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On Hilbert–Speiser type imaginary quadratic fields
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1. Introduction. Let p be a prime number. A number field F satisfies
the Hilbert–Speiser condition (Hp) when any tame cyclic extension N/F
of degree p has a normal integral basis. By the classical Hilbert–Speiser
theorem, the rationals Q satisfy (Hp) for all p. On the other hand, Greither
et al. [3] proved that a number field F 6= Q does not satisfy (Hp) for infinitely
many p using a theorem of McCulloh [8]. Thus, it is of interest which number
fields F satisfy (Hp).

In this paper, we deal with imaginary quadratic fields and determine
those satisfying (Hp) for each p. When p = 2, 3, 5, 7 or 11, all imaginary
quadratic fields F satisfying (Hp) were determined in [2, 5, 7]. The number
of such F is 3, 4, 2, 1 and 0, respectively. Therefore, it suffices to deal with
the case p ≥ 13. Our result is the following:

Theorem. For any prime number p ≥ 13, there exists no imaginary
quadratic field satisfying the condition (Hp).

2. Some known results. In this section, we recall several results which
are necessary to prove the Theorem. First, we recall the theorem of McCul-
loh [8] mentioned in Section 1. Let p be a prime number, and Γ = (Z/p)+
and G = (Z/p)× be the additive group and the multiplicative group of the
finite field Z/p, respectively. For a number field F , let Cl(OFΓ ) be the lo-
cally free class group of the group ring OFΓ , OF being the ring of integers
of F , and let R(OFΓ ) be the subset consisting of the locally free classes
[ON ] for all tame Γ extensions N/F . As Γ is an abelian group, F satisfies
(Hp) if and only if R(OFΓ ) = {0}. Let SG be the classical Stickelberger
ideal of the group ring ZG associated to the abelian extension Q(ζp)/Q. For
the definition, see [10, Chapter 6]. Through the natural action of G on Γ ,

2000 Mathematics Subject Classification: 11R33, 11R11.
Key words and phrases: Hilbert–Speiser number field, imaginary quadratic field.

DOI: 10.4064/aa136-4-5 [385] c© Instytut Matematyczny PAN, 2009



386 H. Ichimura and H. Sumida-Takahashi

the group ring ZG acts on Cl(OFΓ ). Then we have

(1) R(OFΓ ) = Cl(OFΓ )SG .

This theorem of McCulloh plays a crucial role in studying Hilbert–Speiser
number fields.

In the following, let F be an imaginary quadratic field, and let χF be
the associated quadratic character. The following is a consequence of [3,
Theorem 1].

Lemma 1 (cf. [7, Lemma 2]). Let p ≥ 7. If F satisfies (Hp), then χF (p)
= 1.

We put K = F (ζp) where ζp is a primitive pth root of unity. When
χF (p) = 1, we can identify the Galois group Gal(K/F ) with G = (Z/p)×
through the Galois action on ζp. Hence, the group ring ZG acts on several
objects associated to K. For a number field N and an integer α ∈ ON , let
ClN,α be the ray class group of N defined modulo the principal ideal αON .
In particular, ClN = ClN,1 is the absolute class group of N , and hN = |ClN |
is the class number of N . Let π = ζp − 1. The following is an immediate
consequence of (1) combined with [1, Proposition 2.2].

Lemma 2 (cf. [7, Proposition 5]). When χF (p) = 1, F satisfies (Hp) if
and only if SG annihilates the ray class group ClK,π.

Using Lemmas 1 and 2, we proved the following assertion in [6].

Lemma 3. If F satisfies (Hp), then hF = 1.

3. Proof of the Theorem. In all the following, let F be an imaginary
quadratic field with χF (p) = 1 and hF = 1. Let k = Q(ζp), K = F · k and
K0 = F · k+ where k+ is the maximal real subfield of k. Let EK = O×K be
the group of units of K.

Lemma 4. In the above setting , assume that F satisfies (Hp). Let A be
an ideal of K0 relatively prime to p. Then there exists an element α ∈ F×
such that NK0/FA = αOF and α ≡ ε mod π for some unit ε ∈ EK .

Proof. As hF = 1, we have NK0/FA = αOF for some α ∈ F×. Let σi = ī
be the element of G = Gal(K/F ) = (Z/p)× corresponding to an integer
i ∈ Z with p - i. Put

θ2 =
p−1∑
i=1

[
2i
p

]
σ−1
i =

p−1∑
i=(p+1)/2

σ−1
i ∈ ZG,

which belongs to the Stickelberger ideal SG (see [10, p. 376]). Noting that
θ2 acts on K×0 as the norm NK0/F , we see from Lemma 2 that the ray class
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[NK0/FA ·OK ] = [αOK ] in ClK,π is trivial. Therefore, α ≡ ε mod π for some
unit ε ∈ EK .

