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Two conjectures by Zhi-Hong Sun
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Let ε be an algebraic integer in Q(
√
d), where d > 1 is square-free, and

let p > 2 be a prime with p - d and p - N(ε), where N : Q(
√
d) → Q is the

norm map. It is well known that εp−1 ≡ 1 (mod p) if p ≡ 1 (mod 4) and
εp+1 ≡ N(ε) (mod p) if p ≡ 3 (mod 4).

The next problem is to find ε(p±1)/2 mod p. If
(
d
p

)
=
(N(ε)

p

)
= 1 then

(
ε
p

)
is defined and we have ε(p−1)/2 ≡

(
ε
p

)
(mod p) so the problem is equivalent

to finding the Legendre symbol
(
ε
p

)
. A particular case with a long history is

when ε = εd, the fundamental unit of Q(
√
d) and N(εd) = −1. The problem

of finding
(
εd
p

)
when N(εd) = −1 for primes p with

(−1
p

)
=
(
d
p

)
= 1 was first

considered in 1942, when Aigner and Reichardt showed that if p ≡ 1 (mod 8)
then ε2 = 1+

√
2 is a quadratic residue modulo p if and only if p = x2 +32y2

for some x, y ∈ Z. Various mathematicians have obtained similar results for
other fundamental units εd of norm −1. The problem was finally settled by
Z. H. Sun [S1], who determined the value of ε(p−(−1/p))/2 mod p, where ε
is an arbitrary integer in Q(

√
d), in the case when

(−d
p

)
= 1. Sun’s result,

just as the results obtained before him, is given in terms of x, y satisfying
f(x, y) = p, where f = AX2 + 2BXY + CY 2 is a quadratic form with
det f = B2 − AC = −k2d and k is a (bounded) positive integer. The fact
that p can be represented by one of these quadratic forms is ensured by the
fact that

(−d
p

)
= 1.

The next level of difficulty is to calculate ε(p−(−1/p))/4 mod p, again when(−d
p

)
= 1. In this paper we restrict ourselves to the case when p ≡ 3

(mod 4), i.e.
(−1
p

)
=
(
d
p

)
= −1, and we determine ε(p+1)/4 mod p. We solve

two conjectures by Z. H. Sun regarding the value of ε(p+1)/4
5 mod p, where

ε5 = (1 +
√

5)/2, for p ≡ 3, 7 (mod 20), and the value of ε(p+1)/8
3 mod p,

where ε3 = 2 +
√

3, for p ≡ 7 (mod 24). Apparently the second conjec-
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ture is one level of difficulty up because of the denominator 8. However, if
we note that 2 +

√
3 = (1 +

√
3)2/2 then the problem reduces to finding

(1 +
√

3)(p+1)/4 mod p.
The conjecture regarding (2+

√
3)(p+1)/8 is related to a problem involving

the sequence Sk given by S1 = 4, Sk+1 = S2
k − 2, from the Lucas–Lehmer

test, which is mentioned in [G, A3]. If Mp = 2p − 1 is a Mersenne prime
then p |Sp−1 = S2

p−2 − 2 so S2
p−2 ≡ 2 ≡ 2p+1 (mod 2p − 1), so Sp−2 ≡

±2(p+1)/2 (mod Mp). The problem is to determine the ± sign. We have
Sk = (2+

√
3)2

k−1
+(2−

√
3)2

k−1
= 2V2k−1 , where Vn is given by the formula

Vn + Un
√

3 = (2 +
√

3)n. Therefore we want to know the ± sign for which
2V(Mp+1)/8 = 2V2p−3 = Sp−2 ≡ ±2(p+1)/2 (mod Mp). Since Mp ≡ 7 (mod 8)
we have

( −1
Mp

)
= −1 and

(
2
Mp

)
= 1. Thus the ± sign equals

(Sp−2

Mp

)
=(V(Mp+1)/8

Mp

)
. Sun’s conjecture gives the quadratic residues mod p for both

V(p+1)/8 and U(p+1)/8 for any p ≡ 7 (mod 24) and it allows us to determine
(2 +
√

3)(p+1)/8 mod p. As a consequence, our ± sign is (−1)(x
2−4)/32, where

Mp = x2 + 3y2 with x, y ∈ Z.
The methods we use are from class field theory. Given a number field

F and a (possibly archimedian) prime p of F , for any x ∈ F we denote by
xp its image in Fp. When there is no danger of confusion we simply write
x instead of xp. If E/F is a finite abelian extension and P is a prime of E
lying over p then we denote by

( ·,E/F
p

)
: F×p → Gal(E/F ) the Artin map

and by (·, EP/Fp) : F×p → Gal(EP/Fp) the local Artin map. If we identify
Gal(EP/Fp) with its image in Gal(E/F ) then

(a,E/F
p

)
= (a,EP/Fp) for any

a ∈ F×p .

1. F(p+1)/4 and L(p+1)/4 mod p for p ≡ 3, 7 (mod 20). Let Fn, Ln be
the Fibonacci and Lucas sequences given by F0 = 0, F1 = 1 and Fn+1 =
Fn−1 + Fn and by L0 = 2, L1 = 1 and Ln+1 = Ln−1 + Ln. We have

Ln + Fn
√

5
2

=
(

1 +
√

5
2

)n
.

In [S1, Conjecture 5.2] Z. H. Sun proposed the following conjecture:

Conjecture 1.1 (Z. H. Sun, 2003). If p ≡ 3, 7 (mod 20) is a prime
with 2p = x2 + 5y2 for some integers x, y then

F(p+1)/4 ≡
{

2(−1)[(p−5)/10]10(p−3)/4 (mod p) if y ≡ ±(p− 1)/2 (mod 8),
−2(−1)[(p−5)/10]10(p−3)/4 (mod p) if y 6≡ ±(p− 1)/2 (mod 8).

By [SS, Corollary 2(iii)] we have

F(p+1)/4L(p+1)/4 = F(p+1)/2 ≡ 2(−1)[(p−5)/10]5(p−3)/4 (mod p).
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Therefore the conjecture above is equivalent to:

L(p+1)/4 ≡
{

(−2)(p+1)/4 (mod p) if y ≡ ±(p− 1)/2 (mod 8),
−(−2)(p+1)/4 (mod p) if y 6≡ ±(p− 1)/2 (mod 8).

We have p ≡ 3 (mod 4) and p ≡ 2, 3 (mod 5) so
(−1
p

)
=
(

5
p

)
= −1.

1.2. Since (Ln + Fn
√

5)/2 = εn, where ε := (1 +
√

5)/2, we have to
evaluate ε(p+1)/4 mod p. We have

(
5
p

)
= −1 so p is inert in Q(

√
5). Since p - ε

the conjugate of ε, ε := (1−
√

5)/2, is given by the Frobenius automorphism
ε = Φp(ε) ≡ εp (mod p). Thus εp+1 ≡ εε = −1 (mod p).

Note that (p− 1)/2 is odd so(
p+ 1,

p2 − 1
8

)
=
p+ 1

4

(
4,
p− 1

2

)
=
p+ 1

4
.

Thus if we also know ε(p
2−1)/8 mod p then we know ε(p+1)/4 mod p. More

precisely, if p ≡ 3 (mod 8) then

p+ 1
4

=
p2 − 1

8
− (p+ 1) · p− 3

8
so

ε(p+1)/4 = ε(p
2−1)/8(εp+1)−(p−3)/8 ≡ (−1)(p−3)/8ε(p

2−1)/8 (mod p),

while if p ≡ 7 (mod 8) then

p+ 1
4

= − p2 − 1
8

+ (p+ 1) · p+ 1
8

so

ε(p+1)/4 = ε−(p2−1)/8(εp+1)(p+1)/8 ≡ (−1)(p+1)/8ε−(p2−1)/8 (mod p).

We will obtain ε(p
2−1)/8 mod p in terms of some Hilbert symbol of or-

der 8. To do this we will construct a cyclic extension of order 8 of F :=
Q(
√

5).
Since

(−1
p

)
= −1 we have either

(
2
p

)
= 1 (if p ≡ 7 (mod 8)) or

(−2
p

)
= 1

(if p ≡ 3 (mod 8)). This implies that we can write 2p = u2 − 2v2 if p ≡ 7
(mod 8) or 2p = u2 + 2v2 if p ≡ 3 (mod 8).

Let F = Q(
√

5) and E = F (ζ) = F (i,
√

2), where ζ := ζ8 = (1 + i)/
√

2.
Note that the morphisms ζ 7→ ζk with k ∈ Z×8 behave as follows: ζ 7→ ζ

is the identity; ζ 7→ ζ3 is given by i 7→ −i and
√

2 7→ −
√

2; ζ 7→ ζ5 is given
by i 7→ i and

√
2 7→ −

√
2; ζ 7→ ζ7 is given by i 7→ −i and

√
2 7→

√
2.

Define A1 ∈ E by

A1 =
{

2p(x+ y
√

5 i)2(u+ v
√

2 i)4 if p ≡ 3 (mod 8),
2p(x+ y

√
5 i)6(u+ v

√
2)4 if p ≡ 7 (mod 8).
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Note that
√

2p /∈ E = Q(i,
√

5,
√

2) so A1 is not a square in E. For k ∈ Z×8
we denote by Ak the image of A1 under the automorphism ζ 7→ ζk from
Gal(E/F ).

Let L = E( 8
√
A1). Since µ8 ⊂ E and A1 is not a square in E we have

Gal(L/E) = 〈σ〉 ∼= Z8, where σ ∈ Gal(L/E) is given by 8
√
A1 7→ ζ 8

√
A1.

Lemma 1.3. The extension L/F is Galois and Gal(L/F ) ∼= Z×8 × Z8.

Proof. First we prove that L/F is normal. Define α1 = 8
√
A1. Let F be

some algebraic closure of F containing L and let α ∈ F be some conjugate
of α1 over F . Then α8 is a conjugate of α8

1 = A1 over F so it is of the form
Ak with k ∈ Z×8 . We show that for any k ∈ Z×8 , k 6= 1, we have Ak = α8

k,
where

α3 =
{
α3

1(x+ y
√

5 i)−1(u+ v
√

2 i)−1 if p ≡ 3 (mod 8),
α3

1 · 2p(x+ y
√

5 i)−3(u+ v
√

2)−2 if p ≡ 7 (mod 8),

α5 =
{
α5

1(x+ y
√

5 i)−1(u+ v
√

2 i)−3 if p ≡ 3 (mod 8),
α5

1(x+ y
√

5 i)−3(u+ v
√

2)−3 if p ≡ 7 (mod 8),

α7 =

{
2pα−1

1 =α7
1(x+ y

√
5 i)−2(u+ v

√
2 i)−4 if p≡3 (mod 8),

2p(u+ v
√

2)α−1
1 =α7

1(x+ y
√

5 i)−6(u+ v
√

2)−3 if p≡7 (mod 8).

The proof is straightforward and it uses the relations α8
1 = A1, 2p =

(x+y
√

5 i)(x−y
√

5 i) and 2p = (u+v
√

2 i)(u−v
√

2 i) or (u+v
√

2)(u−v
√

2),
corresponding to p ≡ 3 (mod 8) or p ≡ 7 (mod 8), respectively, and also the
way the morphisms ζ 7→ ζk from Gal(E/F ) act on

√
2 and i. For illustration

we give the argument for α5 when p ≡ 3 (mod 8). Since the morphism ζ 7→ ζ5

is given by i 7→ i and
√

2 7→ −
√

2 we have

A5 = 2p(x+ y
√

5 i)2(u− v
√

2 i)4 = (2p)5(x+ y
√

5 i)2(u+ v
√

2 i)−4

= A5
1(x+ y

√
5 i)−8(u+ v

√
2 i)−24 = α8

3,

where α5 = α5
1(x+ y

√
5 i)−1(u+ v

√
2 i)−3.

In all cases we have α8 = Ak = α8
k for some αk ∈ L, with k ∈ Z×8 .

Therefore α = ζ lαk for some l so α ∈ L. So the 32 conjugates of α1 over F
are ζ lαk with k ∈ Z×8 and l ∈ Z8.

Let φ ∈ Gal(L/F ). Then φ|E is of the form ζ 7→ ζk with k ∈ Z×8 . It follows
that φ(α1)8 = φ(A1) = Ak = α8

k so φ(α1) = ζ lαk for some l. Therefore the
32 elements of Gal(L/F ) are given by ζ 7→ ζk, α1 7→ ζ lαk with k ∈ Z×8 ,
l ∈ Z8. For k ∈ Z×8 we denote by τk the morphism ζ 7→ ζk, α1 7→ αk.

