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On some new estimates for h−(Q(ζp))
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Stanislav Jakubec (Bratislava)

1. Introduction. Let p be an odd prime number and m = (p− 1)/2.
Let hp resp. h+

p denote the class numbers of the cyclotomic field Q(ζp), resp.
the maximal real subfield Q(ζp)+ of this field. The Dirichlet class number
formula for the class number hp = h(Q(ζp)) is

hp =
pp/2

2m−1πmR

∏
χ 6=1

L(1, χ),

where the product is taken over all nonprincipal characters of Q(ζp). It is
well known that h+

p |hp (see Theorem 4.10 in [4]). We have hp = h+
p h
−
p ,

where

(1) h−p =
1

2m−1
p(p+3)/4 1

πm

∏
χ odd

L(1, χ) =
1

(2p)m−1

∏
χ odd

p−1∑
k=1

kχ(k)

(see Theorems 4.17 and 4.9 in [4]).
We consider two types of sequences (ai)1≤i≤m over Z: ai = m + i, i =

1, . . . ,m, or ai = ri, i = 1, . . . ,m, where p ≡ 1 (mod 4) and r is a primitive
root modulo p, or p ≡ 3 (mod 4) and r generates the group of quadratic
residues modulo p. For the sequences {ai}1≤i≤m, if 1 ≤ j ≤ m there exists
1 ≤ i ≤ m such that ai ≡ j (mod p) or ai ≡ −j (mod p).

In [2] and [3] it is proved that

h−p ≤ 2p
(
p

24

)m/2
.

We prove the estimates

h−p < 3.492 · p
(
p

32

)m/2
,
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provided p ≡ 1 (mod 4) and r = 2 is a primitive root modulo p or p ≡ 3
(mod 4) and r = 2 generates the group of quadratic residues modulo p.
Analogously, if we replace r = 2 by r = 3 resp. r = 5 we obtain the estimates

h−p < 1.502 · p
(
p

27

)m/2
and h−p < 2p

(
p

25

)m/2
.

In the proofs, we make use of two types of matrices A = (Aij)1≤i,j≤m or
B = (Bij)1≤i,j≤m over Z associated to the sequences (ai)1≤i≤m:

Aij = [ai(m+ j)/p],

for ai = m + i (here as usual [x] denotes the integral part of x), and for
ai = ri, B1j = 1 and

Bij = [ai(m+ j)/p]− r[ai−1(m+ j)/p] if i ≥ 2.

2. Some relations between the matrices A and h−p . Let χ be a
generator of the group of characters of the field Q(ζp). Then odd characters
of this field are odd powers of χ. Moreover, it is well-known that for χ odd,

(2) L(1, χ) =
πiτ(χ)
p2

p−1∑
j=1

jχ(j),

where τ(χ) as usual denotes the Gauss sum (see Theorem 4.9 in [4]). After
some manipulation the formula can be rewritten as

(3) L(1, χ) =
πiτ(χ)

p(χ(2)− 2)

m∑
j=1

χ(j).

Therefore formula (1) can be rewritten as

(4) h−p =
∣∣∣∣ p

2m−1

m∏
j=1

1
χ2j−1(2)− 2

m∑
k=1

χ2j−1(k)
∣∣∣∣.

Let [x]∗ = [x] − 1/2 if x ∈ Z and [x]∗ = [x] otherwise. It is well-known
that

[x]∗ = x− 1
2

+
∞∑
j=1

sin(2jxπ)
πj

.

Lemma 1. Let χ be an odd Dirichlet character modulo p, and a be a
natural number. Then

m∑
j=1

[
aj

p

]
χ(j) =

1
2

(
a− χ(a)
χ(2)− 2

+ a− 1
) m∑
j=1

χ(j),

p−1∑
j=m+1

[
aj

p

]
χ(j) =

1
2

(
a− χ(a)
χ(2)− 2

− a+ 1
) m∑
j=1

χ(j).
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Proof. From the formulas before the lemma, (2), (3) and well-known
properties of the Gauss sum we obtain
p−1∑
k=1

[
ak

p

]
χ(k) =

p−1∑
k=1

[
ak

p

]∗
χ(k) =

p−1∑
k=1

χ(k)
(
ak

p
− 1

2
+

1
π

∞∑
j=1

1
j

sin
2πakj
p

)

=
p−1∑
k=1

χ(k)
(
ak

p
− 1

2
+

1
2πi

∞∑
j=1

1
j

(ζakjp − ζ−akjp )
)

=
a

p

p−1∑
k=1

kχ(k) +
τ(χ)χ(a)

πi

∞∑
j=1

χ(j)
j

=
p(a− χ(a))
πiτ(χ)

L(1, χ) =
a− χ(a)
χ(2)− 2

m∑
k=1

χ(k).

