$.

Proof. It suffices to apply Theorem 2 with t = b.

4. Transcendence results. We now prove, mimicking the proof given in [3], that numbers λ such that the λ -expansion of 1 is given by the sequence $(m_n)_{n\geq 0}$ are transcendental. This generalizes the transcendence results of [3] and [18].

THEOREM 3. Let b be an integer ≥ 1 and $t \in [0, b]$ be an integer such that $2t \geq b + 1$. Define the sequence $(m_n)_{n\geq 0}$ as in Theorem 2 by m_n := $\varepsilon_{n+1} - (2t - b - 1)\varepsilon_n + t - 1$ for all $n \geq 0$, thus $(m_n)_{n\geq 0}$ begins with $t \ b - t + 1 \ b - t \ t \ b - t \ t - 1 \ \dots$ Then the number $\lambda \in (1, b + 1)$ defined by $1 = \sum_{n\geq 0} m_n \lambda^{-n-1}$ is transcendental.

Proof. Define the ± 1 Thue–Morse sequence (r_n) by $r_n := (-1)^{\varepsilon_n}$. We clearly have $r_n = 1 - 2\varepsilon_n$ (recall that ε_n is 0 or 1). It is also immediate that the function F defined for the complex numbers X with |X| < 1 by $F(X) = \sum_{n\geq 0} r_n X^n$ satisfies $F(X) = \prod_{k\geq 0} (1 - X^{2^k})$ (see, e.g., [6]). Since $2m_n = 2\varepsilon_{n+1} - 2(2t - b - 1)\varepsilon_n + 2t - 2 = b - r_{n+1} + (2t - b - 1)r_n$

we have, for |X| < 1,

$$2X\sum_{n\geq 0}m_nX^n = ((2t-b-1)X-1)F(X) + 1 + \frac{bX}{1-X}$$

Taking $X = 1/\lambda$ where $1 = \sum_{n \ge 0} m_n \lambda^{-n-1}$, we get the equation

$$2 = ((2t - b - 1)\lambda^{-1} - 1)F(1/\lambda) + 1 + \frac{b}{\lambda - 1}$$

Now, if λ were algebraic, then this equation shows that $F(1/\lambda)$ would be an algebraic number. But, since $1/\lambda$ would then be an algebraic number in (0,1), the quantity $F(1/\lambda)$ would be transcendental from a result of Mahler [19], giving a contradiction.

REMARK 7. In particular the $\{0, 1, \ldots, b\}$ -univoque number corresponding to the smallest admissible sequence with values in $\{0, 1, \ldots, b\}$ is transcendental, as proved in [18] (Theorems 4.3 and 5.9). Also the smallest univoque number belonging to (b, b + 1) is transcendental.

5. Conclusion. There are many papers dealing with univoque numbers. We just mention here the study of univoque Pisot numbers. The authors together with K. G. Hare determined in [5] the smallest univoque Pisot number, which happens to have algebraic degree 14. Note that the number

corresponding to the sequence of Proposition 2 is the larger real root of the polynomial $X^2 - tX - (b - t + 1)$, hence a Pisot number (which is unitary if t = b). Also note that for any $b \ge 2$, the real number β such that the β -expansion of 1 is $b1^{\infty}$ is a univoque Pisot number in (b, b+1). It would be interesting to determine the smallest univoque Pisot number in (b, b+1): the case b = 1 was addressed in [5], but the proof uses heavily the fine structure of Pisot numbers in (1, 2) (see [8, 20, 21]). A similar study of Pisot numbers in (b, b+1) would certainly help.

Acknowledgments. The authors thank M. de Vries and V. Komornik for their remarks on a previous version of this paper.

References

- J.-P. Allouche, *Théorie des Nombres et Automates*, Thèse d'État, Bordeaux, 1983, http://tel.archives-ouvertes.fr/tel-00343206/fr/.
- [2] J.-P. Allouche et M. Cosnard, Itérations de fonctions unimodales et suites engendrées par automates, C. R. Acad. Sci. Paris Sér. I 296 (1983), 159–162.
- [3] —, —, The Komornik-Loreti constant is transcendental, Amer. Math. Monthly 107 (2000), 448–449.
- [4] —, —, Non-integer bases, iteration of continuous real maps, and an arithmetic selfsimilar set, Acta Math. Hungar. 91 (2001), 325–332.
- [5] J.-P. Allouche, Ch. Frougny and K. Hare, On univoque Pisot numbers, Math. Comp. 76 (2007), 1639–1660.
- J.-P. Allouche and J. Shallit, *The ubiquitous Prouhet-Thue-Morse sequence*, in: C. Ding *et al.* (eds.), Sequences and Their Applications (Singapore, 1998), Springer, 1999, 1–16.
- [7] —, —, Automatic Sequences. Theory, Applications, Generalizations, Cambridge Univ. Press, Cambridge, 2003.
- [8] M. Amara, Ensembles fermés de nombres algébriques, Ann. Sci. École Norm. Sup. 83 (1966), 215–270.
- J. Berstel, Sur la construction de mots sans carré, Sém. Théor. Nombres Bordeaux (1978–1979), Exp. 18, 18-01–18-15.
- [10] C. H. Braunholtz, An infinite sequence on 3 symbols with no adjacent repeats (Solution to Problem 439 posed by H. Noland), Amer. Math. Monthly 70 (1963), 675–676.
- M. Cosnard, Etude de la classification topologique des fonctions unimodales, Ann. Inst. Fourier (Grenoble) 35 (1985), 59–77.
- [12] Z. Daróczy and I. Kátai, Univoque sequences, Publ. Math. Debrecen 42 (1993), 397–407.
- [13] —, —, On the structure of univoque numbers, ibid. 46 (1995), 385–408.
- [14] P. Erdős, I. Joó and V. Komornik, *Characterization of the unique expansions* $1 = \sum_{i=1}^{\infty} q^{-n_i}$, and related problems, Bull. Soc. Math. France 118 (1990), 377–390.
- S. Istrail, On irreductible [sic] languages and nonrational numbers, Bull. Math. Soc. Sci. Math. R. S. Roumanie 21 (1977), 301–308.
- [16] I. Kátai and G. Kallós, On the set for which 1 is univoque, Publ. Math. Debrecen 58 (2001), 743–750.
- [17] V. Komornik and P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998), 636–639.

- [18]V. Komornik and P. Loreti, Subexpansions, superexpansions and uniqueness properties in non-integer bases, Period. Math. Hungar. 44 (2002), 197-218.
- K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktional-[19]gleichungen, Math. Ann. 101 (1929), 342–366; Corrigendum, ibid. 103 (1930), 532.
- [20]F. L. Talmoudi, Sur les nombres de $S \cap [1, 2]$, C. R. Acad. Sci. Paris Sér. Math. 285 (1977), 969-971.
- [21]-, Sur les nombres de $S \cap [1, 2]$, ibid. 287 (1978), 739-741.
- [22]M. de Vries and V. Komornik, Unique expansions of real numbers, preprint, 2007, http://arxiv.org/abs/math/0609708v3.

CNRS, LRI, UMR 8623 LIAFA, CNRS UMR 7089 Université Paris-Sud, Bâtiment 490 Case 7014 F-91405 Orsay Cedex, France F-75205 Paris Cedex 13, France E-mail: allouche@lri.fr Université Paris 8

> Received on 9.11.2007 and in revised form on 5.10.2008 (5571)

E-mail: Christiane.Frougny@liafa.jussieu.fr

329

and