Let H = {τk | k ∈ Z×8 }. We now prove that H is a subgroup of Gal(L/F ),
the mapping k 7→ τk defines an isomorphism between Z×8 and H, and
Gal(L/F ) is the internal direct product of its subgroups H and Gal(L/E) =
〈σ〉. To do this we have to prove that H ∩ Gal(L/E) = {1}, τkσ = στk for
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k ∈ Z×8 , and τkτl = τkl for k, l ∈ Z×8 . (In fact, for the second assertion we
only need to prove that τ2

3 = τ2
5 = τ2

7 = 1 and τ3τ5 = τ7.)
If φ ∈ H ∩ Gal(L/E) then φ = τk = σl for some k ∈ Z×8 and l ∈ Z8.

It follows that αk = τk(α1) = σl(α1) = ζ lα1 so Ak = α8
k = (ζ lα1)8 = A1.

Hence k = 1 and we have φ = τ1 = 1.
For the second assertion we note that in all cases we have αk = αk1a

for some a ∈ E. Now τkσ(ζ) = τk(ζ) = ζk and στk(ζ) = σ(ζk) = ζk. Also
τkσ(α1) = τk(ζα1) = ζkαk and στk(α1) = σ(αk) = σ(αk1a) = (ζα1)ka =
ζkαk. So τkσ = στk.

The proof of the third assertion is more laborious as it involves many
cases. We first prove that τ3τ5 = τ7 when p ≡ 3 (mod 8). Since τk(ζ) = ζk

we have τ3τ5(ζ) = ζ15 = ζ7 = τ7(ζ). Also

τ3τ5(α1) = τ3(α5) = τ3(α5
1(x+ y

√
5 i)−1(u+ v

√
2 i)−3)

= α5
3(x− y

√
5 i)−1(u+ v

√
2 i)−3

= (α3
1(x+ y

√
5 i)−1(u+ v

√
2 i)−1)5(2p)−1(x+ y

√
5 i)(u+ v

√
2 i)−3

= α15
1 (2p)−1(x+ y

√
5 i)−4(u+ v

√
2 i)−8

= α7
1(x+ y

√
5 i)−2(u+ v

√
2 i)−4 = α7 = τ7(α1).

So τ3τ5 = τ7. (Recall that τ3|E is given by ζ 7→ ζ3, i.e. by i 7→ −i,
√

2 7→ −
√

2.
Also α8

1 = A1 = 2p(x+ y
√

5 i)2(u+ v
√

2 i)4.)
The proof of τkτl = τkl in all the other cases is quite straightforward if we

follow the pattern above. The reason why it always works is the following: We
have τkτl(ζ) = τk(ζ l) = ζkl. As seen above, this implies that τkτl(α1) is of the
form ζjαkl for some j. But in calculating τkτl(α1), as well as τkl(α1) = αkl,
ζ is not involved. (We only have the factors x ± y

√
5 i, u ± v

√
2 i (if p ≡ 3

(mod 8)), u± v
√

2 (if p ≡ 7 (mod 8)), 2p and α1.) Therefore we must have
j = 0. Hence τkτl is given by ζ 7→ ζkl, α1 7→ αkl so it is equal to τkl.

Consequently, Gal(L/F ) = H ×Gal(L/E) ∼= Z×8 × Z8.

Let K = LH . Then Gal(K/F ) ∼= Gal(L/F )/H = 〈σH〉 ∼= Z8, the iso-
morphism being given by φ|K 7→ φH. We denote by χ0 : Gal(K/F )→ µ8 the
isomorphism given by σk|K 7→ ζk. It induces a character χ : Gal(L/F )→ µ8

given by the composition with Gal(L/F ) → Gal(K/F ). For any σkτl ∈
Gal(L/F ) we have χ(σkτl) = ζk. We obtain∏

q

(
ε, L/F

q

)
= 1 so χ

(∏
q

(
ε, L/F

q

))
= 1.

Note that σk(α1) = ζkα1 so for any φ ∈ 〈σ〉 = Gal(L/E) we have
χ(φ) = φ(α1)/α1.
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Since
(

5
p

)
= −1 the extension F/Q is inert at p. Let p be the prime of F

lying over p, i.e. p = pOF . Now −1, 2 are units in Qp so they are in the square
class modulo p of either 1 or 5. In both cases they are squares in Fp. Therefore
the prime p splits completely in E = F (i,

√
2). Now (x+y

√
5 i)(x−y

√
5 i) =

2p and either (u + v
√

2 i)(u − v
√

2 i) = 2p or (u + v
√

2)(u − v
√

2) = 2p
(according as p ≡ 3 or 7 (mod 8)). So for every prime P of E lying over p
exactly one of x ± y

√
5 i and exactly one of u ± v

√
2 i or u ± v

√
2 belongs

to P. Of the four primes of E that lie over p we choose the one for which
x− y

√
5 i ∈ P, and u− v

√
2 i ∈ P or u− v

√
2 ∈ P, corresponding to p ≡ 3

or 7 (mod 8).
Denote by ∞± the two archimedian primes of F corresponding to the

embeddings F ↪→ R given by
√

5 7→ ±
√

5.

Lemma 1.4.

(i) χ

((
ε, L/F

p

))
≡ ε−(p2−1)/8 (mod P).

(ii) χ

((
ε, L/F

∞−

))
=
{

1 if p ≡ 3 (mod 8),
sgn(u) if p ≡ 7 (mod 8).

(iii) χ

((
ε, L/F

q

))
= 1 if q 6= p,∞− and q - 2.

Proof. (i) Since p splits in E we have [EP : Fp] = 1 so NEP/Fp
ε = ε so( ε,L/F

p

)
=
( ε,L/E

P

)
∈ Gal(L/E). It follows that

χ

((
ε, L/F

p

))
= χ

((
ε, L/E

P

))
=
(
ε, L/E

P

)
(α1)/α1

=
(
ε,A1

P

)
8

=
(
A1, ε

P

)−1

8

.

(Recall that L = E(α1) and we have α8
1 = A1 ∈ E and µ8 ⊂ E.)

Note that ε is a unit in EP so
(A1,ε

P

)
8
≡ ε(NP

ordP A1−1)/8 (mod P). But
EP
∼= Fp is an unramified extension of degree 2 of Qp so ordP p = 1 and

NP = p2. Since also x+y
√

5 i /∈ P and either u+v
√

2 i /∈ P or u+v
√

2 /∈ P,
depending on whether p ≡ 3 or 7 (mod 8), we get ordPA1 = 1. There-
fore

χ

((
ε, L/F

p

))
=
(
A1, ε

P

)−1

8

≡ ε−(p2−1)/8 (mod P).

(ii) Let q =∞− and let Q be the infinite prime of E = F (ζ) lying over q
corresponding to an embedding of E in C given by ζ 7→ ζ (i.e. the embedding
of E = Q(

√
5, i,
√

2) in C given by
√

5 7→ −
√

5, i 7→ i,
√

2 7→
√

2). Finally,
we extend Q to a prime Q of L.
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We have Fq
∼= R and EQ

∼= LQ ∼= C. Moreover, εq = (1−
√

5)/2 < 0
so if φ =

( ε,L/F
q

)
then φ corresponds to c, the conjugacy automorphism

from Gal(LQ/Fq) ∼= Gal(C/R). So we want to know what automorphism
φ ∈ Gal(L/F ) corresponds to c ∈ Gal(LQ/Fq). First note that φ(ζ) = c(ζ) =
ζ = ζ7 = τ7(ζ). Thus φ|E = τ7|E . It follows that φ ∈ τ7Gal(L/E) = τ7〈σ〉.
So φ = σkτ7 for some k ∈ Z8. We have χ(φ) = ζk.

If p ≡ 3 (mod 8) then φ(α1) = σkτ7(α1) = σk(2pα−1
1 ) = 2pζ−kα−1

1 . On
the other hand, φ(α1) = c(α1) = α1. Hence α1α1 = 2pζ−k. Since α1α1 ∈ R+

and ζ−k ∈ µ8 we must have ζ−k = 1 so χ
(( ε,L/F

q

))
= ζk = 1, as claimed. The

proof in the case when p ≡ 7 (mod 8) is similar but this time α7 = 2p(u +
v
√

2)α1 so we get α1α1 = 2p(u+ v
√

2)ζ−k. So α1α1 ∈ R+ and ζ−k ∈ µ8 will
imply this time ζ−k = sgn(u+v

√
2). Thus χ

(( ε,L/F
q

))
= ζk = sgn(u+v

√
2).

But u2− 2v2 = 2p > 0 so |u| > |v
√

2|. Hence sgn(u+ v
√

2) = sgn(u) and we
get the desired result.

(iii) If q = ∞+ then εq = (1 +
√

5)/2 > 0 so
( ε,L/F

q

)
= 1L. If q is

non-archimedian lying over q 6= 2, p then q does not ramify in E = F (ζ).
If Q is a prime of E lying over q then Q does not ramify in L = E( 8

√
A1)

because A1 is a unit in EQ. This happens because A1 divides a power of 2p
and (2p, q) = 1. (If p ≡ 3 (mod 8) we have x+ y

√
5 i | 2p and u+ v

√
2 i | 2p

so A1 = 2p(x+y
√

5 i)2(u+v
√

2 i)4 divides (2p)7. Similarly, if p ≡ 7 (mod 8)
then A1 = 2p(x + y

√
5 i)6(u + v

√
2)4 divides (2p)11.) Hence q does not

ramify in L. Since ε is a unit in F we have again
( ε,L/F

q

)
= 1L. Therefore

χ
(( ε,L/F

q

))
= 1.

1.5. By Lemma 1.4 the relation
∏

q χ
(( ε,L/F

q

))
= 1 implies

ε(p
2−1)/8 ≡


χ

((
ε, L/F

q

))
(mod P) if p ≡ 3 (mod 8),

sgn(u)χ
((

ε, L/F

q

))
(mod P) if p ≡ 7 (mod 8),

where q is the only prime of F lying over 2. (The prime 2 is inert in F =
Q(
√

5).)

Unfortunately, calculating the local Artin map
( ε,L/F

q

)
is very diffi-

cult since q ramifies in L. In order to circumvent this impediment we
show that if p′ ≡ 3, 7 (mod 20) is another prime and x′, y′, u′, v′, L′, χ′ are
the x, y, u, v, L, χ corresponding to p′, and p, x, y, u, v are close enough to
p′, x′, y′, u′, v′ in the 2-adic topology, then χ

(( ε,L/F
q

))
= χ

(( ε,L′/F
q

))
. Next

we show that if p ≡ p′ (mod 16) and y ≡ ±y′ (mod 8), then our conjecture
is true for p iff it is true for p′. Hence we reduce the proof to a finite number
of p’s.



106 C. N. Beli

Lemma 1.6. Let k be a finite extension of Q2, O its ring of integers, m
the maximal ideal of O, and O× = O \m the group of units. Let j ≥ 1.

(i) If α ∈ 2j+1m then there is β ∈ 2m such that 1 + α = (1 + β)2
j
.

(ii) If α ∈ 2j+1O× and the extension k/Q2 is totally ramified then there
is β ∈ 2m such that 1 + α = 52j−1

(1 + β)2
j
.

Proof. We use the following well known result: If α ∈ 4m then 1 + α
is a square in k and 1 + α = (1 + β)2 for some β with βO = 1

2αO. More
precisely, β ∈ 1

2α(1 + m). One way to prove this is to show that there is a
sequence β0, β1, . . . with β0 = 1

2α such that (1 + βn)2 ≡ 1 +α (mod αmn+1)
and βn ≡ βn+1 (mod 1

2αmn+1) and then take β = limβn.
We use induction on j. Take j = 1. For (i) we have α ∈ 4m and, by the

result above, 1 +α = (1 +β)2 for some β such that βO = 1
2αO. But α ∈ 4m

so β ∈ 2m. For (ii) we have α ∈ 4O× so α = 4η for some η ∈ O×. We now
use the fact that k/Q2 is a totally ramified extension so its inertia degree
[O/m : Z/2Z] is 1. Thus O/m ∼= Z/2Z = {0̂, 1̂}. Since η /∈ m we have η̂ 6= 0̂
so η̂ = 1̂. It follows that η ≡ 1 (mod m), which implies 1 + α = 1 + 4η ≡ 5
(mod 4m) so 5−1(1 + α) ≡ 1 (mod 4m). Hence 5−1(1 + α) = 1 + α1 for
some α1 ∈ 4m. By (i) we have 1 + α1 = (1 + β)2 for some β ∈ 2m so
1 + α = 5(1 + β)2.