Lemma 1 now follows from[
ai

p

]
+
[
a(p− i)

p

]
= a− 1.

Let s be a rational p-integer number and let χ be a Dirichlet character
modulo p. Define χ(s) = χ(n) where n ∈ Z and s ≡ n (mod p). For χ odd
we have

(5)
m∑
j=1

χ2j−1(s) =
{

0 if s 6≡ ±1 (mod p),
±m if s ≡ ±1 (mod p).

Theorem 1. Let p be an odd prime and m = (p− 1)/2. For the matrix
A defined in the Introduction we have

|det(A)| = h−p .

Proof. Let χ be a generator of the group of characters of the field Q(ζp).
Set K = (Kij)1≤i,j≤m, where Kij = χ2j−1(ai). Let as usual KT denote the
transpose of K. Write M = KKT = (Mij)1≤i,j≤m. Then by (5) we obtain

Mij =
m∑
k=1

χ2k−1(aiaj) =
{

0 if aiaj 6≡ ±1 (mod p),
±m if aiaj ≡ ±1 (mod p),

and consequently

(6) det(M) = ±mm.

On the other hand, applying Lemma 1 and (4) gives

AK =
1
2
h−p p

m−1C,
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where C = {Cij} with

Cij = 3m+ 3i− 2− χ2j−1

(
1

m+ i

)
+ (−m− i+ 1)χ2j−1

(
1
2

)
.

Moreover, by (5) we have

CKT =


−m ∗ . . . ∗ ∗

0 −m . . . ∗ ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . −m(3− 2m) −m(6m− 5)
0 0 . . . −m(1− 2m) −m(−1 + 6m)

 .

Hence
det(CKT ) = ±2pmm.

Theorem 2. Let p be an odd prime and let m = (p− 1)/2. Let 1 ≤ n
< m and ε0 = ±1 be the unique integers satisfying rn ≡ 2ε0 (mod p). Write
ε = ε0(r/p). For the matrix B defined in the Introduction we have

|det(B)| = 2rm−1 − εrn−1

p
h−p .

Proof. Let K be the matrix defined in the proof of Theorem 1. Applying
Lemma 1 and (4) gives

BK =
1
2
h−p p

m−1D,

where D = (Dij)1≤i,j≤m with D1j = 4− 2χ2j−1(2) and

Dij = ai − χ2j−1(ai)− (ai − 1)(χ2j−1(2)− 2)

− r(ai−1 − χ2j−1(ai−1)− (ai−1 − 1)(χ2j−1(2)− 2))

= − (2− 2r) + (1− r)χ2j−1

(
1
2

)
− χ2j−1

(
1
ai

)
+ rχ2j−1

(
1

ai−1

)
,

if i ≥ 2. Write R = DKT = (Rij)1≤i,j≤m. Then we have

R1k = 4
m∑
j=1

χ2j−1(ak)− 2
m∑
j=1

χ2j−1

(
ak
2

)
for k = 1, . . . ,m,

and

Rik = − (2− 2r)
m∑
j=1

χ2j−1(ak) + (1− r)
m∑
j=1

χ2j−1

(
ak
2

)

−
m∑
j=1

χ2j−1

(
ak
ai

)
+ r

m∑
j=1

χ2j−1

(
ak
ai−1

)
,
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where i ≥ 2. Define F = (Fik)1≤i,k≤m, where F1k = R1k and for i ≥ 2,

Fik = Rik +
1− r

2
R1k = −

m∑
j=1

χ2j−1

(
ak
ai

)
+ r

m∑
j=1

χ2j−1

(
ak
ai−1

)
.

Applying (5) gives

F =


∗ ∗ . . . ∗ 4m(r/p)
rm −m . . . 0 0
0 rm . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . rm −m

 ,

where F1n = −2ε2m, F1m = 4m(r/p), and all remaining entries vanish. It
follows that

det(F ) = ±2pmm 2rm−1 − εrn−1

p
where 2rm−1 − εrn−1 ≡ 0 (mod p),

which completes the proof.

3. Applications. Let X = (Xij)1≤i,j≤m be a real matrix and let ‖ · ‖
denote the Euclidean matrix norm defined as

‖X‖ =
(∑

i,j

X2
ij

)1/2
.

By Hadamard’s inequality and the inequality between geometric and arith-
metic means we have

(7) |det(X)| ≤
(
‖X‖
n

)n/2
.

