On Hilbert–Speiser type imaginary quadratic fields

by

HUMIO ICHIMURA (Mito) and HIROKI SUMIDA-TAKAHASHI (Tokushima)

1. Introduction. Let p be a prime number. A number field F satisfies the *Hilbert–Speiser condition* (H_p) when any tame cyclic extension N/F of degree p has a normal integral basis. By the classical Hilbert–Speiser theorem, the rationals \mathbb{Q} satisfy (H_p) for all p. On the other hand, Greither et al. [3] proved that a number field $F \neq \mathbb{Q}$ does not satisfy (H_p) for infinitely many p using a theorem of McCulloh [8]. Thus, it is of interest which number fields F satisfy (H_p) .

In this paper, we deal with imaginary quadratic fields and determine those satisfying (H_p) for each p. When p = 2, 3, 5, 7 or 11, all imaginary quadratic fields F satisfying (H_p) were determined in [2, 5, 7]. The number of such F is 3, 4, 2, 1 and 0, respectively. Therefore, it suffices to deal with the case $p \ge 13$. Our result is the following:

THEOREM. For any prime number $p \geq 13$, there exists no imaginary quadratic field satisfying the condition (H_p) .

2. Some known results. In this section, we recall several results which are necessary to prove the Theorem. First, we recall the theorem of McCulloh [8] mentioned in Section 1. Let p be a prime number, and $\Gamma = (\mathbb{Z}/p)^+$ and $G = (\mathbb{Z}/p)^{\times}$ be the additive group and the multiplicative group of the finite field \mathbb{Z}/p , respectively. For a number field F, let $Cl(\mathcal{O}_F\Gamma)$ be the locally free class group of the group ring $\mathcal{O}_F\Gamma$, \mathcal{O}_F being the ring of integers of F, and let $R(\mathcal{O}_F\Gamma)$ be the subset consisting of the locally free classes $[\mathcal{O}_N]$ for all tame Γ extensions N/F. As Γ is an abelian group, F satisfies (H_p) if and only if $R(\mathcal{O}_F\Gamma) = \{0\}$. Let \mathcal{S}_G be the classical Stickelberger ideal of the group ring $\mathbb{Z}G$ associated to the abelian extension $\mathbb{Q}(\zeta_p)/\mathbb{Q}$. For the definition, see [10, Chapter 6]. Through the natural action of G on Γ ,

²⁰⁰⁰ Mathematics Subject Classification: 11R33, 11R11.

Key words and phrases: Hilbert-Speiser number field, imaginary quadratic field.

the group ring $\mathbb{Z}G$ acts on $Cl(\mathcal{O}_F\Gamma)$. Then we have

(1)
$$R(\mathcal{O}_F \Gamma) = Cl(\mathcal{O}_F \Gamma)^{\mathcal{S}_G}$$

This theorem of McCulloh plays a crucial role in studying Hilbert–Speiser number fields.

In the following, let F be an imaginary quadratic field, and let χ_F be the associated quadratic character. The following is a consequence of [3, Theorem 1].

LEMMA 1 (cf. [7, Lemma 2]). Let $p \ge 7$. If F satisfies (H_p) , then $\chi_F(p) = 1$.

We put $K = F(\zeta_p)$ where ζ_p is a primitive *p*th root of unity. When $\chi_F(p) = 1$, we can identify the Galois group $\operatorname{Gal}(K/F)$ with $G = (\mathbb{Z}/p)^{\times}$ through the Galois action on ζ_p . Hence, the group ring $\mathbb{Z}G$ acts on several objects associated to K. For a number field N and an integer $\alpha \in \mathcal{O}_N$, let $Cl_{N,\alpha}$ be the ray class group of N defined modulo the principal ideal $\alpha \mathcal{O}_N$. In particular, $Cl_N = Cl_{N,1}$ is the absolute class group of N, and $h_N = |Cl_N|$ is the class number of N. Let $\pi = \zeta_p - 1$. The following is an immediate consequence of (1) combined with [1, Proposition 2.2].

LEMMA 2 (cf. [7, Proposition 5]). When $\chi_F(p) = 1$, F satisfies (H_p) if and only if S_G annihilates the ray class group $Cl_{K,\pi}$.

Using Lemmas 1 and 2, we proved the following assertion in [6].

LEMMA 3. If F satisfies (H_p) , then $h_F = 1$.

3. Proof of the Theorem. In all the following, let F be an imaginary quadratic field with $\chi_F(p) = 1$ and $h_F = 1$. Let $k = \mathbb{Q}(\zeta_p)$, $K = F \cdot k$ and $K_0 = F \cdot k^+$ where k^+ is the maximal real subfield of k. Let $E_K = \mathcal{O}_K^{\times}$ be the group of units of K.

LEMMA 4. In the above setting, assume that F satisfies (H_p) . Let \mathfrak{A} be an ideal of K_0 relatively prime to p. Then there exists an element $\alpha \in F^{\times}$ such that $N_{K_0/F}\mathfrak{A} = \alpha \mathcal{O}_F$ and $\alpha \equiv \varepsilon \mod \pi$ for some unit $\varepsilon \in E_K$.