Let now j > 1. We have α ∈ 2j+1m or 2j+1O×. In both cases α ∈
2j+1O ⊆ 4m. This implies that 1 + α = (1 + γ)2 for some γ such that
γO = 1

2αO. In the case of (i) this implies γ ∈ 2jm, while in the case of (ii),
γ ∈ 2jO×. By the induction hypothesis we have 1 + γ = (1 + β)2

j−1
or

52j−2
(1 + β)2

j−1
, respectively, for some β ∈ 2m. Since 1 + α = (1 + γ)2 we

get the desired results.

1.7. Suppose now that p, p′ are two primes ≡ 3, 7 (mod 20) and assume
that p ≡ p′ (mod 16) and y ≡ ±y′ (mod 8).

From x2 + 5y2 = u2± 2v2 = 2p we see that x, y, v are odd and u is even.
If p ≡ 3 (mod 8) then u2 = 2p− 2v2 ≡ 2 · 3− 2 · 1 = 4 (mod 8) so 4 - u.
If p ≡ 7 (mod 8) then u2 = 2p+ 2v2 ≡ 2 · 3 + 2 · 1 ≡ 0 (mod 8) so 4 |u.

We reduce to the case when 8 |u. If u ≡ 4 (mod 8) then we replace u, v with
u1 = 3u+ 4v and v1 = 2u+ 3v. (3 + 2

√
2 is a unit of norm 1 in Z[

√
2] and

(u + v
√

2)(3 + 2
√

2) = u1 + v1
√

2.) Since u ≡ 4 (mod 8) and v is odd we
have 8 | 3u+ 4v = u1.

Similarly for x′, y′, u′, v′.
Since x, y, v, x′, y′, v′ are all odd we may assume, after multiplying x, y, v

with ±1, that x, y, v ≡ x′, y′, v′ (mod 4). If p ≡ p′ ≡ 3 (mod 8) then
u/2, u′/2 are odd, so after multiplying u with ±1, we may assume that
u/2 ≡ u′/2 (mod 4) so u ≡ u′ (mod 8). The same happens if p ≡ p′ ≡ 7
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(mod 8), when both u, u′ are multiples of 8. Since x ≡ x′ (mod 4) and x
is odd we have x + x′ ≡ 2x ≡ 2 (mod 4), and similarly for y + y′ and
v + v′.

We have 2p ≡ 2p′ (mod 32) so x2 + 5y2 ≡ x′2 + 5y′2 (mod 32) and
u2 ± 2v2 ≡ u′2 ± 2v′2 (mod 32).

If p ≡ p′ ≡ 3 (mod 8) then u/2 and u′/2 are odd so u2/4 ≡ u′2/4 ≡ 1
(mod 8). Thus u2 ≡ u′2 (mod 32). The same happens if p ≡ 7 (mod 8), when
8 |u, u′. Together with u2 ± 2v2 ≡ u′2 ± 2v′2 (mod 32), this implies v2 ≡ v′2
(mod 16). Since 16 | v2 − v′2 and v + v′ ≡ 2 (mod 4) we have 8 | v − v′ so
v ≡ v′ (mod 8).

Since y ≡ y′ (mod 4) and y ≡ ±y′ (mod 8) we have y ≡ y′ (mod 8).
This implies that y2 ≡ y′2 (mod 16). (We have 2 | y + y′ and 8 | y − y′ so
16 | y2 − y′2.) Since x2 + 5y2 ≡ x′2 + 5y′2 (mod 32) and y2 ≡ y′2 (mod 16)
we have x2 ≡ x′2 (mod 16). Thus 16 |x2 − x′2 and x + x′ ≡ 2 (mod 4) so
8 |x− x′. Let x′ − x = 8a and y′ − y = 8b. Then

x2 + 5y2 ≡ x′2 + 5y′2 = (x+ 8a)2 + 5(y + 8b)2

≡ x2 + 16xa+ 5y2 + 80yb (mod 32)

so 2 |xa+ 5yb. But x, y are odd so we get a ≡ b (mod 2).
In conclusion, we reduced to the case when x, y, u, v≡x′, y′, u′, v′ (mod 8),

and if x− x′ = 8a and y − y′ = 8b, then a ≡ b (mod 2). Also x, y, v, x′, y′, v′

are odd, and if p ≡ p′ ≡ 3 (mod 8), then u/2, u′/2 are odd as well.

Note that 2 is inert in F = Q(
√

5) and is totally ramified in Q(ζ) =
Q(i,
√

2), so in E = F (ζ) = Q(
√

5, i,
√

2) there is only one prime Q over 2
with ramification index eQ/2 = 4. Let q1, q2 be the primes of Q(

√
5 i) and

Q(
√

2 i) (if p ≡ 3 (mod 8)) or Q(
√

2) (if p ≡ 7 (mod 8)) lying over 2. We
have eq1/2 = eq2/2 = 2 so eQ/q1

= eQ/q2
= 2.

Denote by Oq the ring of integers in Fq and by q̃ = qOq the maximal
ideal of Oq. We do the same for q1, q2,Q. Also denote by O2 the ring of
integers in Q2 and by 2̃ = 2O2 the maximal ideal of O2.

Lemma 1.8. If A′1 is the A1 corresponding to p′ then A′1 = (
√

5
s
t)8A1

for some integer s and some t ∈ 1 + 2Q̃.

Proof. If p ≡ 3 (mod 8) then q̃2 is generated by
√

2 i. Since u is even
and v is odd we have ordeq2

(u + v
√

2 i) = 1. Now 8 |u′ − u and 8 | v′ − v so
(u′ + v′

√
2 i)− (u+ v

√
2 i) = (u′ − u) + (v′ − v)

√
2 i ∈ 8Oq2 . Together with

ordeq2
(u+ v

√
2 i) = 1, this implies that

u′ + v′
√

2 i
u+ v

√
2 i
− 1 ∈ 8q̃−1

2 = 4q̃2.

By Lemma 1.6(i) applied to k = Q(
√

2 i)q2 , we get
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u′ + v′
√

2 i
u+ v

√
2 i

= t21 with t1 ∈ 1 + 2q̃2 ⊂ 1 + 2Q̃.

Similarly for (u′ + v′
√

2)/(u+ v
√

2) when p ≡ 7 (mod 8).
We have NQ(

√
5 i)q1/Q2

(x+y
√

5 i)=2p so ordeq1
(x+y

√
5 i)= 1

2 ordeq1
2p=1.

Now (x′+ y′
√

5 i)− (x+ y
√

5 i) = 8a+ 8b
√

5 i, where a, b ∈ Z have the same
parity. But NQ(

√
5 i)q1/Q2

(a+ b
√

5 i) = a2 + 5b2 is even so a+ b
√

5 i ∈ q̃1. It

follows that (x′+y′
√

5 i)−(x+y
√

5 i) ∈ 8q̃1, which, together with ordeq1
(x+

y
√

5 i) = 1, implies that

x′ + y′
√

5 i
x+ y

√
5 i
− 1 ∈ 8Oq1 .

By Lemma 1.6(i) and (ii) applied to k = Q(
√

5 i)q1 , this implies that

x′ + y′
√

5 i
x+ y

√
5 i

= 52s2t42, where s2 ∈ {0, 1}, t2 ∈ 1 + 2q̃1 ⊂ 1 + 2Q̃.

Since p ≡ p′ (mod 16) we have p′/p ∈ 1 + 16O2. By Lemma 1.6(i)
and (ii) applied to k = Q2, we have p′/p = 54s3t83 where s3 ∈ {0, 1} and
t3 ∈ 1 + 22̃ ⊂ 1 + 2Q̃.

If p ≡ 3 (mod 8) then

A′1/A1 = 54s3t83(52s2t42)2(t21)4 = (
√

5
s
t)8

with s = s3 + s2 and t = t3t2t1. If p ≡ 7 (mod 8) then

A′1/A1 = 54s3t83(52s2t42)6(t21)4 = (
√

5
s
t)8

with s = s3 +3s2 and t = t3t
3
2t1. Since t1, t2, t3 belong to 1+2Q̃, so does t.

Lemma 1.9. We have

χ

((
ε, L/F

q

))
= χ′

((
ε, L′/F

q

))
.

Proof. Let φ =
( ε,L/F

q

)
. Then φ = (ε, LQ/Fq), where Q is a prime of L

over Q, so over q. Since −1, 2 ∈ Q2 and NQ(
√

5)q/Q2
(ε) = −1 we have(

ε,−1
q

)
=
(
−1,−1

2

)
= −1 and

(
ε, 2
q

)
=
(
−1, 2

2

)
= 1

so φ(i) = −i and φ(
√

2) =
√

2. It follows that φ(ζ) = ζ = ζ−1 = ζ7 = τ7(ζ).
So φ|E = τ7|E , which implies that φ ∈ τ7Gal(L/E) = τ7〈σ〉. So φ = σkτ7 for
some k ∈ Z8. We have χ(φ) = χ(σkτ7) = ζk.

We have τ7(α1) = α7 = 2pα−1
1 or 2p(u + v

√
2)α−1

1 , corresponding to
p ≡ 3 or 7 (mod 8). So φ(α1) = σkτ7(α1) = σk(2pα−1

1 ) = 2pζ−kα−1
1 or

φ(α1) = 2p(u+ v
√

2)ζ−kα−1
1 , respectively.
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We make the same reasoning for p′. Denote by φ′,Q′, k′ the φ,Q, k cor-
responding to p′. Our goal is to prove that ζk = ζk

′
.

We have LQ = EQ(α1), α8
1 = A1 ∈ EQ, and µ8 ⊂ EQ. It follows that LQ

is the splitting field of X8−A1 ∈ EQ[X]. Similarly L′Q′ is the splitting field
of X8 − A′1. By Lemma 1.8 we have A′1 = B8A1, where B =

√
5
s
t ∈ EQ,

so L′Q′ ∼= LQ. Let ψ : L′Q′ → LQ be an isomorphism with ψ|EQ
= 1EQ

. We
have (ψ(α′1))8 = ψ(A′1) = A′1 = B8A1 = (Bα1)8 so ψ(α′1) = ζ lBα1 for some
integer l.

Now φ = (ε, ψ(L′Q′)/EQ) = ψ(ε, L′Q′/EQ)ψ−1 = ψφ′ψ−1 so φψ = ψ′φ.
In particular, φ(ψ(α′1)) = ψ(φ′(α′1)). But if p ≡ 3 (mod 8) then

φ(ψ(α′1)) = φ(ζ lBα1) = ζ−lφ(B) · 2pζ−kα−1
1 ,

ψ(φ′(α′1)) = ψ(2p′ζ−k
′
α′1
−1) = 2p′ζ−k

′
ζ−lB−1α−1

1 .

It follows that ζk
′−k = p′

p (Bφ(B))−1. We have B =
√

5
s
t so Bφ(B) =

5stφ(t). By Lemma 1.8, t belongs to 1 + 2Q̃ and so does its conjugate, φ(t).
Since also 5 ∈ 1+4O2 ⊂ 1+2Q̃ we get Bφ(B) ∈ 1+2Q̃, which, together with
p′/p ∈ 1 + 16O2 ⊂ 1 + 2Q̃, implies ζk

′−k ∈ 1 + 2Q̃. By a similar reasoning,
if p ≡ 7 (mod 8) we have

ζk
′−k =

p′

p
· u
′ + v′

√
2

u+ v
√

2
(Bφ(B))−1.

Since
u′ + v′

√
2

u+ v
√

2
∈ 1 + 4q̃2 ⊂ 1 + 2Q̃

(see the proof of Lemma 1.8) we get again ζk
′−k ∈ 1 + 2Q̃.

We have ζk
′−k ∈ 1 + 2Q̃ so 1− ζk′−k ∈ 2Q̃, which implies ζk

′−k = 1. (If
η ∈ µ8, η 6= 1, then 1− η | 2 so 1− η /∈ 2Q̃.) Thus ζk

′
= ζk.

Lemma 1.10.

(i) If p ≡ 3 (mod 8) then(
x

p

)
=
(
x, 14

2

)(
2p
5

)
4

,

(
y

p

)
=
(
y, 6
2

)
,(

u

p

)
=
(
u, 3
2

)
,

(
v

p

)
=
(
v, 6
2

)
.

(ii) If p ≡ 7 (mod 8) then(
x

p

)
=
(
x, 6
2

)(
2p
5

)
4

,

(
y

p

)
=
(
y, 14

2

)
,(

u

p

)
= sgn(u),

(
v

p

)
=
(
v, 14

2

)
.
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Proof. Note that p - xyuv.
Let q 6= 2, 5, p be a prime. If q |x, then 2p = x2 + 5y2 ≡ 5y2 (mod q).

Hence
(10p
q

)
= 1, which implies

(x,10p
q

)
= 1. The same happens if q - x,

when both x and 10p are units in Qq. We also have 10p > 0 so
(x,10p
∞
)

= 1.
By Hilbert’s reciprocity law we get(

x

p

)
=
(
x, 10p
p

)
=
(
x, 10p

2

)(
x, 10p

5

)
.

