On Hilbert-Speiser type imaginary quadratic fields

by
Humio Ichimura (Mito) and Hiroki Sumida-Takahashi (Tokushima)

1. Introduction. Let p be a prime number. A number field F satisfies the Hilbert-Speiser condition $\left(H_{p}\right)$ when any tame cyclic extension N / F of degree p has a normal integral basis. By the classical Hilbert-Speiser theorem, the rationals \mathbb{Q} satisfy $\left(H_{p}\right)$ for all p. On the other hand, Greither et al. [3] proved that a number field $F \neq \mathbb{Q}$ does not satisfy $\left(H_{p}\right)$ for infinitely many p using a theorem of McCulloh [8]. Thus, it is of interest which number fields F satisfy $\left(H_{p}\right)$.

In this paper, we deal with imaginary quadratic fields and determine those satisfying $\left(H_{p}\right)$ for each p. When $p=2,3,5,7$ or 11 , all imaginary quadratic fields F satisfying $\left(H_{p}\right)$ were determined in $[2,5,7]$. The number of such F is $3,4,2,1$ and 0 , respectively. Therefore, it suffices to deal with the case $p \geq 13$. Our result is the following:

Theorem. For any prime number $p \geq 13$, there exists no imaginary quadratic field satisfying the condition $\left(H_{p}\right)$.
2. Some known results. In this section, we recall several results which are necessary to prove the Theorem. First, we recall the theorem of McCulloh [8] mentioned in Section 1. Let p be a prime number, and $\Gamma=(\mathbb{Z} / p)^{+}$ and $G=(\mathbb{Z} / p)^{\times}$be the additive group and the multiplicative group of the finite field \mathbb{Z} / p, respectively. For a number field F, let $\operatorname{Cl}\left(\mathcal{O}_{F} \Gamma\right)$ be the locally free class group of the group ring $\mathcal{O}_{F} \Gamma, \mathcal{O}_{F}$ being the ring of integers of F, and let $R\left(\mathcal{O}_{F} \Gamma\right)$ be the subset consisting of the locally free classes $\left[\mathcal{O}_{N}\right]$ for all tame Γ extensions N / F. As Γ is an abelian group, F satisfies $\left(H_{p}\right)$ if and only if $R\left(\mathcal{O}_{F} \Gamma\right)=\{0\}$. Let \mathcal{S}_{G} be the classical Stickelberger ideal of the group ring $\mathbb{Z} G$ associated to the abelian extension $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$. For the definition, see [10, Chapter 6]. Through the natural action of G on Γ,

[^0]the group ring $\mathbb{Z} G$ acts on $\operatorname{Cl}\left(\mathcal{O}_{F} \Gamma\right)$. Then we have
\[

$$
\begin{equation*}
R\left(\mathcal{O}_{F} \Gamma\right)=C l\left(\mathcal{O}_{F} \Gamma\right)^{\mathcal{S}_{G}} \tag{1}
\end{equation*}
$$

\]

This theorem of McCulloh plays a crucial role in studying Hilbert-Speiser number fields.

In the following, let F be an imaginary quadratic field, and let χ_{F} be the associated quadratic character. The following is a consequence of [3, Theorem 1].

Lemma 1 (cf. [7, Lemma 2]). Let $p \geq 7$. If F satisfies $\left(H_{p}\right)$, then $\chi_{F}(p)$ $=1$.

We put $K=F\left(\zeta_{p}\right)$ where ζ_{p} is a primitive p th root of unity. When $\chi_{F}(p)=1$, we can identify the Galois group $\operatorname{Gal}(K / F)$ with $G=(\mathbb{Z} / p)^{\times}$ through the Galois action on ζ_{p}. Hence, the group ring $\mathbb{Z} G$ acts on several objects associated to K. For a number field N and an integer $\alpha \in \mathcal{O}_{N}$, let $C l_{N, \alpha}$ be the ray class group of N defined modulo the principal ideal $\alpha \mathcal{O}_{N}$. In particular, $C l_{N}=C l_{N, 1}$ is the absolute class group of N, and $h_{N}=\left|C l_{N}\right|$ is the class number of N. Let $\pi=\zeta_{p}-1$. The following is an immediate consequence of (1) combined with [1, Proposition 2.2].