As χF (p) = 1, (OF /p)× is isomorphic to (Z/p)× × (Z/p)× as an abelian
group. For α ∈ F× with (α, p) = 1, let [α]p ∈ (OF /p)× be the class contain-
ing α. Let HF be the subgroup of (OF /p)× generated by the classes [α]p
for all α ∈ F× such that αOF = NK0/FA for some ideal A of K0 relatively
prime to p. Let J be the complex conjugation of K. For brevity, we write
J = J|F . As hF = 1, the reciprocity law map induces an isomorphism

(OF /p)×/HF
∼= Gal(K0/F )

compatible with the action of J . As J acts on Gal(K0/F ) = Gal(k+/Q)
trivially, we obtain

(2) ((OF /p)×)J−1 ⊆ HF .

For a number field N , let WN be the group of roots of unity in N .

Lemma 5. Assume that F satisfies (Hp). Then, for any α ∈ F× with
(α, p) = 1, there exists η ∈WF such that α(J−1)2 ≡ η mod p.

Proof. Let α ∈ F× with (α, p) = 1. By (2) and Lemma 4, αJ−1 ≡
ε mod π for some unit ε ∈ EK . We see that εJ−1 ∈ WK by a theorem on
units of a CM field ([10, Theorem 4.12]). As F is an imaginary quadratic
field, we have WK = WF · 〈ζp〉, and hence η = ε(J−1)p ∈WF . From this, we
obtain

α(J−1)2 ≡ α(J−1)2p ≡ η mod π.

However, as F/Q is unramified at p, this congruence also holds modulo p.

Proof of the Theorem. Write p = 1 + 2en for some e ≥ 1 and n odd. Let
X be the set of elements of (OF /p)× whose orders are odd. Let X− be the
(−1)-eigenspace of X under the action of J :

X− = XJ−1 = X(J−1)2 .

Clearly, X− is a cyclic group of order n. When F 6= Q(
√
−3), we see from

Lemma 5 that α4(J−1)2 ≡ 1 mod p for all α ∈ F× relatively prime to p,
because the order |WF | divides 4. This implies that n = 1. Similarly, when
F = Q(

√
−3), we see that n = 1 or 3. Therefore, p = 1 + 2e or p = 1 + 2e · 3,

and the latter can only happen when F = Q(
√
−3). Noting that χF (p) = 1,

let ℘1 and ℘2 be the prime ideals of F over p. Let a ∈ Z have order 2e

modulo p. Choose α ∈ OF such that α ≡ a mod ℘1 and α ≡ 1 mod ℘2. We
easily see that α(J−1)2 ≡ a2 mod ℘1. Then Lemma 5 yields a8 ≡ 1 mod p,
which implies that e ≤ 3. Therefore, p = 3, 5, 7 or 13. The last two cases
can only occur when F = Q(

√
−3). Since the imaginary quadratic fields F

satisfying (Hp) for p ≤ 11 were already determined, we finish the proof of
the Theorem by the following lemma.



388 H. Ichimura and H. Sumida-Takahashi

Lemma 6. The field F = Q(
√
−3) does not satisfy (H13).

Proof. Let p = 13. For any imaginary abelian field M , let CM be the
group of circular units of M in the sense of Sinnott [9, p. 119]. The group
CK is generated by Ck, ζ3 and 1− (ζ3ζp)c for integers c with (c, 3p) = 1. For
α ∈ K× with (α, p) = 1, let [α]π be the class in (OK/π)× containing α. For
any subgroup E of EK , let [E]π be the subgroup of (OK/π)× generated by
the classes containing an element of E. Since ζp ≡ 1 mod π, the group [CK ]π
is generated by [ζ3]π, [

√
−3]π and [a]π for integers a with 1 ≤ a ≤ p − 1.

Hence,
[(OK/π)× : [CK ]π] = 2.

Let N be the intermediate field of K/F with [N : F ] = 4. We have hK =
hN = 2 and h+

K = h+
N = 1. For this, see [4, Tafel II] and [10, p. 421]. We see

that [EK : CK ] = h+
K = 1 by the analytic class number formula [9, Theorem]

combined with the formula (4.1) of [9]. Hence,

(3) [(OK/π)× : [EK ]π] = 2.

Let P1 and P2 be the prime ideals of K over p, and let ℘i = Pi ∩ ON . As
K/F is totally ramified at Pi, we naturally have

(OK/π)× = (ON/℘1℘2)×.

Now, assume that F satisfies (Hp). Then the Stickelberger ideal SG an-
nihilates ClK,π by Lemma 2. As the norm map ClK → ClN is surjective,
the element θ2 ∈ SG kills ClN . Let A be an ideal of N relatively prime
to p such that the ideal class [A] ∈ ClN is of order 2. Then Aθ2 = αON
for some α ∈ N×. The element α satisfies [α]π ∈ [EK ]π as Clθ2K,π = {0}.
Choosing an ideal A, we checked by a KASH calculation that the subgroup
of (ON/℘1℘2)× generated by the classes containing α and units of N is of
index 3. However, as [α]π ∈ [EK ]π, this contradicts (3).
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