But 5 - x so
(x,10p

5

)
=
(
x
5

)
. Since 2p = x2 + 5y2 ≡ x2 (mod 5) and

(−1
5

)
= 1,

the quartic residue symbol
(2p

5

)
4

is defined and is equal to
(
x
5

)
. Hence(

x

p

)
=
(
x, 10p

2

)(
2p
5

)
4

.

But if p ≡ 3 or 7 (mod 8) then modulo Q×2
2 we have 10p = 14 or 6,

respectively. This yields the formulas for
(
x
p

)
in (i) and (ii).

Similarly if q 6= 2, p is a prime then either q | y so 2p = x2 + 5y2 ≡ x2

(mod q) so
(2p
q

)
= 1 so

(y,2p
q

)
= 1, or q - y so again

(y,2p
q

)
= 1. Also 2p > 0

so
(y,2p
∞
)

= 1. Hence
(y
p

)
=
(y,2p

p

)
=
(y,2p

2

)
. By the same proof

(
v
p

)
=
(v,2p

2

)
(in both cases when u2 ± 2v2 = 2p). But if p ≡ 3 or 7 (mod 8) then 2p = 6
or 14, respectively, in Q×2 /Q

×2
2 . This gives the formulas for

(y
p

)
and

(
v
p

)
in

(i) and (ii).
If p ≡ 3 (mod 8) then for any prime q 6= 2, p we have either q |u so

2p ≡ u2 + 2v2 ≡ 2v2 (mod p) and so
(p
q

)
= 1 so

(u,p
q

)
= 1, or q - u and again(u,p

q

)
= 1. Similarly if p ≡ 7 (mod 8) then 2p = u2 − 2v2 implies

(u,−p
q

)
= 1

for q 6= 2, p prime. If p ≡ 3 (mod 8) then p > 0 so
(u,p
∞
)

= 1 and so(
u

p

)
=
(
u, p

p

)
=
(
u, p

2

)
=
(
u, 3
2

)
.

If p ≡ 7 (mod 8) then −p ∈ Q×2
2 so

(u,−p
2

)
= 1. We get(

u

p

)
=
(
u,−p
p

)
=
(
u,−p
∞

)
= sgn(u).

Remark 1.11. If s, t are p-adic units and s ≡ ±t (mod p) then

s ≡
(
st

p

)
t (mod p).

Indeed, if s ≡ t (mod p) then
(
st
p

)
= 1, while if s ≡ −t (mod p) then(

st
p

)
=
(−1
p

)
= −1. Also note that, since

(−1
p

)
= −1, we have

(
α
p

)
= α if

α ∈ {±1}.
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Lemma 1.12. Let α, β ∈ {±1} and let s, t be integers in Qp such that
s+ t

√
5 ≡ α+βi√

2
(mod P̃).

(i) If p ≡ 3 (mod 8) then

s ≡ −2(p−3)/4

(
u, 3
2

)(
v, 6
2

)
β (mod p),

t ≡ −10(p−3)/4

(
x, 14

2

)(
y, 6
2

)(
u, 3
2

)(
v, 6
2

)(
2p
5

)
4

α (mod p).

(ii) If p ≡ 7 (mod 8) then

s ≡ 2(p−3)/4

(
v, 14

2

)
sgn(u)α (mod p),

t ≡ 10(p−3)/4

(
x, 6
2

)(
y, 14

2

)(
v, 14

2

)(
2p
5

)
4

sgn(u)β (mod p).

Proof. (i) We have p - xyuv and x− y
√

5 i, u− v
√

2 i ∈ P̃ so x ≡ y
√

5 i
(mod P̃) and u ≡ v

√
2 i (mod P̃). It follows that

i√
2
≡ −v

u
(mod P̃),

1√
2
≡ − yv

xu

√
5 (mod P̃).

Hence

s+ t
√

5 ≡ α+ βi√
2
≡ −α yv

xu

√
5− β v

u
(mod P̃).

Since both sides belong to Fp, the congruence will also hold modulo p̃. This
implies

s ≡ −β v
u

(mod p), t ≡ −α yv
xu

(mod p).

We have

s ≡ −β v
u
≡ βi√

2
(mod P̃), t

√
5 ≡ −α yv

xu

√
5 ≡ α√

2
(mod P̃).

Taking squares yields s2 ≡ −1
2 (mod P̃) and 5t2 ≡ 1

2 (mod P̃) so t2 ≡ 1
10

(mod P̃). Since all sides belong to Qp, these congruences will also hold mod-
ulo p. It follows that

(−2
p

)
=
(

10
p

)
= 1 and so (−2)(p−1)/2 ≡ 10(p−1)/2 ≡ 1

(mod p). Thus s2 ≡ 1
−2 ≡ ((−2)(p−3)/4)2 (mod p) so s ≡ ±(−2)(p−3)/4 and

similarly t ≡ ±10(p−3)/4 (mod p).
By Lemma 1.10 and Remark 1.11 we have

s ≡
(

(−2)(p−3)/4s

p

)
(−2)(p−3)/4 =

(
s

p

)
2(p−3)/4

=
(
−uvβ
p

)
2(p−3)/4 = −2(p−3)/4

(
u, 3
2

)(
v, 6
2

)
β (mod p).
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(Note that (p− 3)/4 is even.) Similarly

t ≡
(

10(p−3)/4t

p

)
10(p−3)/4 =

(
t

p

)
10(p−3)/4 =

(
−xyuvα

p

)
10(p−3)/4

= −10(p−3)/4

(
x, 14

2

)(
y, 6
2

)(
u, 3
2

)(
v, 6
2

)(
2p
5

)
4

α (mod p).

If p ≡ 7 (mod 8) then again x ≡ y
√

5 i (mod P̃) but u ≡ v
√

2 (mod P̃).
So this time

1√
2
≡ v

u
(mod P̃),

i√
2
≡ − yv

xu

√
5.

We get

s+ t
√

5 ≡ v

u
α− yv

xu

√
5 (mod P̃)

so
s ≡ v

u
α (mod p) and t ≡ − yv

xu
β (mod p).

Now

s ≡ α v
u
≡ α√

2
(mod P̃), t

√
5 ≡ −β yv

xu

√
5 ≡ βi√

2
(mod P̃).

Just as for the case when p ≡ 3 (mod 8), we get s2 ≡ 1
2 (mod p) and

5t2 ≡ −1
2 (mod p) and so t2 ≡ − 1

10 (mod p), which, by the same argument,
will imply

s ≡
(
s

p

)
2(p−3)/4 ≡

(
uvα

p

)
=
(
v, 14

2

)
sgn(u)α (mod p)

and

t ≡
(
t

p

)
(−10)(p−3)/4 ≡ −

(
−xyuvβ

p

)
10(p−3)/4

= 10(p−3)/4

(
x, 6
2

)(
y, 14

2

)(
v, 14

2

)(
2p
5

)
4

sgn(u)β (mod p),

as claimed. (Note that this time (p− 3)/4 is odd so (−10)(p−3)/4 =
−10(p−3)/4.)

Lemma 1.13. We have

F(p+1)/4 ≡ 2 · 10(p−3)/4

(
2p
5

)
4

A (mod p), L(p+1)/4 ≡ 2(p+1)/4B (mod p),

where A,B ∈ {±1} depend only on p mod 16 and ±y mod 8.

Proof. As seen in 1.2, εp+1 ≡ −1 (mod p). This congruence also holds
modulo P so ε(p+1)/4 ≡ η (mod P) for some primitive η ∈ µ8.
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By 1.2 we have

ε(p+1)/4 ≡

{
(−1)(p−3)/8ε(p

2−1)/8 (mod p) if p ≡ 3 (mod 8),
(−1)(p+1)/8ε−(p2−1)/8 (mod p) if p ≡ 7 (mod 8).

These congruences also hold modulo P. Together with 1.5 they imply
that ε(p+1)/4 ≡ ν (mod P), where ν ∈ µ8 is given by

ν =


(−1)(p−3)/8χ

((
ε, L/F

q

))
if p ≡ 3 (mod 8),

(−1)(p+1)/8 sgn(u)χ
((

ε, L/F

q

))−1

if p ≡ 7 (mod 8).

It follows that η ≡ ν (mod P), which implies that η = ν. (If η1, η2 ∈ µ8 and
η1 ≡ η2 (mod P) then η1 = η2 since otherwise η1− η2 | 2 so η1− η2 /∈ P.) In
particular, since η = ν is primitive in µ8, so is χ

(( ε,L/F
q

))
.

Let χ
(( ε,L/F

q

))
= (α+ βi)/

√
2. We have

L(p+1)/4

2
+
F(p+1)/4

2

√
5 = ε(p+1)/4 ≡ η (mod P̃),

where
η = (−1)(p−3)/8 α+ βi√

2
if p ≡ 3 (mod 8)

and

η = (−1)(p+1)/8 sgn(u)
(
α+ βi√

2

)−1

= (−1)(p+1)/8 sgn(u)
(
α− βi√

2

)
if p ≡ 7 (mod 8). By Lemma 1.12 this implies that
F(p+1)/4

2
≡ 10(p−3)/4

(
2p
5

)
4

A (mod p),
L(p+1)/4

2
≡ 2(p−3)/4B (mod p),

where A,B ∈ {±1} are given by

A =


−(−1)(p−3)/8

(
x, 14

2

)(
y, 6
2

)(
u, 3
2

)(
v, 6
2

)
α if p ≡ 3 (mod 8),

−(−1)(p+1)/8

(
x, 6
2

)(
y, 14

2

)(
v, 14

2

)
β if p ≡ 7 (mod 8),

and

B =


−(−1)(p−3)/8

(
u, 3
2

)(
v, 6
2

)
β if p ≡ 3 (mod 8),

(−1)(p+1)/8

(
v, 14

2

)
α if p ≡ 7 (mod 8).

We still have to prove that A,B depend only on p mod 16 and ±y mod 8.
Suppose that p ≡ p′ (mod 16) and y ≡ ±y′ (mod 8). Denote by α′, β′, A′, B′

the α, β,A,B corresponding to p′. We have to prove that A = A′ and
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B = B′. By 1.7 we can restrict ourselves to the case when x, y, u, v ≡
x′, y′, u′, v′ (mod 8). Also x, y, v, x′, y′, v′ are odd and, if p ≡ 3 (mod 8),
then u/2, u′/2 are odd integers. This implies that xx′, yy′, vv′ ∈ Q×2

2 . More-
over, if p ≡ 3 (mod 8), then u/2, u′/2 are odd and u/2 ≡ u′/2 (mod 4) so
uu′ ∈ Q×2

2 ∪ 5Q×2
2 .

To prove that A = A′ we show that the various factors that occur in
A are equal to the similar factors from A′, and similarly for B = B′. By
Lemma 1.9 we have χ

(( ε,L/F
q

))
= χ′

(( ε,L′/F
q

))
so α = α′ and β = β′.

If p ≡ p′ ≡ 3 (mod 8) then p ≡ p′ (mod 16) implies that (−1)(p−3)/8 =
(−1)(p

′−3)/8. From xx′, yy′, vv′ ∈ Q×2
2 and uu′ ∈ Q×2

2 ∪ 5Q×2
2 we also have(

xx′, 14
2

)
=
(
yy′, 6

2

)
=
(
uu′, 3

2

)
=
(
vv′, 6

2

)
= 1

so (
x, 14

2

)
=
(
x′, 14

2

)
,

(
y, 6
2

)
=
(
y′, 6

2

)
,(

u, 3
2

)
=
(
u′, 3

2

)
,

(
v, 6
2

)
=
(
v′, 6

2

)
.

Together with α = α′ and β = β′, these imply A = A′ and B = B′.
If p ≡ p′ ≡ 7 (mod 8) then p ≡ p′ (mod 16) implies that (−1)(p−3)/8 =

(−1)(p
′−3)/8 and xx′, yy′, vv′ ∈ Q×2

2 implies that(
xx′, 6

2

)
=
(
yy′, 14

2

)
=
(
vv′, 14

2

)
= 1

so (
x, 6
2

)
=
(
x′, 6

2

)
,

(
y, 14

2

)
=
(
y′, 14

2

)
,

(
v, 14

2

)
=
(
v′, 14

2

)
.

Together with α = α′ and β = β′, these imply A = A′ and B = B′.