Proof. As $h_F = 1$, we have $N_{K_0/F} \mathfrak{A} = \alpha \mathcal{O}_F$ for some $\alpha \in F^{\times}$. Let $\sigma_i = \overline{i}$ be the element of $G = \operatorname{Gal}(K/F) = (\mathbb{Z}/p)^{\times}$ corresponding to an integer $i \in \mathbb{Z}$ with $p \nmid i$. Put

$$\theta_2 = \sum_{i=1}^{p-1} \left[\frac{2i}{p} \right] \sigma_i^{-1} = \sum_{i=(p+1)/2}^{p-1} \sigma_i^{-1} \in \mathbb{Z}G,$$

which belongs to the Stickelberger ideal S_G (see [10, p. 376]). Noting that θ_2 acts on K_0^{\times} as the norm $N_{K_0/F}$, we see from Lemma 2 that the ray class

 $[N_{K_0/F}\mathfrak{A} \cdot \mathcal{O}_K] = [\alpha \mathcal{O}_K]$ in $Cl_{K,\pi}$ is trivial. Therefore, $\alpha \equiv \varepsilon \mod \pi$ for some unit $\varepsilon \in E_K$.

As $\chi_F(p) = 1$, $(\mathcal{O}_F/p)^{\times}$ is isomorphic to $(\mathbb{Z}/p)^{\times} \times (\mathbb{Z}/p)^{\times}$ as an abelian group. For $\alpha \in F^{\times}$ with $(\alpha, p) = 1$, let $[\alpha]_p \in (\mathcal{O}_F/p)^{\times}$ be the class containing α . Let H_F be the subgroup of $(\mathcal{O}_F/p)^{\times}$ generated by the classes $[\alpha]_p$ for all $\alpha \in F^{\times}$ such that $\alpha \mathcal{O}_F = N_{K_0/F}\mathfrak{A}$ for some ideal \mathfrak{A} of K_0 relatively prime to p. Let J be the complex conjugation of K. For brevity, we write $J = J_{|F}$. As $h_F = 1$, the reciprocity law map induces an isomorphism

$$(\mathcal{O}_F/p)^{\times}/H_F \cong \operatorname{Gal}(K_0/F)$$

compatible with the action of J. As J acts on $\operatorname{Gal}(K_0/F) = \operatorname{Gal}(k^+/\mathbb{Q})$ trivially, we obtain

(2)
$$((\mathcal{O}_F/p)^{\times})^{J-1} \subseteq H_F.$$

For a number field N, let W_N be the group of roots of unity in N.

LEMMA 5. Assume that F satisfies (H_p) . Then, for any $\alpha \in F^{\times}$ with $(\alpha, p) = 1$, there exists $\eta \in W_F$ such that $\alpha^{(J-1)^2} \equiv \eta \mod p$.

Proof. Let $\alpha \in F^{\times}$ with $(\alpha, p) = 1$. By (2) and Lemma 4, $\alpha^{J-1} \equiv \varepsilon \mod \pi$ for some unit $\varepsilon \in E_K$. We see that $\varepsilon^{J-1} \in W_K$ by a theorem on units of a CM field ([10, Theorem 4.12]). As F is an imaginary quadratic field, we have $W_K = W_F \cdot \langle \zeta_p \rangle$, and hence $\eta = \varepsilon^{(J-1)p} \in W_F$. From this, we obtain

$$\alpha^{(J-1)^2} \equiv \alpha^{(J-1)^2 p} \equiv \eta \mod \pi.$$

However, as F/\mathbb{Q} is unramified at p, this congruence also holds modulo p.

Proof of the Theorem. Write $p = 1 + 2^e n$ for some $e \ge 1$ and n odd. Let X be the set of elements of $(\mathcal{O}_F/p)^{\times}$ whose orders are odd. Let X^- be the (-1)-eigenspace of X under the action of J:

$$X^{-} = X^{J-1} = X^{(J-1)^2}.$$

Clearly, X^- is a cyclic group of order n. When $F \neq \mathbb{Q}(\sqrt{-3})$, we see from Lemma 5 that $\alpha^{4(J-1)^2} \equiv 1 \mod p$ for all $\alpha \in F^{\times}$ relatively prime to p, because the order $|W_F|$ divides 4. This implies that n = 1. Similarly, when $F = \mathbb{Q}(\sqrt{-3})$, we see that n = 1 or 3. Therefore, $p = 1 + 2^e$ or $p = 1 + 2^e \cdot 3$, and the latter can only happen when $F = \mathbb{Q}(\sqrt{-3})$. Noting that $\chi_F(p) = 1$, let \wp_1 and \wp_2 be the prime ideals of F over p. Let $a \in \mathbb{Z}$ have order 2^e modulo p. Choose $\alpha \in \mathcal{O}_F$ such that $\alpha \equiv a \mod \wp_1$ and $\alpha \equiv 1 \mod \wp_2$. We easily see that $\alpha^{(J-1)^2} \equiv a^2 \mod \wp_1$. Then Lemma 5 yields $a^8 \equiv 1 \mod p$, which implies that $e \leq 3$. Therefore, p = 3, 5, 7 or 13. The last two cases can only occur when $F = \mathbb{Q}(\sqrt{-3})$. Since the imaginary quadratic fields Fsatisfying (H_p) for $p \leq 11$ were already determined, we finish the proof of the Theorem by the following lemma. LEMMA 6. The field $F = \mathbb{Q}(\sqrt{-3})$ does not satisfy (H_{13}) .