Lemma 2 (cf. [7, Proposition 5]). When $\chi_{F}(p)=1, F$ satisfies $\left(H_{p}\right)$ if and only if \mathcal{S}_{G} annihilates the ray class group $C l_{K, \pi}$.

Using Lemmas 1 and 2, we proved the following assertion in [6].
Lemma 3. If F satisfies $\left(H_{p}\right)$, then $h_{F}=1$.
3. Proof of the Theorem. In all the following, let F be an imaginary quadratic field with $\chi_{F}(p)=1$ and $h_{F}=1$. Let $k=\mathbb{Q}\left(\zeta_{p}\right), K=F \cdot k$ and $K_{0}=F \cdot k^{+}$where k^{+}is the maximal real subfield of k. Let $E_{K}=\mathcal{O}_{K}^{\times}$be the group of units of K.

Lemma 4. In the above setting, assume that F satisfies $\left(H_{p}\right)$. Let \mathfrak{A} be an ideal of K_{0} relatively prime to p. Then there exists an element $\alpha \in F^{\times}$ such that $N_{K_{0} / F} \mathfrak{A}=\alpha \mathcal{O}_{F}$ and $\alpha \equiv \varepsilon \bmod \pi$ for some unit $\varepsilon \in E_{K}$.

Proof. As $h_{F}=1$, we have $N_{K_{0} / F} \mathfrak{A}=\alpha \mathcal{O}_{F}$ for some $\alpha \in F^{\times}$. Let $\sigma_{i}=\bar{i}$ be the element of $G=\operatorname{Gal}(K / F)=(\mathbb{Z} / p)^{\times}$corresponding to an integer $i \in \mathbb{Z}$ with $p \nmid i$. Put

$$
\theta_{2}=\sum_{i=1}^{p-1}\left[\frac{2 i}{p}\right] \sigma_{i}^{-1}=\sum_{i=(p+1) / 2}^{p-1} \sigma_{i}^{-1} \in \mathbb{Z} G,
$$

which belongs to the Stickelberger ideal \mathcal{S}_{G} (see [10, p. 376]). Noting that θ_{2} acts on K_{0}^{\times}as the norm $N_{K_{0} / F}$, we see from Lemma 2 that the ray class
$\left[N_{K_{0} / F} \mathfrak{A} \cdot \mathcal{O}_{K}\right]=\left[\alpha \mathcal{O}_{K}\right]$ in $C l_{K, \pi}$ is trivial. Therefore, $\alpha \equiv \varepsilon \bmod \pi$ for some unit $\varepsilon \in E_{K}$.

As $\chi_{F}(p)=1,\left(\mathcal{O}_{F} / p\right)^{\times}$is isomorphic to $(\mathbb{Z} / p)^{\times} \times(\mathbb{Z} / p)^{\times}$as an abelian group. For $\alpha \in F^{\times}$with $(\alpha, p)=1$, let $[\alpha]_{p} \in\left(\mathcal{O}_{F} / p\right)^{\times}$be the class containing α. Let H_{F} be the subgroup of $\left(\mathcal{O}_{F} / p\right)^{\times}$generated by the classes $[\alpha]_{p}$ for all $\alpha \in F^{\times}$such that $\alpha \mathcal{O}_{F}=N_{K_{0} / F} \mathfrak{A}$ for some ideal \mathfrak{A} of K_{0} relatively prime to p. Let J be the complex conjugation of K. For brevity, we write $J=J_{\mid F}$. As $h_{F}=1$, the reciprocity law map induces an isomorphism

$$
\left(\mathcal{O}_{F} / p\right)^{\times} / H_{F} \cong \operatorname{Gal}\left(K_{0} / F\right)
$$

compatible with the action of J. As J acts on $\operatorname{Gal}\left(K_{0} / F\right)=\operatorname{Gal}\left(k^{+} / \mathbb{Q}\right)$ trivially, we obtain

$$
\begin{equation*}
\left(\left(\mathcal{O}_{F} / p\right)^{\times}\right)^{J-1} \subseteq H_{F} \tag{2}
\end{equation*}
$$

For a number field N, let W_{N} be the group of roots of unity in N.
Lemma 5. Assume that F satisfies $\left(H_{p}\right)$. Then, for any $\alpha \in F^{\times}$with $(\alpha, p)=1$, there exists $\eta \in W_{F}$ such that $\alpha^{(J-1)^{2}} \equiv \eta \bmod p$.