Proof of Conjecture 1.1. Note that the factor (−1)[(p−5)/10] which ap-
pears in the expression for F(p+1)/4 mod p is equal to −

(2p
5

)
4
. (If p ≡ 3

(mod 20) they are both −1; if p ≡ 7 (mod 20) they are both 1.) There-
fore Sun’s conjecture states that F(p+1)/4 ≡ 2 · 10(p−3)/4

(2p
5

)
4
A (mod p) and

L(p+1)/4 ≡ 2(p+1)/4B (mod p) where

A =

{
−1 if y ≡ ±p−1

2 (mod 8),
1 if y 6≡ ±p−1

2 (mod 8),

B =

{
(−1)(p+1)/4 if y ≡ ±p−1

2 (mod 8),
(−1)(p−3)/4 if y 6≡ ±p−1

2 (mod 8).

Obviously A,B defined this way depend only on p mod 16 and ±y mod 8.
In view of Lemma 1.13 the conjecture has to be verified only for a set of
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primes p such that p covers all the possible remainders modulo 16, namely
3, 7, 11, 15, and ±y covers the odd remainders modulo 8, i.e. ±1 and ±3.
One can check that 3, 7, 23, 43, 47, 67, 107, 127 cover all eight possibilities.
(We have 2 · 3 = 12 + 5 · 12, 2 · 7 = 32 + 5 · 12, 2 · 23 = 12 + 5 · 32,
2 · 43 = 92 + 5 · 12, 2 · 47 = 72 + 5 · 32, 2 · 67 = 32 + 5 · 52, 2 · 107 = 132 + 5 · 32

and 2 · 127 = 32 + 5 · 72.) But Sun checked the conjecture for primes up to
3000, including these.

2. (2 +
√

3)(p+1)/8 mod p when p ≡ 7 (mod 24). Let

Vn + Un
√

3 = (2 +
√

3)(p+1)/4.

Conjecture 2.1 (Z. H. Sun, 1988). If p is a prime, p ≡ 7 (mod 24),
and x, y ∈ Z with x ≡ 1 (mod 3) such that x2 + 3y2 = p, then(

U(p+1)/8

p

)
= (−1)((x+4)2−4)/32,

(
V(p+1)/8

p

)
= (−1)(x

2−4)/32.

Note that x2 + 3y2 = p ≡ 7 (mod 8) implies that y is odd and x ≡ 2
(mod 4). Therefore

(−1)((−x+4)2−4)/32 = −(−1)((x+4)2−4)/32,

(−1)((−x)
2−4)/32 = (−1)(x

2−4)/32.

Since also
(−x

3

)
= −

(
x
3

)
we can remove the condition x ≡ 1 (mod 3),

provided that we replace (−1)((x+4)2−4)/32 by (−1)((x+4)2−4)/32
(
x
3

)
. (If x ≡ 2

(mod 3) then replacing x by −x will not change the outcome of the two
formulas.)

By Lemma 2.11 these will yield some formula for (2 +
√

3)(p+1)/8 mod p:

U(p+1)/8 ≡ −(−1)((x+4)2−4)/326(p−3)/4

(
x

3

)
(mod p),

V(p+1)/8 ≡ (−1)(x
2−4)/322(p−3)/4 (mod p).

An alternative formula for (2 +
√

3)(p+1)/8 mod p is provided in [L, Ex-
ercise 9.9, p. 315], but it also involves writing p as p = c2 + 6d2 = e2 − 2f2

with c, d, e, f ∈ Z.
We will also prove a related result regarding (2+

√
3)(p+5)/8 mod p when

p ≡ 19 (mod 24).

Theorem 2.2. If p ≡ 19 (mod 24) is a prime and p = x2 + 3y2 then

U(p+5)/8 ≡

 (−1)(x+p+1)/86(p−3)/4

(
x

3

)
(mod p) if 8 - x,

(−1)(x+p+5)/82(p−3)/4 (mod p) if 8 |x,
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and

V(p+5)/8 ≡

 (−1)(x+p+1)/8 · 3 · 6(p−3)/4

(
x

3

)
(mod p) if 8 - x,

(−1)(x+p+5)/82(p−3)/4 (mod p) if 8 |x.

Remark. Since x2+3y2 = p ≡ 3 (mod 8) we have 4 |x. If x ≡ 4 (mod 8)
then (x+ p+ 1)/8 ∈ Z so the formulas above in the case 8 - x make sense.
Moreover, (x+ p+ 1)/8 and (−x+ p+ 1)/8 have opposite parities, which,
together with

(−x
3

)
=−

(
x
3

)
, implies (−1)(x+p+1)/8

(
x
3

)
=(−1)(−x+p+1)/8

(−x
3

)
.

So the formulas from Theorem 2.2 are preserved if we replace x by −x.
If 8 |x then (x+ p+ 5)/8 ∈ Z and (x+ p+ 5)/8 ≡ (−x+ p+ 5)/8

(mod 2) so again the formulas from Theorem 2.2 make sense and they do
not change if we replace x by −x.

2.3. We will treat the two problems together. Note that p≡7, 19 (mod 24)
means p ≡ 7 (mod 12). We have p ≡ 1 (mod 3) and the two cases, p ≡ 3, 19
(mod 24), correspond to p ≡ 3, 7 (mod 8) respectively.

We have 2 +
√

3 = (1 +
√

3)2/2. Let ε = 2 +
√

3 and ε′ = 1 +
√

3 and
denote by ε, ε′ their conjugates. We have

(
3
p

)
= −1 so p is inert in Q(

√
3).

As in §1, we obtain εp+1 ≡ εε = 1 (mod p) and ε′p+1 ≡ ε′ε′ = −2 (mod p).
We reduce our problem to finding ε′(p

2−1)/8 mod p.
If p ≡ 7 (mod 8) then ε(p+1)/8 = 2−(p+1)/8ε′(p+1)/4. But, as in 1.2, we

have

ε′(p+1)/4 ≡ ε′−(p2−1)/8(ε′p+1)(p+1)/8 ≡ (−2)(p+1)/8ε−(p2−1)/2 (mod p).

It follows that

ε(p+1)/8 ≡ (−1)(p+1)/8ε′−(p2−1)/8 (mod p).

If p ≡ 3 (mod 8) then

ε(p+5)/8 = 2−(p+5)/8ε′(p+5)/4 = 2−(p+5)/8(1 +
√

3)ε′(p+1)/4.

As in 1.2, we also have

ε′(p+1)/4 ≡ ε′(p2−1)/8(ε′p+1)−(p−3)/8 ≡ (−2)−(p−3)/8ε′(p
2−1)/8 (mod p).

It follows that

ε(p+5)/8 ≡ (−1)(p−3)/82−(p+1)/4(1 +
√

3)ε′(p
2−1)/8 (mod p).

Theorem 2.2 can be stated as:

ε(p+5)/8 = V(p+5)/8 + U(p+5)/8

√
3

≡

 (−1)(x+p+1)/86(p−3)/4

(
x

3

)
(3 +

√
3) (mod p) if 8 - x,

(−1)(x+p+5)/82(p−3)/4(1 +
√

3) (mod p) if 8 |x.
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Since ε(p+5)/8 ≡ (−1)(p−3)/82−(p+1)/4(1+
√

3)ε′(p
2−1)/8 (mod p) this is equiv-

alent to

ε′(p
2−1)/8 ≡

 (−1)(x−4)/83(p−3)/4

(
x

3

)√
3 (mod p) if 8 - x,

(−1)x/8 (mod p) if 8 |x.
(Here we use the fact that

(
2
p

)
= −1 so 2(p+1)/46(p−3)/4 = 2(p−1)/23(p−3)/4 ≡

−3(p−3)/4 (mod p) and 2(p+1)/42(p−3)/4 = 2(p−1)/2 ≡ −1 (mod p).)

From now on, the proof follows the pattern from §1. We write p = u2+2v2

if p ≡ 3 (mod 8) and p = u2 − 2v2 if p ≡ 7 (mod 8). Note that the relations
p = x2 + 3y2 = u2 ± 2v2 are similar to 2p = x2 + 5y2 = u2 ± 2v2 from §1.
Therefore we can repeat the definitions and results from §1 with Q(

√
5), 2p

and x± y
√

5 i replaced by Q(
√

3), p and x± y
√

3 i. So we take F = Q(
√

3)
and E = F (ζ) = Q(

√
3,
√

2, i). We define L = E( 8
√
A1), where A1 ∈ E is

given by

A1 =
{
p(x+ y

√
3 i)2(u+ v

√
2 i)4 if p ≡ 3 (mod 8),

p(x+ y
√

3 i)6(u+ v
√

2)4 if p ≡ 7 (mod 8).
Again Gal(L/E) = 〈σ〉 ∼= Z8 where σ is given by 8

√
A1 7→ ζ 8

√
A1. For k ∈ Z×8

define Ak and αk similarly to the proof of Lemma 1.3. The analogue of
Lemma 1.3 will hold so Gal(L/F ) ∼= Z×8 × Z8. More precisely, Gal(L/F ) is
the internal direct product of its subgroups H = {τk | k ∈ Z×8 } and 〈σ〉.

Just as in §1 we define χ : Gal(L/F )→ µ8 by σkτl 7→ ζk.
Define p,P and ∞± as in §1. By a proof similar to that of Lemma 1.4

we have:

Lemma 2.4.

(i) χ

((
ε′, L/F

p

))
≡ ε′−(p2−1)/8 (mod P).

(ii) χ

((
ε′, L/F

∞−

))
=
{

1 if p ≡ 3 (mod 8),
sgn(u) if p ≡ 7 (mod 8).

(iii) χ

((
ε′, L/F

q

))
= 1 if q 6= p,∞− and q - 2.

(Note that for (ii) we use the fact that ε′∞− = 1−
√

3 < 0, and for (iii)
the fact that ε′∞+

= 1+
√

3 > 0 and ε′ | 2 so it is a unit at all nonarchimedian
primes q with q - 2.)

So ε′(p
2−1)/8 ≡ χ

(( ε′,L/F
q

))
or sgn(u)χ

(( ε′,L/F
q

))
(mod P), according as

p ≡ 3 or 7 (mod 8), where q is the prime of Q(
√

3) over 2.

2.5. We now take another prime p′ ≡ 7 (mod 12) and let x′, y′, u′, v′ be
the corresponding x, y, u, v. Assume that p ≡ p′ (mod 16) and either x ≡ x′
(mod 16) or x ≡ x′ ≡ 0 (mod 8).
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Since u2 ± 2v2 = x2 + 3y2 = p ≡ 3 (mod 4) we see that x is even and
y, u, v are odd, and similarly for x′, y′, u′, v′. By multiplying y, u, v with ±1
we may assume that y, u, v ≡ y′, u′, v′ (mod 4). This implies that y + y′ ≡
u+ u′ ≡ v + v′ ≡ 2 (mod 4).

Since v, v′ are odd, we have v2 ≡ v′2 ≡ 1 (mod 8). Together with u2 ±
2v2 = p ≡ p′ = u′2 ± 2v′2 (mod 16), this implies u2 ≡ u′2(mod 16). Since
16 |u′2 − u2 and u′ + u ≡ 2 (mod 4), we get 8 |u′ − u.

If x ≡ x′ (mod 16) then 16 |x − x′ and x + x′ is even so 32 |x2 − x′2.
The same happens if x ≡ x′ ≡ 0 (mod 8). This implies that 3(y′2 − y2) =
p′− p+x2−x′2 ≡ p′− p (mod 32). Since 16 | p′− p we have 16 | y′2− y2 and
32 | y′2 − y2 iff 32 | p′ − p. But y′ + y ≡ 2 (mod 4) so 8 | y′ − y and 16 | y′ − y
iff 32 | p′ − p.

Also note that if p ≡ 3 (mod 8) then x2 +3y2 = p implies that 4 |x, while
if p ≡ 7 (mod 8) then x ≡ 2 (mod 4); and similarly for x′. In particular, if
p ≡ p′ ≡ 7 (mod 8) then x ≡ x′ (mod 16) since we cannot have x ≡ x′ ≡ 0
(mod 8).

We now prove the analogue of Lemma 1.8. Let Q, q1, q2 be the only
primes of E,Q(

√
3 i) and Q(

√
2 i) or Q(

√
2) lying over 2. Define Q̃, q̃1, q̃2

and 2̃ as in §1.

Lemma 2.6. If A′1 is the A1 corresponding to p′, then A′1 = (
√

3
s
t)8A1

for some t ∈ 1 + 2Q̃, where s = 0 if x ≡ x′ (mod 16) and s = 1 otherwise.

Proof. Note that u +
√

2 i (or u + v
√

2), x + y
√

3 i | p, which is odd, so
u+
√

2 i (or u+ v
√

2), x+ y
√

3 i, p are units in Oq2 ,Oq1 ,O2 respectively.
Suppose that p ≡ 3 (mod 8). Then q2 is generated by

√
2 i. Since 8 |u′−u

and 4 | v′−v, we have (u′+v′
√

2 i)−(u+v
√

2 i) = (u′−u)+(v′−v)
√

2 i ∈ 4q2.
Since also u+ v

√
2 i ∈ O×q2

we get

u′ + v′
√

2 i
u+ v

√
2 i
− 1 ∈ 4q̃2.