Theorem 3 (Schur 1909, see [1, Theorem 7.3.1, p. 202]). Let X be an
n× n matrix with eigenvalues λ1, . . . , λn. Then

n∑
i=1

|λi|2 ≤ ‖X‖2.

Corollary to Theorem 2. Let p be a prime number and r be a natu-
ral number such that either p ≡ 1 (mod 4) and r is a primitive root modulo p,
or p ≡ 3 (mod 4) and r generates the group of quadratic residues modulo p.
We have

1. If r = 2 and p > 23,

h−p < 3.492 · p
(
p

32

)m/2
.
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2. If r = 3 and p > 100,

h−p ≤ 1.502 · p
(
p

27

)m/2
.

3. If r = 5,

h−p ≤ 2p
(
p

25

)m/2
.

Proof. Denote by xi (1 ≤ i ≤ m) the ith row of the matrix B. Let as
usual (x,y) denote the scalar product. Then Theorem 3 implies the inequal-
ity

(8) |det(B)| ≤
(
Q

m

)m/2
, where Q =

m∑
i=1

(xi,xi).

1. If r = 2 the matrix B is a (0-1) matrix. Applying the Gram–Schmidt
orthogonalization process we pass from the vectors (xi)1≤i≤m to an orthog-
onal system of vectors (yi)1≤i≤m:

y1 = x1 and yi = xi −
i−1∑
j=1

(xi,yj)
(yj ,yj)

yj if i ≥ 2.

We have

(y1,y1) = (x1,x1) and (yi,yi) = (xi,xi)−
i−1∑
j=1

(xi,yj)2

(yj ,yj)
if i ≥ 2.

Moreover, Theorem 2 for r = 2 together with (8) implies the inequality

(9)
2m −

(
2
p

)
p

h−p = |det(B)| ≤
(
Q

m

)m/2
, where Q =

m∑
i=1

(yi,yi).

If ti denotes the number of 1’s in the ith row, then

Q =
m∑
i=1

(yi,yi) <
m∑
i=1

(xi,xi)−
1
m

m∑
i=2

(xi,x1)2 =
m∑
i=1

ti −
1
m

m∑
i=2

t2i

≤ m+ (m− 1)
m

2
− 1
m

(m− 1)
(
m

2

)2

= m+m
m− 1

4
,

therefore
Q

m
< 1 +

m− 1
4

=
m+ 3

4
=
p+ 5

8
.

Hence and by (9) for m ≥ 14 we obtain

2m · 2−0.0001

p
h−p <

2m −
(

2
p

)
p

h−p ≤
(
p+ 5

8

)m/2
< e5/4

(
p

8

)m/2
,
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because

lim
n→∞

(
1 +

5
4n

)n
= e5/4.

This gives the corollary for r = 2 at once.
2. For i ≥ 2 subtract the first row of B from its ith row for i = 2, . . . ,m

and denote the resulting matrix by E. The number of entries in the ith row
of E for i = 2, . . . ,m that are equal to ±1 is [p/3]. Therefore

‖E‖ = m+ (m− 1)
[
p

3

]
≤ m+ (m− 1)

2m
3

and so
‖E‖
m
≤ 1 +

2(m− 1)
3

=
p

3
.

Consequently, by (7) and Theorem 2 for r = 3 we obtain

2 · 3m−1 − 3m−7

p
h−p <

2 · 3m−1 − ε3n−1

p
h−p = |det(B)| = |det(E)|(10)

≤
(
‖E‖
m

)m/2
≤
(
p

3

)m/2
,

because for p > 100 we have

2 · 3m−1 − ε3n−1 > 2 · 3m−1 − 3m−7.

The above inequality is obvious if ε = −1 or ε = 1 and m − n > 6. If
n = m− k, k ≤ 6 and p > 100, we have

0 ≡ 2 · 3m−1 − ε3n−1 ≡ 3m−k−1(2 · 3k − 1) 6≡ 0 (mod p),

because
6∏

k=1

(2 · 3k − 1) = 52 · 7 · 17 · 23 · 31 · 47 · 53 · 97 6≡ 0 (mod p),

if p > 100; a contradiction.
Now from (10) we have

3c−7h− < p

(
p

27

)m/2
,

where c = log3(2 ·36−1). Hence the corollary follows in the case when r = 3.
3. For r = 5 analysis analogous to that in the proof of Corollary in the

case r = 3 gives the Metsänkyla–Lepistö type inequality

h−p ≤ 2p
(
p

25

)m/2
.
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