Proof. Let $\alpha \in F^{\times}$with $(\alpha, p)=1$. By (2) and Lemma 4, $\alpha^{J-1} \equiv$ $\varepsilon \bmod \pi$ for some unit $\varepsilon \in E_{K}$. We see that $\varepsilon^{J-1} \in W_{K}$ by a theorem on units of a CM field ([10, Theorem 4.12]). As F is an imaginary quadratic field, we have $W_{K}=W_{F} \cdot\left\langle\zeta_{p}\right\rangle$, and hence $\eta=\varepsilon^{(J-1) p} \in W_{F}$. From this, we obtain

$$
\alpha^{(J-1)^{2}} \equiv \alpha^{(J-1)^{2} p} \equiv \eta \bmod \pi
$$

However, as F / \mathbb{Q} is unramified at p, this congruence also holds modulo p.
Proof of the Theorem. Write $p=1+2^{e} n$ for some $e \geq 1$ and n odd. Let X be the set of elements of $\left(\mathcal{O}_{F} / p\right)^{\times}$whose orders are odd. Let X^{-}be the (-1)-eigenspace of X under the action of J :

$$
X^{-}=X^{J-1}=X^{(J-1)^{2}}
$$

Clearly, X^{-}is a cyclic group of order n. When $F \neq \mathbb{Q}(\sqrt{-3})$, we see from Lemma 5 that $\alpha^{4(J-1)^{2}} \equiv 1 \bmod p$ for all $\alpha \in F^{\times}$relatively prime to p, because the order $\left|W_{F}\right|$ divides 4 . This implies that $n=1$. Similarly, when $F=\mathbb{Q}(\sqrt{-3})$, we see that $n=1$ or 3 . Therefore, $p=1+2^{e}$ or $p=1+2^{e} \cdot 3$, and the latter can only happen when $F=\mathbb{Q}(\sqrt{-3})$. Noting that $\chi_{F}(p)=1$, let \wp_{1} and \wp_{2} be the prime ideals of F over p. Let $a \in \mathbb{Z}$ have order 2^{e} modulo p. Choose $\alpha \in \mathcal{O}_{F}$ such that $\alpha \equiv a \bmod \wp_{1}$ and $\alpha \equiv 1 \bmod \wp_{2}$. We easily see that $\alpha^{(J-1)^{2}} \equiv a^{2} \bmod \wp_{1}$. Then Lemma 5 yields $a^{8} \equiv 1 \bmod p$, which implies that $e \leq 3$. Therefore, $p=3,5,7$ or 13 . The last two cases can only occur when $F=\mathbb{Q}(\sqrt{-3})$. Since the imaginary quadratic fields F satisfying $\left(H_{p}\right)$ for $p \leq 11$ were already determined, we finish the proof of the Theorem by the following lemma.

Lemma 6. The field $F=\mathbb{Q}(\sqrt{-3})$ does not satisfy $\left(H_{13}\right)$.
Proof. Let $p=13$. For any imaginary abelian field M, let C_{M} be the group of circular units of M in the sense of Sinnott [9, p. 119]. The group C_{K} is generated by C_{k}, ζ_{3} and $1-\left(\zeta_{3} \zeta_{p}\right)^{c}$ for integers c with $(c, 3 p)=1$. For $\alpha \in K^{\times}$with $(\alpha, p)=1$, let $[\alpha]_{\pi}$ be the class in $\left(\mathcal{O}_{K} / \pi\right)^{\times}$containing α. For any subgroup E of E_{K}, let $[E]_{\pi}$ be the subgroup of $\left(\mathcal{O}_{K} / \pi\right)^{\times}$generated by the classes containing an element of E. Since $\zeta_{p} \equiv 1 \bmod \pi$, the group $\left[C_{K}\right]_{\pi}$ is generated by $\left[\zeta_{3}\right]_{\pi},[\sqrt{-3}]_{\pi}$ and $[a]_{\pi}$ for integers a with $1 \leq a \leq p-1$. Hence,

$$
\left[\left(\mathcal{O}_{K} / \pi\right)^{\times}:\left[C_{K}\right]_{\pi}\right]=2
$$