By Lemma 1.6(i) we have

u′ + v′
√

2 i
u+ v

√
2 i

= t21 for some t1 ∈ 1 + 2q̃2 ⊂ 1 + 2Q̃.

Similarly for u′+v′
√

2
u+v
√

2
when p ≡ 7 (mod 8).

We have x ≡ x′ (mod 8) and y ≡ y′ (mod 8). If x+ y ≡ x′+ y′ (mod 16)
then we can write x − x′ = 8a and y − y′ = 8b with a + b even. This
implies that NQ(

√
3 i)q1/Q2

(a+ b
√

3 i) = a2 + 3b2 is even so a+ b
√

3 i ∈ q1 so

(x′ + y′
√

3 i)− (x+ y
√

3 i) = 8(a+ b
√

3 i) ∈ 8q̃1. Since also x+ y
√

3 i ∈ O×q1
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we have
x′ + y′

√
3 i

x+ y
√

3 i
− 1 ∈ 8q̃1.

By Lemma 1.6(i) applied to k = Q(
√

3 i)q1 we get

x′ + y′
√

3 i
x+ y

√
3 i

= t42 for some t2 ∈ 1 + 2q̃1 ⊂ 1 + 2Q̃.

If x+ y 6≡ x′+ y′ (mod 16) then x′+ y′ ≡ x+ y+ 8 (mod 16). Note that
x+y is odd so 9x+9y ≡ x+y+8 ≡ x′+y′ (mod 16). Since also 9x ≡ x ≡ x′
(mod 8) and 9y ≡ y ≡ y′ (mod 8), by a similar reasoning to the one above,
we get

x′ + y′
√

3 i
9x+ 9y

√
3 i

= t42, so
x′ + y′

√
3 i

x+ y
√

3 i
= 9t42, for some t2 ∈ 1 + 2Q̃.

In conclusion,

x′ + y′
√

3 i
x+ y

√
3 i

= 32s2t42 with t2 ∈ 1 + 2Q̃,

where s2 = 0 if x + y ≡ x′ + y′ (mod 16) and s2 = 1 if x + y ≡ x′ + y′ + 8
(mod 16).

If p ≡ p′ (mod 32) then p′ − p ∈ 32O2 = 162̃, which, together with
p ∈ O×2 , implies that p′/p − 1 ∈ 162̃. By Lemma 1.6(i) applied to k = Q2

we get p′/p = t83 for some t3 ∈ 1 + 22̃ ⊂ 1 + 2Q̃. If p 6≡ p′ (mod 32) then
p′ ≡ p+16 (mod 16). But p is odd so 81p ≡ p+80 ≡ p+16 ≡ p′ (mod 32). As
in the previous case, we get p′/81p = t83, so p′/p = 81t83 for some t3 ∈ 1+2Q̃.
For short, p′/p = 34s3t83 with t3 ∈ 1 + 2Q̃, where s3 = 0 if p ≡ p′ (mod 32)
and s3 = 1 if p ≡ p′ + 16 (mod 32).

If p ≡ 3 (mod 8) then

A′1
A1

=
p′

p

(
x′ + y′

√
3 i

x+ y
√

3 i

)2(u′ + v′
√

2 i
u+ v

√
2 i

)4

= 34s3t83(32s2t42)2(t21)4 = 34(s3+s2)(t3t2t1)8.

If p ≡ 7 (mod 8) then

A′1
A1

=
p′

p

(
x′ + y′

√
3 i

x+ y
√

3 i

)6(u′ + v′
√

2
u+ v

√
2

)4

= 34s3t83(32s2t42)6(t21)4 = 34(s3+3s2)(t3t32t1)8.

By 2.5 we have either p ≡ p′ (mod 32) and y ≡ y′ (mod 16), or p ≡ p′+16
(mod 32) and y ≡ y′ + 8 (mod 16). We now consider separately the cases
x ≡ x′ (mod 16) and x ≡ x′ + 8 (mod 16).
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If x ≡ x′ (mod 16) then either p ≡ p′ (mod 32) and x + y ≡ x′ + y′

(mod 16), or p ≡ p′ + 16 (mod 32) and x + y ≡ x′ + y′ + 8 (mod 16). This
implies that either s3 = s2 = 0 or s3 = s2 = 1. If p ≡ 3 (mod 8) then

A′1
A1

= 34(s3+s2)(t3t2t1)8 =
{

(t3t2t1)8 or
38(t3t2t1)8 = (−3t3t2t1)8.

If p ≡ 7 (mod 8) then

A′1
A1

= 34(s3+3s2)(t3t32t1)8 =
{

(t3t32t1)8 or
316(t3t32t1)8 = (9t3t32t1)8.

Thus A′1/A1 = t8, where t = t3t2t1,−3t3t2t1, t3t32t1 or 9t3t32t1. But t3, t2, t1 ∈
1 + 2Q̃ and also −3, 9 ∈ 1 + 4O2 ⊂ 1 + 2Q̃. So in all four cases we have
t ∈ 1 + 2Q̃.

If x ≡ x′+8 (mod 16) then either p ≡ p′ (mod 32) and x+y ≡ x′+y′+8
(mod 16), or p ≡ p′+16 (mod 32) and x+y ≡ x′+y′ (mod 16). This implies
that either s3 = 0, s2 = 1 or s3 = 1, s2 = 0. Since x 6≡ x′ (mod 16) we must
have x ≡ x′ ≡ 0 (mod 8) so p = x2 + 3y2 ≡ 3 (mod 8). We get

A′1
A1

= 34(s3+s2)(t3t2t1)8 = 34(t3t2t1)8 = (
√

3 t)8, where t = t3t2t1.

But t3, t2, t1 belong to 1 + 2Q̃ and so does t.

Let E′, χ′ be the E,χ corresponding to p′.

Lemma 2.7. We have

χ

((
ε′, L/F

q

))
= (−1)(x

′−x)/8χ′
((

ε′, L′/F

q

))
.

(Note that if p ≡ p′ ≡ 7 (mod 8) then by 2.5, x ≡ x′ (mod 16) so the factor
(−1)(x

′−x)/8 can be dropped in the formula above.)

Proof. Let φ = χ
(( ε′,L/F

q

))
. We have NQ(

√
3)q/Q2

(ε′) = −2 so(
ε′,−1

q

)
=
(
−2,−1

2

)
= −1,

(
ε′, 2
q

)
=
(
−2, 2

2

)
= 1.

Thus φ(i) = −i and φ(
√

2) =
√

2 and so φ(ζ) = ζ = ζ7.
Now the proof follows that of Lemma 1.9. We have A′1 = B8A1, where

B =
√

3
s
t. If χ

(( ε′,L/F
q

))
= ζk and χ′

(( ε′,L′/F
q

))
= ζk

′
, then we have to

prove that ζk
′−k = (−1)(x

′−x)/8. By the same proof as for Lemma 1.9 we
have

ζk
′−k =

p′

p
(Bφ(B))−1 or

p′

p
· u
′ + v′

√
2

u+ v
√

2
(Bφ(B))−1,
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according as p ≡ 3 or 7 (mod 8). Now p ≡ p′ (mod 16), so p′/p ∈ 1+16O2 ⊂
1 + 2Q̃, and if p ≡ 7 (mod 8), then

u′ + v′
√

2
u+ v

√
2
∈ 1 + 4q̃2 ⊂ 1 + 2Q̃.

On the other hand, B =
√

3
s
t so Bφ(B) = 3stφ(t). By Lemma 2.6, t belongs

to 1 + 2Q̃ and so does its conjugate φ(t). In the case x ≡ x′ (mod 16), when
(−1)(x

′−x)/8 = 1, we have s = 0 so (Bφ(B))−1 = (tφ(t))−1 ∈ 1 + 2Q̃. This
implies that ζk

′−k ∈ 1 + 2Q̃ and so ζk
′−k = 1. In the case x ≡ x′ + 8

(mod 16), when (−1)(x
′−x)/8 = −1, we have s = 1 so 3(Bφ(B))−1 =

(tφ(t))−1 ∈ 1 + 2Q̃. It follows that 3ζk
′−k ∈ 1 + 2Q̃. Together with 4ζk

′−k ∈
4OQ ⊂ 2Q̃, this implies by subtraction that −ζk′−k ∈ 1 + 2Q̃ and so
−ζk′−k = 1.

Lemma 2.8.

(i) If p ≡ 3 (mod 8) then(
x

p

)
=
(
x

3

)
,

(
y

p

)
=
(
y, 3
2

)
.

(ii) If p ≡ 7 (mod 8) then(
x

p

)
=
(
x, 5
2

)(
x

3

)
,

(
y

p

)
=
(
y, 7
2

)
,(

u

p

)
=
(
u, 2
2

)
sgn(u),

(
v

p

)
=
(
v, 7
2

)
.

Proof. As in the proof of Lemma 1.10, the relation x2 + 3y2 = p implies(x,3p
q

)
= 1 for q 6= 2, 3, p and

(y,p
q

)
= 1 for q 6= 2, p. Also

(x,3p
∞
)

=
(y,p
∞
)

= 1.
Therefore(
x

p

)
=
(
x, 3p
p

)
=
(
x, 3p

2

)(
x, 3p

3

)
=
(
x, 3p

2

)(
x

3

)
,

(
y

p

)
=
(
y, p

p

)
=
(
y, p

2

)
.

If p ≡ 3 (mod 8) then
(x,3p

2

)
= 1 and

(y,p
2

)
=
(y,3

2

)
. If p ≡ 7 (mod 8) then(x,3p

2

)
=
(x,5

2

)
and

(y,p
2

)
=
(y,7

2

)
. This yields the formulas for

(
x
p

)
and

(y
p

)
from (i) and (ii).

If p ≡ 7 (mod 8) then u2 − 2v2 = p implies
(u,−2p

q

)
= 1 and

(v,p
q

)
= 1

for q 6= 2, p. Also
(v,p
∞
)

= 1. Hence(
u

p

)
=
(
u,−2p
p

)
=
(
u,−2p

2

)(
u,−2p
∞

)
=
(
u, 2
2

)
sgn(u),(

v

p

)
=
(
v, p

2

)
=
(
v, 7
2

)
.
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Lemma 2.9. Let s, t ∈ Op, α, β ∈ {±1}.

(i) If p ≡ 7 (mod 8) and s+ t
√

3 ≡ α+βi√
2

(mod P̃) then

s ≡
(
s

p

)
2(p−3)/4 (mod p) and t ≡ −

(
t

p

)
6(p−3)/4 (mod p).

Also (
s

p

)
=
(
uv

p

)
α and

(
t

p

)
= −

(
xyuv

p

)
β.

(ii) If p ≡ 3 (mod 8) and s + t
√

3 ≡ βi (mod P̃) then s ≡ 0 (mod p)
and t ≡

(
t
p

)
3(p−3)/4 (mod p). Also

(
t
p

)
= −

(xy
p

)
β.

Proof. (i) We have x − y
√

3 i, u − v
√

2 ∈ P̃ so x ≡ y
√

3 i (mod P̃) and
u ≡ v

√
2 (mod P̃). Since also p - xyuv, we have

1√
2
≡ v

u
(mod P̃) and

i√
2
≡ − yv

xu

√
3 (mod P̃).

Therefore
s+ t

√
3 ≡ α+ βi√

2
≡ α v

u
− β yv

xu

√
3 (mod P̃).

Since both sides belong to Fp, the congruence will also hold modulo p̃ so

s ≡ α v
u

(mod p), t ≡ −β yv
xu

(mod p).

By Remark 1.11 we get(
s

p

)
=
(
uvα

p

)
=
(
uv

p

)
α,

(
t

p

)
=
(
−xyuvβ

p

)
= −

(
xyuv

p

)
β.

We have

s ≡ α v
u
≡ α√

2
(mod P̃), t

√
3 ≡ −β yv

xu

√
3 ≡ βi√

2
(mod P̃)

so s2 ≡ 1
2 (mod P̃) and 3t2 ≡ −1

2 (mod P̃). Since both sides belong to Qp,
these congruences also hold modulo p. Consequently, s2 ≡ 1

2 (mod p) and
t2 ≡ −1

6 (mod p). It follows that
(

2
p

)
=
(−6
p

)
= 1 so 2(p−1)/2 ≡ (−6)(p−1)/2 ≡

1 (mod p). Therefore s2 ≡ 1
2 ≡ (2(p−3)/4)2 (mod p) and so s ≡ ±2(p−3)/4

(mod p). By Remark 1.11 we have

s ≡
(

2(p−3)/4s

p

)
2(p−3)/4 =

(
s

p

)
2(p−3)/4 (mod p).

