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Let the Dirichlet series

F (s) =
∞∑
n=1

ann
−s

be absolutely convergent for σ > 1, and extend to a meromorphic function
on C. Suppose further that F (s) is regular apart possibly for a pole of order
m ≥ 0 at s = 1 and that (s − 1)mF (s) is then of finite order. We assume
finally that Φ(s) = γ(s)F (s) satisfies the functional equation

Φ(s) = Φ(1− s),
where

γ(s) = ηQs/2
k∏
j=1

Γ (λjs+ µj + iνj).

Here η ∈ C, Q ∈ R and λj , µj , νj ∈ R (for 1 ≤ j ≤ k) are constants,
satisfying

|η| = 1, Q > 0, λj > 0, µj > 0.

These hypotheses are amongst those required for the “Selberg class” (Sel-
berg [3]).

One can now use the Phragmén–Lindelöf theorem in a standard way to
estimate F (1/2) (or, more generally, F (1/2 + it)). For example, if one has
|an| ≤ A(ε)nε for any ε > 0, then

(1) F (1/2)� ε−1A(ε)C1/4+ε,

where the conductor C is given by

(2) C = Q

k∏
j=1

(1 + |νj |)2λj .
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Here the implied constant depends onm, k and the λj and µj , but not on ε,Q
or the νj . The aim of this note is to show how one can remove the extraneous
ε from the exponent 1/4 + ε, under suitable additional hypotheses. Where
one has appropriate information on the coefficients an this can be done by
using some form of approximate functional equation, which will require an
estimate for a sum of the type

∑
n≤N ann

−1/2. However, it is unclear in
general how one can bound such sums efficiently.

Our principal result is the following.

Theorem. Suppose, in addition to the hypotheses above, that F (s) has
an absolutely convergent Euler product for σ > 1, so that

(3) logF (s) =
∑
n

bnn
−s

with the coefficients bn supported on the prime powers. Then

F (1/2)� C1/4 exp
{

2
∑
n

|bn|n−3/2
}
,

with the implied constant depending on m, k and the λj and µj , but not on
Q or the νj.

The condition that F (s) should have an Euler product is part of the
definition of the Selberg class. However, all that we require of the coefficients
bn is that (3) should be absolutely convergent for σ > 1. If one were to
suppose in addition that |bn| ≤ cn1/3, say, then one would of course have a
clean bound F (1/2)�c C

1/4.
Although our theorem refers only to F (1/2) it is easily modified to esti-

mate F (1/2 + it) in general. Indeed, if F (s) is entire it suffices to apply the
theorem to Ft(s) = F (s+ it), for which Ft(1/2) = F (1/2 + it). One readily
checks here that Ft(s) satisfies a functional equation of the same form as
before, but with the values νj shifted by t.

The proof of our theorem makes it clear that the convexity estimate
above could only be tight if all small non-trivial zeros of F (s) were close to
the edge of the critical strip. (The terms J(%) below are genuinely positive
for zeros in the interior of the strip.)

A result of the type above, but with stronger hypotheses, was described
by Soundararajan at the Canadian Number Theory Association meeting
in Waterloo, and the present paper is an outgrowth of discussions started
there. Under suitable circumstances Soundararajan’s approach leads [4] to
an estimate in which one saves a further factor of nearly logC. A weak
subconvexity result of this type is already sufficient for certain applications,
see Holowinsky and Soundararajan [1]. The author is grateful to Professor
Soundararajan for a number of interesting remarks, and in particular for
the reference [2].
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To prove our theorem we will use the following lemma, which can be
viewed as a variant of Jensen’s formula, modified by a conformal transfor-
mation so as to apply to a function in a strip.

Lemma. Let P be the path from π/2 − i∞ to π/2 + i∞ and then from
−π/2 + i∞ to −π/2− i∞. When |=(%)| < π/2 define

J(%) = log |cot(%/2)|,
and set J(%) = 0 for |=(%)| ≥ π/2. Let f(z) be an entire function of finite
order , non-vanishing at z = 0. Then

(4)
1

2πi

�

P

log |f(z)| dz
sin z

= log |f(0)|+
∑
%

J(%),

where % runs over zeros of f(z), counted according to multiplicity.