Let N be the intermediate field of K / F with $[N: F]=4$. We have $h_{K}=$ $h_{N}=2$ and $h_{K}^{+}=h_{N}^{+}=1$. For this, see [4, Tafel II] and [10, p. 421]. We see that $\left[E_{K}: C_{K}\right]=h_{K}^{+}=1$ by the analytic class number formula [9, Theorem] combined with the formula (4.1) of [9]. Hence,

$$
\begin{equation*}
\left[\left(\mathcal{O}_{K} / \pi\right)^{\times}:\left[E_{K}\right]_{\pi}\right]=2 \tag{3}
\end{equation*}
$$

Let \mathfrak{P}_{1} and \mathfrak{P}_{2} be the prime ideals of K over p, and let $\wp_{i}=\mathfrak{P}_{i} \cap \mathcal{O}_{N}$. As K / F is totally ramified at \mathfrak{P}_{i}, we naturally have

$$
\left(\mathcal{O}_{K} / \pi\right)^{\times}=\left(\mathcal{O}_{N} / \wp_{1} \wp_{2}\right)^{\times}
$$

Now, assume that F satisfies $\left(H_{p}\right)$. Then the Stickelberger ideal \mathcal{S}_{G} annihilates $C l_{K, \pi}$ by Lemma 2. As the norm map $C l_{K} \rightarrow C l_{N}$ is surjective, the element $\theta_{2} \in \mathcal{S}_{G}$ kills $C l_{N}$. Let \mathfrak{A} be an ideal of N relatively prime to p such that the ideal class $[\mathfrak{A}] \in C l_{N}$ is of order 2 . Then $\mathfrak{A}^{\theta_{2}}=\alpha \mathcal{O}_{N}$ for some $\alpha \in N^{\times}$. The element α satisfies $[\alpha]_{\pi} \in\left[E_{K}\right]_{\pi}$ as $C l_{K, \pi}^{\theta_{2}}=\{0\}$. Choosing an ideal \mathfrak{A}, we checked by a KASH calculation that the subgroup of $\left(\mathcal{O}_{N} / \wp_{1} \wp_{2}\right)^{\times}$generated by the classes containing α and units of N is of index 3. However, as $[\alpha]_{\pi} \in\left[E_{K}\right]_{\pi}$, this contradicts (3).

References

[1] J. Brinkhuis, Normal integral bases and complex conjugation, J. Reine Angew. Math. 375/376 (1987), 157-166.
[2] J. E. Carter, Normal integral bases in quadratic and cubic cyclic extensions of quadratic fields, Arch. Math. (Basel) 81 (2003), 266-271; Erratum, ibid. 83 (2004), no. 6 , vi-vii.
[3] C. Greither, D. R. Replogle, K. Rubin and A. Srivastav, Swan modules and HilbertSpeiser number fields, J. Number Theory 79 (1999), 164-173.
[4] H. Hasse, Über die Klassenzahl Abelscher Zahlkörper, Academie-Verlag, Berlin, 1952.
[5] H. Ichimura, Normal integral bases and ray class groups, Acta Arith. 114 (2004), 71-85.
[6] -, Note on imaginary quadratic fields satisfying the Hilbert-Speiser condition at a prime p, Proc. Japan Acad. 83A (2007), 88-91.
[7] H. Ichimura and H. Sumida-Takahashi, Imaginary quadratic fields satisfying the Hilbert-Speiser type condition for a small prime p, Acta Arith. 127 (2007), 179-191.
[8] L. R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra 82 (1983), 102-134.
[9] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107-134.
[10] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer, New York, 1997.

Faculty of Science
Ibaraki University
Bunkyo 2-1-1, Mito, 310-8512, Japan
E-mail: hichimur@mx.ibaraki.ac.jp

Faculty and School of Engineering
The University of Tokushima
2-1, Minami-josanjima-cho Tokushima, 770-8506, Japan E-mail: hiroki@pm.tokushima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: 11R33, 11R11.
 Key words and phrases: Hilbert-Speiser number field, imaginary quadratic field.