Similarly

t ≡
(
t

p

)
(−6)(p−3)/4 = −

(
t

p

)
6(p−3)/4 (mod p).

(Note that p ≡ 7 (mod 8) so (p− 3)/4 is odd.)
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(ii) The congruence x ≡ y
√

3 i (mod P̃) implies i ≡ − y
x

√
3 (mod P̃) so

s + t
√

3 ≡ −β yx
√

3 (mod P̃). It follows that s ≡ 0 (mod p) and t ≡ −β yx
(mod p). By Remark 1.11,(

t

p

)
=
(
−xyβ
p

)
= −

(
xy

p

)
β.

We have t
√

3 ≡ −β yx
√

3 ≡ βi (mod P̃) so 3t2 ≡ −1 (mod P̃). This
implies t2 ≡ −1

3 (mod p). We have
(−3
p

)
= 1 so (−3)(p−1)/2 ≡ 1 (mod p).

Thus t2 ≡ −1
3 ≡ ((−3)(p−3)/4)2 (mod p) so t ≡ ±(−3)(p−3)/4 (mod p). By

Remark 1.11 we have

t ≡
(

(−3)(p−3)/4t

p

)
(−3)(p−3)/4 =

(
t

p

)
3(p−3)/4 (mod p).

(Note that p ≡ 3 (mod 8) so (p− 3)/4 is even.)

2.10. By 2.3 we have ε′p+1 ≡ −2 (mod p) so

ε′(p
2−1)/2 ≡ (−2)(p−1)/2 =

(
−2
p

)
(mod p)

and this congruence also holds modulo P̃. If p ≡ 3 (mod 8) then ε′(p
2−1)/2 ≡

1 (mod P̃) so ε′(p
2−1)/8 ≡ η (mod P̃) for some η ∈ µ4. If p ≡ 7 (mod 8)

then ε′(p
2−1)/2 ≡ −1 (mod P̃) so ε′(p

2−1)/8 ≡ η (mod P̃) for some primitive
η ∈ µ8.

If p ≡ 3 (mod 8) then by Lemma 2.4 we have

ε′(p
2−1)/2 ≡ χ

((
ε′, L/F

q

))
(mod P̃)

so η = χ
(( ε′,L/F

q

))
. (If η, η′ ∈ µ8 and η ≡ η′ (mod P̃) then η = η′ since

otherwise η − η′ | 2 so η − η′ /∈ P̃.) Similarly if p ≡ 7 (mod 8) then η =
sgn(u)χ

(( ε′,L/F
q

))
. It follows that χ

(( ε′,L/F
q

))
is primitive in µ8 if p ≡ 3

(mod 8) and it belongs to µ4 if p ≡ 7 (mod 8).

Lemma 2.11. If p ≡ 7 (mod 24) then

U(p+1)/8 ≡ −
(
U(p+1)/8

p

)
6(p−3)/4 (mod p),

V(p+1)/8 ≡
(
V(p+1)/8

p

)
2(p−3)/4 (mod p).

Also (
U(p+1)/8

p

)
= A

(
x

3

)
,

(
V(p+1)/8

p

)
= B,

where A and B are two functions of p mod 16 and x mod 16, A is odd and
B is even in the variable x.
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Proof. We have

ε′(p
2−1)/8 ≡ sgn(u)χ

((
ε′, L/F

q

))
(mod P̃)

and, by 2.3, ε(p+1)/8 ≡ (−1)(p+1)/8ε′−(p2−1)/8 (mod p). Thus

ε(p+1)/8 ≡ sgn(u)(−1)(p+1)/8χ

((
ε′, L/F

q

))−1

(mod P̃).

By 2.10, (−1)(p+1)/8χ
(( ε′,L/F

q

))−1 is primitive in µ8 so it can be written as
(α+ βi)/

√
2 for some α, β ∈ {±1}. Hence

V(p+1)/8 + U(p+1)/8

√
3 = ε(p+1)/8 ≡ α sgn(u) + β sgn(u)i√

2
(mod P̃).

By Lemma 2.9(i) we have

V(p+1)/8 ≡
(
V(p+1)/8

p

)
2(p−3)/4 (mod p),

U(p+1)/8 ≡ −
(
U(p+1)/8

p

)
6(p−3)/4 (mod p).

Also (
V(p+1)/8

p

)
=
(
uv

p

)
α sgn(u) = B,(

U(p+1)/8

p

)
= −

(
xyuv

p

)
β sgn(u) = A

(
x

3

)
,

where

B =
(
u, 2
2

)(
v, 7
2

)
α, A = −

(
x, 5
2

)(
y, 7
2

)(
u, 2
2

)(
v, 7
2

)
β.

(See Lemma 2.8(ii).)
We now prove that A,B depend only on p mod 16 and x mod 16. Let

p′ ≡ 7 (mod 24) be another prime such that p′ ≡ p (mod 16) and x′ ≡ x
(mod 16). We keep the reductions of 2.5. Let α′, β′, A′, B′ be the α, β,A,B
corresponding to p′. In order to prove that A′ = A we show that the factors
of A′ are equal to the similar factors of A, and the same for B′ = B. By
Lemma 2.7 we have χ′

(( ε′,L′/F
q

))
= χ

(( ε′,L/F
q

))
. Since p ≡ p′ (mod 16) we

also have (−1)(p
′+1)/8 = (−1)(p+1)/8 and so

(−1)(p
′+1)/8χ′

((
ε′, L′/F

q

))
= (−1)(p+1)/8χ

((
ε′, L/F

q

))
,
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which implies that α′ = α and β′ = β. We still have to prove that(
x′, 5

2

)
=
(
x, 5
2

)
,

(
y′, 7

2

)
=
(
y, 7
2

)
,(

u′, 2
2

)
=
(
u, 2
2

)
,

(
v′, 7

2

)
=
(
v, 7
2

)
,

i.e. that (
xx′, 5

2

)
=
(
yy′, 7

2

)
=
(
uu′, 2

2

)
=
(
vv′, 7

2

)
= 1.

But this follows from xx′, yy′, uu′ ∈ Q×2
2 and vv′ ∈ Q×2

2 ∪ 5Q×2
2 . (By

2.5, x/2, x′/2, y, y′, u, u′, v, v′ are all odd, and x/2 ≡ x′/2 (mod 8), y ≡ y′

(mod 8), u ≡ u′ (mod 8) and v ≡ v′ (mod 4).)
Finally, note that if x2 + 3y2 = p then also (−x)2 + 3y2 = p. Since(U(p+1)/8

p

)
and

(V(p+1)/8

p

)
are independent of how we write p as x2 + 3y2 we

must have A(x, p)
(
x
3

)
= A(−x, p)

(−x
3

)
and B(x, p) = B(−x, p). So A is odd

and B is even in the variable x.

Proof of Conjecture 2.1. With the notation of 2.3, we have to prove that
A = (−1)((x+4)2−4)/32 and B = (−1)(x

2−4)/32. It is easy to verify that the
mappings x 7→ (−1)((x+4)2−4)/32 and x 7→ (−1)(x

2−4)/32, defined on integers
x ≡ 2 (mod 4), depend only on x mod 16, and they are odd and even,
respectively. In view of Lemma 2.10, the two equalities need to be verified
for a set of primes p ≡ 7 (mod 24) such that p covers all possible remainders
modulo 16, namely 7, 15 and ±x all possible remainders modulo 16, namely
±2 and ±6. But the primes 7, 31, 103, 127 cover all four possibilities. (We
have 7 = 22 +3 ·12, 31 = 22 +3 ·32, 103 = 102 +3 ·12 and 127 = 102 +3 ·32.)
It is easy to see that Sun’s conjecture is true at these primes.

Proof of Theorem 2.2. Suppose that p ≡ 19 (mod p) and let s+ t
√

3 =
ε′(p

2−1)/8. By 2.3, Theorem 2.2 is equivalent to

s+ t
√

3 ≡

 (−1)(x−4)/83(p−3)/4

(
x

3

)√
3 (mod p) if 8 - x,

(−1)x/8 (mod p) if 8 |x.
We have

ε′(p
2−1)/8 ≡ χ

((
ε′, L/F

q

))
(mod P̃).

By 2.10, χ
(( ε′,L/F

q

))
∈ µ4 so it equals α = ±1 or βi with β = ±1. In the

first case s+ t
√

3 ≡ α (mod P̃) implies s+ t
√

3 ≡ α (mod p), as both sides
belong to F . In the second case s + t

√
3 ≡ α (mod P̃) implies by Lemmas

2.9(ii) and 2.8(i) that s ≡ 0 (mod p) and
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t ≡ −
(
xy

p

)
3(p−3)/4β = −

(
y, 3
2

)
β · 3(p−3)/4

(
x

3

)
so

s+ t
√

3 ≡ −
(
y, 3
2

)
β · 3(p−3)/4

(
x

3

)√
3 (mod p).

It follows that Theorem 2.2 is equivalent to

χ

((
ε′, L/F

q

))
= η =

−(−1)(x−4)/8

(
y, 3
2

)
i if 8 - x,

(−1)x/8 if 8 |x.
Let now p′ ≡ 19 (mod 24) be another prime. We use the notations from

2.5 and Lemma 2.7.

Lemma 2.12. If p ≡ p′ (mod 16) and x ≡ x′ (mod 8) then the conclusion
of Theorem 2.2 holds for p iff it holds for p′.

Proof. By 2.5 we have 4 |x, x′ so x ≡ x′ ≡ 0 or 4 (mod 8). We consider
the two cases.

If x ≡ x′ ≡ 4 (mod 8) then x/4, x′/4 are odd integers. By multiplying x
with ±1, we may assume that x/4 ≡ x′/4 (mod 4) so x ≡ x′ (mod 16). We
also have p ≡ p′ (mod 16) so we may apply the reductions of 2.5. By Lemma
2.7 we have χ

(( ε′,L/F
q

))
= χ′

(( ε′,L′/F
q

))
. Now Theorem 2.2 for p and p′ is

equivalent to

χ

((
ε′, L/F

q

))
= −(−1)(x−4)/8

(
y, 2
p

)
i,

χ′
((

ε′, L′/F

q

))
= −(−1)(x

′−4)/8

(
y′, 2
p

)
i,

so in order to prove that the two statements are equivalent it is enough to
prove that

−(−1)(x−4)/8

(
y, 2
p

)
i = −(−1)(x

′−4)/8

(
y′, 2
p

)
i.

But x ≡ x′ (mod 16) so (−1)(x−4)/8 = (−1)(x
′−4)/8, so we still need

(y,3
2

)
=(y′,3

2

)
. This follows from the fact that y, y′ are odd and y ≡ y′ (mod 8) so

they are in the same square class in Q×2 .
If x ≡ x′ ≡ 0 (mod 8) then again we can apply the reductions of 2.5.

Theorem 2.2 for p and p′ is equivalent to

χ

((
ε′, L/F

q

))
= (−1)x/8, χ′

((
ε′, L′/F

q

))
= (−1)x

′/8.

The two statements are equivalent because by Lemma 2.7 we have

χ

((
ε′, L/F

q

))
= (−1)(x

′−x)/8χ′
((

ε′, L′/F

q

))
.
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So it is enough to check Theorem 2.2 for a set of primes p ≡ 19 (mod 24)
such that p covers all the possible remainders modulo 16, namely 3 and 11,
and x covers all the possible remainders modulo 8, namely 0 and 4. The
primes 19, 43, 67 and 139 cover all four possibilities. (We have 19 = 42+3·12,
43 = 42 + 3 · 32, 67 = 82 + 3 · 12 and 139 = 82 + 3 · 52.)

3. Related problems. Throughout this section d > 1 is a square-free
integer and ε is an integer of Q(

√
d). For the time being we assume that

d > 2. If p ≡ 3 (mod 4) is a prime with
(
d
p

)
= −1 then

(−d
p

)
= 1 so p can

be written as p = f(x, y) with x, y ∈ Z, where f(x, y) = ax2 + bxy + cy2 is
a quadratic form with the discriminant b2 − 4ac = −d or −4d, according as
−d ≡ 1 (mod 4) or −d ≡ 2, 3 (mod 4). For any prime q (including q = ∞)
we denote by fq the localized of f at q.