Proof. Let p = 13. For any imaginary abelian field M, let C_M be the group of circular units of M in the sense of Sinnott [9, p. 119]. The group C_K is generated by C_k , ζ_3 and $1 - (\zeta_3 \zeta_p)^c$ for integers c with (c, 3p) = 1. For $\alpha \in K^{\times}$ with $(\alpha, p) = 1$, let $[\alpha]_{\pi}$ be the class in $(\mathcal{O}_K/\pi)^{\times}$ containing α . For any subgroup E of E_K , let $[E]_{\pi}$ be the subgroup of $(\mathcal{O}_K/\pi)^{\times}$ generated by the classes containing an element of E. Since $\zeta_p \equiv 1 \mod \pi$, the group $[C_K]_{\pi}$ is generated by $[\zeta_3]_{\pi}$, $[\sqrt{-3}]_{\pi}$ and $[a]_{\pi}$ for integers a with $1 \leq a \leq p - 1$. Hence,

$$[(\mathcal{O}_K/\pi)^{\times} : [C_K]_{\pi}] = 2.$$

Let N be the intermediate field of K/F with [N:F] = 4. We have $h_K = h_N = 2$ and $h_K^+ = h_N^+ = 1$. For this, see [4, Tafel II] and [10, p. 421]. We see that $[E_K:C_K] = h_K^+ = 1$ by the analytic class number formula [9, Theorem] combined with the formula (4.1) of [9]. Hence,

(3)
$$[(\mathcal{O}_K/\pi)^{\times} : [E_K]_{\pi}] = 2.$$

Let \mathfrak{P}_1 and \mathfrak{P}_2 be the prime ideals of K over p, and let $\wp_i = \mathfrak{P}_i \cap \mathcal{O}_N$. As K/F is totally ramified at \mathfrak{P}_i , we naturally have

$$(\mathcal{O}_K/\pi)^{\times} = (\mathcal{O}_N/\wp_1\wp_2)^{\times}.$$

Now, assume that F satisfies (H_p) . Then the Stickelberger ideal \mathcal{S}_G annihilates $Cl_{K,\pi}$ by Lemma 2. As the norm map $Cl_K \to Cl_N$ is surjective, the element $\theta_2 \in \mathcal{S}_G$ kills Cl_N . Let \mathfrak{A} be an ideal of N relatively prime to p such that the ideal class $[\mathfrak{A}] \in Cl_N$ is of order 2. Then $\mathfrak{A}^{\theta_2} = \alpha \mathcal{O}_N$ for some $\alpha \in N^{\times}$. The element α satisfies $[\alpha]_{\pi} \in [E_K]_{\pi}$ as $Cl_{K,\pi}^{\theta_2} = \{0\}$. Choosing an ideal \mathfrak{A} , we checked by a KASH calculation that the subgroup of $(\mathcal{O}_N/\wp_1\wp_2)^{\times}$ generated by the classes containing α and units of N is of index 3. However, as $[\alpha]_{\pi} \in [E_K]_{\pi}$, this contradicts (3).

References

- J. Brinkhuis, Normal integral bases and complex conjugation, J. Reine Angew. Math. 375/376 (1987), 157–166.
- J. E. Carter, Normal integral bases in quadratic and cubic cyclic extensions of quadratic fields, Arch. Math. (Basel) 81 (2003), 266-271; Erratum, ibid. 83 (2004), no. 6, vi-vii.
- [3] C. Greither, D. R. Replogle, K. Rubin and A. Srivastav, Swan modules and Hilbert-Speiser number fields, J. Number Theory 79 (1999), 164–173.
- [4] H. Hasse, Über die Klassenzahl Abelscher Zahlkörper, Academie-Verlag, Berlin, 1952.
- [5] H. Ichimura, Normal integral bases and ray class groups, Acta Arith. 114 (2004), 71–85.
- [6] —, Note on imaginary quadratic fields satisfying the Hilbert-Speiser condition at a prime p, Proc. Japan Acad. 83A (2007), 88–91.

- H. Ichimura and H. Sumida-Takahashi, Imaginary quadratic fields satisfying the Hilbert-Speiser type condition for a small prime p, Acta Arith. 127 (2007), 179–191.
- [8] L. R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra 82 (1983), 102–134.
- W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107–134.
- [10] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer, New York, 1997.

Faculty of Science	Faculty and School of Engineering
Ibaraki University	The University of Tokushima
Bunkyo 2-1-1, Mito, 310-8512, Japan	2-1, Minami-josanjima-cho
E-mail: hichimur@mx.ibaraki.ac.jp	Tokushima, 770-8506, Japan
	E-mail: hiroki@pm.tokushima-u.ac.jp

Received on 25.8.2008

(5783)