Doubtless, the hypotheses of this lemma can be weakened considerably.
A related (but different) result is given by Pólya and Szegö [2, pp. 119 & 120].

We observe that J(a+ ib) = J(−a+ ib), and that J(%) ≥ 0 for all %. It
follows that

log |f(0)| ≤ 1
2π

∞�

−∞
log |f(π/2 + it)f(−π/2− it)| dt

cosh t
.

Thus after a simple change of variable we find that if G is entire of finite
order then

log |G(1/2)| ≤ 1
2π

∞�

−∞
log |G(1 + δ + iκt)G(−δ + iκt)| dt

cosh t

where we have set κ = (1 + 2δ)/π for convenience. We shall apply this with
G(s) = F (s)(s − 1)m and 0 < δ < 1. The contribution on the right hand
side from terms involving log |(s − 1)m| is O(m). Applying the functional
equation, and noting that

∞�

−∞

dt

cosh t
= π,

leads to a bound

log |F (1/2)| ≤ 1
π

∞�

−∞
log |F (1 + δ + iκt)| dt

cosh t
+
(

1
4

+
δ

2

)
logQ

+
k∑
j=1

1
2π

∞�

−∞
log
∣∣∣∣Γ (αj + iνj(t))
Γ (βj + iνj(t))

∣∣∣∣ dt

cosh t
+O(m),

where we have written

αj = λj(1 + δ) + µj , βj = −λjδ + µj , νj(t) = νj + λjκt
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for convenience. However,

log
∣∣∣∣Γ (α+ iν)
Γ (β + iν)

∣∣∣∣ = (α− β) log(1 + |ν|) +O(1)

uniformly for 1� α, β � 1, and
∞�

−∞
log(1 + |ν + λκt|) dt

cosh t
= π log(1 + |ν|) +O(1).

We therefore conclude that

log |F (1/2)| ≤ 1
π

∞�

−∞
log |F (1 + δ + iκt)| dt

cosh t
+
(

1
4

+
δ

2

)
logC +O(1),

where C is given by (2), and the implied constant depends on m, k and the
λj and µj , but not on δ, Q or the νj .

It is now easy to deduce (1), but to do better we shall need the Euler
product. Since

∞�

−∞
n−iκt

dt

cosh t
=

2π
nπκ/2 + n−πκ/2

=
2π

n1/2+δ + n−1/2−δ

we find that

log |F (1/2)| ≤ 2
∑
n

<(bn)(n3/2+2δ + n1/2)−1 +
(

1
4

+
δ

2

)
logC +O(1).

The theorem now follows on allowing δ to tend downwards to zero.

We end by giving a sketch proof of the lemma. Consider the integral

1
2πi

�

P

log |1− z/%| dz
sin z

.

This vanishes if |=(%)| ≥ π/2, and otherwise is J(%). To see this one sets
% = a+ib and integrates around the path P supplemented by a loop integral
from π/2 + ib around % and back. The function J(%) then arises as

J(%) = 2 cosh b
π/2�

a

sinx
cosh(2b)− cos(2x)

dx.

The lemma now follows in the case in which f(z) is a polynomial. Moreover,
if g(z) is also a polynomial then

1
2πi

�

P

log |exp(g(z))| dz
sin z

= <(g(0)).
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Now, since f(z) is a function of finite order there is a positive integer M
such that the sum

∑
|%|−M is convergent, and such that

f(z) = exp(h(z))
∏
%

EM (z/%),

where h(z) is a suitable polynomial and

EM (w) = (1− w) exp
{ M∑
j=1

wj/j
}
.

We may then write f(z) = f1(z;N)f2(z;N) with

f1(z;N) = exp(g(z))
∏
|%|≤N

EM (z/%), f2(z;N) =
∏
|%|>N

EM (z/%).

We have already shown that the lemma holds for the function f1(z;N).
Moreover, a crude estimate, considering separately the cases |z| ≤ |%|/2,
|%|/2 < |z| < 2|%| and |z| ≥ 2|%|, shows that

�

P

log |EM (z/%)| dz
sin z

�M |%|−M .

Thus the contribution to (4) corresponding to log |f2(z;N)| tends to zero as
N goes to infinity, and the lemma follows.
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