We want to determine ε(p+1)/4 mod p in terms of x and y. We could also
determine the value modulo p for ε(p+1)/8 if p ≡ 7 (mod 8) and for ε(p+5)/8

if p ≡ 3 (mod 8) assuming that ε = εd is the fundamental unit of Q(
√
d)

and the norm of ε is 1. In this case, as in §2, we can write ε = ε′2/m for
some integer ε′ in Q(

√
d), and m ∈ Z×. We can take for example ε′ = 1 + ε,

and since εε = Nε = 1, we have ε = ε′/ε′ = ε′2/m, where m = ε′ε′ = Nε′.
Then if p ≡ 7 (mod 8) we have ε(p+1)/8 = m−(p+1)/8ε′(p+1)/4, while if p ≡ 3
(mod 8) then ε(p+5)/8 = m−(p+5)/8ε′ε′(p+1)/4, so in both cases we have to
determine ε′(p+1)/4 mod p.

As in 1.2 or 2.3, we reduce our problem to finding ε(p
2−1)/8 mod p.

Namely, we have εp+1 ≡ N (mod p) and so

ε(p+1)/4 ≡

{
N−(p−3)/8ε(p

2−1)/8 (mod p) if p ≡ 3 (mod p),
N (p+1)/8ε−(p2−1)/8 (mod p) if p ≡ 7 (mod p),

where N = Nε = εε.
We consider the two cases p ≡ 3 or 7 (mod 8) separately. Note that be-

sides the condition that the discriminant b2−4ac is −d or −4d, f should also
represent numbers ≡ 3 or 7 (mod 8). This is equivalent to the fact that f2

represents 3 or −1, respectively. We claim that the rational quadratic form
F (x, y, u, v) = f(x, y) − (u2 ± 2v2), where the sign is + if p ≡ 3 (mod 8)
and − if p ≡ 7 (mod 8), is isotropic. By the Hasse–Minkowski theorem
we have to prove this statement locally. Since f is positive definite F will
be indefinite and so F∞ is isotropic. If q > 2 is a prime with q - d then
Fq is unimodular so isotropic. If q > 2 and q | d then Fq is isotropic be-
cause detF = ±2d 6= 1 in Q×q /(Q×q )2. Finally, if q = 2 and p ≡ 3 (mod 8)
then F2 is isotropic because both f2(x, y) and u2 + 2v2 represent 3, while
if p ≡ 7 (mod 8) then F2 is isotropic because both f2(x, y) and u2 − 2v2

represent −1.
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Let (x1, y1, u1, v1) ∈ Q4 \ {(0, 0, 0, 0)} with F (x1, y1, u1, v1) = 0. Since
both f(x, y) and u2 ± 2v2 are anisotropic we have (x1, y1), (u1, v1) 6= (0, 0)
so f(x1, y1) = u2

1 ± 2v2
1 =: a′ 6= 0. By multiplying x1, y1, u1, v1 with a

proper rational number we may assume that x1, y1 ∈ Z and (x1, y1) = 1.
Hence f represents a′ primitively, which implies that f(x, y) = g(x′, y′),
where the mapping (x, y) 7→ (x′, y′) belongs to SL(2,Z) and g has the form
g(x′, y′) = a′x′2 + b′xy + by′2 and has the same discriminant as f .

Let now p be a prime, p - a′, with p ≡ 3 (mod 4) and
(
d
p

)
= −1, that is

representable by f . We write p = f(x, y) = u2 ± 2v2. Then

a′p = a′g(x′, y′) =
(
a′x′ +

b′

2
y′
)2

+
4a′c′ − b′2

4
y′2.

But b′2 − 4a′c′ = −d or −4d, according as −d ≡ 1 (mod 4) or −d ≡ 2, 3
(mod 4). Hence p = X2 + dY 2, where X = a′x′ + b′

2 y
′ and Y = 1

2y
′ or y′,

respectively. Note that X,Y are linear combinations of x′, y′, and hence of
x, y. We also have a′p = (u2

1±2v2
1)(u2±2v2) = U2±2V 2, where U = u1u∓v1v

and V = u1v + v1u.
Note that the relations a′p = X2 + dY 2 = U2 ± 2V 2 resemble 2p =

x2 + 5y2 = u2 ± 2v2 from §1. Therefore the reasoning follows the same
pattern but with Q(

√
5), 2p, x± y

√
5 i, u± v

√
2 and u± v

√
2 i replaced by

Q(
√
d), a′p, X±Y

√
d i, U ±V

√
2 and U ±V

√
2 i. Hence we define the fields

F = Q(
√
d), E = F (ζ) = Q(

√
d,
√

2, i), where ζ := ζ8 and L = E( 8
√
A1),

where

A1 =
{
a′p(X + Y

√
d i)2(U + V

√
2 i)4 if p ≡ 3 (mod 8),

a′p(X + Y
√
d i)6(U + V

√
2)4 if p ≡ 7 (mod 8).

The analogue of Lemma 1.3 holds and, with the notation of §1, we define
again χ : Gal(L/F )→ µ8 by σkτl 7→ ζk.

Since
(
d
p

)
= −1, p is inert in F and we denote by p the only prime of

F over p. As in §1, p splits completely in E and we denote by P the prime
of E over p for which ordP(X − Y

√
d i) = 1 and ordP(U − V

√
2 i) = 1 or

ordP(U − V
√

2) = 1, according as p ≡ 3 or 7 (mod 8).
By the same proof as for Lemma 1.4(i) we get

χ

((
ε, L/F

p

))
≡ ε−(p2−1)/8 so ε(p

2−1)/8 ≡
∏
q6=p

χ

((
ε, L/F

q

))
modulo P. So, in principle, the value of ε(p

2−1)/8 mod P can be determined
and hence we can get ε(p

2−1)/8 mod p by a reasoning similar to that from
Lemmas 1.12 and 2.9. The difficulty is that the factors χ

(( ε,L/F
q

))
with

q 6= p may be 6= 1 not only for q = ∞± or for q | 2 but also for primes q | ε.
It is not clear at this time if in all cases the final answer can be given in
terms of x and y alone, as in §1 and §2, or if it has to involve also u and v.
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The case d = 2 is different and somewhat easier because if F = Q(
√

2)
and E = F (

√
2, ζ) then Gal(E/F ) ∼= Z2, unlike the case d > 2, when

Gal(E/F ) ∼= Z×8 ∼= Z2×Z2. A particular case was conjectured by Z. H. Sun
in 1988 (see also [S1, Conjecture 5.1]) and later solved in [S2] and involves
the value of (1 +

√
2)(p+1)/4 mod p for primes p ≡ 3 (mod 8) and is given in

terms of x, y, where p = x2 + 2y2.
The condition that p ≡ 3 (mod 4) and

(
2
p

)
= −1 is equivalent to p ≡ 3

(mod 8) so it implies that p = x2 + 2y2 for some x, y ∈ Z. We define
F = Q(

√
2), E = Q(ζ) = Q(

√
2, i) and L = E( 8

√
A) where A = p(x+y

√
2 i)2.

The group Gal(E/F ) is generated by the automorphism
√

2 7→
√

2, i 7→ −i,
which coincides with the automorphism ζ 7→ ζ3 of Gal(E/Q). We also have
Gal(L/E) = 〈σ〉 ∼= Z8, where σ is given by 8

√
A 7→ ζ 8

√
A.

Lemma 3.1. The extension L/F is Galois and Gal(L/F ) ∼= Z2 × Z8.

Proof. We prove that L/F is normal. Let α = 8
√
A and let β be some

conjugate of α over F in some algebraic closure of F . Then β8 is a conju-
gate of α8 = A over F so β8 ∈ {A,A′}, where A′ = p(x − y

√
2 i)2. Since

p = (x+ y
√

2 i)(x− y
√

2 i) we have

A′ = p3(x+ y
√

2 i)−2 = A3(x+ y
√

2 i)−8 = α′8,

where α′ = α3(x + y
√

2 i)−1 ∈ L. If β8 = A then β = ζkα ∈ L, while if
β8 = A′ then β = ζkα′ ∈ L for some k. So L/F is normal.

Let now φ ∈ Gal(L/F ). Then φ|E ∈ Gal(E/F ) so is given by ζ 7→ ζ or
ζ 7→ ζ3. If φ(ζ) = ζ then φ(α)8 = φ(A) = A so φ(α) = ζkα, i.e. φ = σk

for some k. If φ(ζ) = ζ3 then φ(α)8 = φ(A) = A′ and hence φ(α) = ζkα′

for some k. So the 16 automorphisms of L over F are given by ζ 7→ ζ
and α 7→ ζkα or ζ 7→ ζ3 and α 7→ ζkα′ with k ∈ Z8. We denote by τ the
automorphism ζ 7→ ζ3, α 7→ α′.

We claim that 〈τ〉 ∼= Z2 and Gal(L/F ) is the internal direct product of
〈τ〉 and Gal(L/E) = 〈σ〉 and so it is isomorphic to Z2 × Z8. We have to
show that τ2 = 1, τσ = στ and 〈τ〉 ∩ 〈σ〉 = {1}. For the first condition we
have τ(ζ) = ζ3 so τ2(ζ) = ζ9 = ζ and

τ2(α)=τ(α′)=τ(α3(x+ y
√

2)−1)=α′3(x− y
√

2 i)−1

=α9(x+ y
√

2)−3(x− y
√

2 i)−1 =αp(x+ y
√

2 i)−1(x− y
√

2 i)−1 =α.

(Recall that α8 = A = p(x+ y
√

2 i)2.) So τ2 = 1. For the second condition
τσ(ζ) = τ(ζ) = ζ3 and στ(ζ) = σ(ζ3) = ζ3. Also

τσ(α) = τ(ζα) = ζ3α′ = ζ3α3(x+ y
√

2 i)−1,

στ(α) = σ(α′) = σ(α3(x+ y
√

2 i)−1) = ζ3α3(x+ y
√

2 i)−1.
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So τσ = στ . Finally, the third condition follows from the fact that τ(ζ) 6=
ζ so τ /∈ Gal(L/E) = 〈σ〉.

We define χ : Gal(L/F )→ µ8 by σkτl 7→ ζk. As in §1, χ(φ) = φ(α)/α if
φ ∈ 〈σ〉 = Gal(L/E).

Since
(

2
p

)
= −1 we see that p is inert in F . Let p be the prime of F

over p. Since
(−2
p

)
= 1 we infer that −2 is a square in Qp and so in Fp. Thus

p splits in E. Since (x+ y
√

2 i)(x− y
√

2 i) = p each of x± y
√

2 i belongs to
one of the two primes of E over p. We denote by P the prime of E over p
such that x− y

√
2 i ∈ P.

By the same proof as for Lemma 1.4(i) (with α instead of α1) we get
χ
(( ε,L/F

p

))
≡ ε−(p2−1)/8 (mod P) and then we follow the same reasoning as

in the case d > 2.
We have χ

(( ε,L/F
p

))
∈ µ8 so it has the form α, βi or (α+ βi)/

√
2 with

α, β = ±1. The value of ε−(p2−1)/8 mod p can be found from ε−(p2−1)/8modP
by using the following lemma.

Lemma 3.2. Let s, t be p-adic integers and α, β ∈ {±1}.

(i) If s+ t
√

2 ≡ α (mod P̃) then s ≡ α (mod p) and t ≡ 0 (mod p).
(ii) If s+t

√
2 ≡ βi (mod P̃) then s ≡ 0 (mod p) and t ≡ −β yx (mod p).

(iii) If s + t
√

2 ≡ α+βi√
2

(mod P̃) then s ≡ −β yx (mod p) and t ≡ 1
2α

(mod p).

Proof. We have x−y
√

2 i ∈ P̃ so x ≡ y
√

2 i (mod P̃). Since p - xy we get
i ≡ − y

x

√
2 (mod P̃) and i√

2
≡ − y

x (mod P̃). It follows that βi ≡ −β y
x

√
2

(mod P̃) and
α+ βi√

2
=

1
2
α
√

2 + β
i√
2
≡ 1

2
α
√

2− β y
x

(mod P̃).

Therefore the congruences from the hypotheses of (i)–(iii) can be written
as s + t

√
2 ≡ α, −β yx

√
2 or −β yx + 1

2α
√

2 (mod P̃), respectively. Since
both sides of these congruences belong to Fp they will also hold mod-
ulo p̃.

References

[G] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, New York,
1994.

[L] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein, Springer, Berlin,
2000.

[S1] Z. H. Sun, Values of Lucas sequences modulo primes, Rocky Mountain J. Math. 33
(2003), 1123–1145.



Two conjectures by Zhi-Hong Sun 131

[S2] Z. H. Sun, Quartic, octic residues and Lucas sequences, preprint.
[SS] Z. H. Sun and Z. W. Sun, Fibonacci numbers and Fermat’s last theorem, Acta Arith.

60 (1992), 371–388.

Institute of Mathematics “Simion Stoilow”
of the Romanian Academy
21 Calea Grivitei St.
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