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A note on primes of the form p = a¢® + 1
by

KaA1sA MATOMAKI (Egham)

1. Introduction. It is a long-standing conjecture that there are in-
finitely many primes of the form n? + 1. Several approximations to this
problem have been made. Baier and Zhao [1, Theorem 5] showed that for
any € > 0, there are infinitely many primes of the form p = aq?® + 1, where
a < p®/9t€. We improve this result as follows.

THEOREM 1. Let € > 0. There are infinitely many primes of the form
p=aq®+ 1, where a < p'/?*¢ and q is a prime.

Baier and Zhao obtained their result as a corollary to their Bombieri—
Vinogradov type theorem for sparse sets of moduli. Our improvement comes
from using the sieve method of Harman [3, 4, 5].

We notice that in the interval [1, X] there are O(X?3/4¢/2) numbers of
the form ag® + 1 with a < X1/2%¢_ 50 the set we are considering is quite
sparse.

Throughout the paper the symbol p is reserved for a prime variable
and P is the set of primes. Theorem 1 is an immediate consequence of the
following stronger result.

THEOREM 2. Let ¢ >0, X > 1 and Q € [X3%, X'/27¢]. Then for all but
O(Q'2X~5/*) prime squares ¢*> ~ Q, we have, for any k € {1,...,¢* — 1}
and q1k,

2
{ag* +k|a~X/Q}NP> D Iog X

The exponent 1/2 is the limit of the current method as it is in the
Bombieri—Vinogradov prime number theorem. In both cases the limit arises
from a large sieve result, more precisely from the term corresponding to the
number of points in outer summation in the large sieve (Q3/ 2 in Lemma 3
below, leading to a critical term (XQ)Y? at the end of the proof of Theo-
rem 2).
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2. The method. First we introduce some standard notation. Let £ be
a finite subset of N. Then we write |€| for the cardinality of £,
Ea={m|dme &}
and
S(€,z)={m e &|(m,P(z)) =1}, where P(z)=][]p.
The elementary Buchstab’s identity states that "

S(€,2)=SE w)— Y S(&.p)

w<p<z
where z > w > 2.
We write, for ¢*> ~ Q, AQ = X,

Alg, k) = {ag” +k | a ~ A},
Alg) = {n | n € [A¢> + k,2A¢* + K], (n,¢°) = 1}.

Here A(q, k) is the set to be sieved and A(q) is the comparison set. We
notice that the number of primes in A(q, k) is S(A(q, k), 3X/2). We write
0 = 3/8+2¢ and z = X'~%. Then we use Buchstab’s identity to decompose

S(A(q, k), 3X1/2)

= S(A( — Y SAg k)2 - Y S(A(gk)pp)
2<p< XY XO0<p<3X1/2
+ Z S(A(q, k)pips, p2)
2<pa<p1<X?

= Sl(Qa k) - SQ(Q: k) - 83 q, k) + 54((], k)

(
Z Sl(qu k) - SQ(qv k) - 53((]7 k)
We write S;(q) for the sum S;(q, k) with A(q, k) replaced by A(q). We will
show in the next section that

X1—6/3
< e fori=1,2,3.

As in [5, Section 3.5], this leads to
(S(A(g),3X ") = S4(q))(1 + o(1))

1/2 1

S(A( ), 3X2) 2 oo .
XU, T da dao )
"~ log X6(¢?) 174 14
X(+o()(,_ 5 o 16 _ 2X(1+o0(1)

= log Xo(¢?) (1 ! > 3log X¢(q?)

041042(]_ — Q1] — 012)

768 5
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for almost all prime squares ¢> ~ @ and all appropriate k. This implies
Theorem 2.

3. Proof of the bound (1). Proving (1) reduces to showing that for
type I sums

1 X1—6/2
(2) >  max, > m- oD >, am| < oz
qeP =t lmncA(g k) mne A(q)
q*~Q m~M m~ M
and for type II sums
(3) Z max2 Z ambn — m Z ambn < W)
q€P ISZZq mneA(q,k) 4 mnéeA(q)
2nQ m~M m~M

where |an|, |bm| < 7(m). Indeed, by [4, Lemma 2|, and handling cross-
conditions using the Perron formula as in the proof of that lemma, we need
to show only that (2) holds for any M < X% and that (3) holds for any
M e [X? X9

We get type I information by the following elementary argument. Since

A(q F)al = {a ~ A | ag? = —k (mod d)}]

_ {A/d+ o) if (d,¢*) =1,

0 else

1
o) |A(g)al + O(1),

we have
1
Y am= Y. am+O(M(log X)),

2
mneA(q,k) (¢*) mneA(q)

which gives a sufficient bound for M < X'~¢Q~!, and hence, in particular,
for M < X°.

To get type Il information we use the following large sieve result for
square moduli.

LEMMA 3. Letn > 0. Then

9 > >

qZNQ a=1

2
Z ame(?ﬂ < (QM)”(Q3/2+MQ1/4) Z |am|?.

m~M m~ M

Proof. This follows from [2, Theorem 1]. m
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REMARK 4. Since the outer summation in (4) goes over approximately
Q3/2 points a/q?, the expected form of the large sieve would be

7 2
DD ame<?>‘ <@+ M) Y Jaml

¢?~Q a=1 'm~M m~M

A crucial point here is that Lemma 3 implies this apart from a (QM)"-factor
for M < Q°/*. In our type II sums we have max{M, X/M} < Q** in the
most difficult case Q = X/2-¢.

With standard techniques Lemma 3 implies

LEMMA 5. Let n > 0. Then

2
q
S S | S anbntom)
q*~Q X (mod g 2 mn<x
m~ M

< (QX)(QY? + MQY)?
X 1/2 1/2
y (Q3/2+MQ1/4> ( Z |2 Z \bn!2> _

Using this and the classical large sieve, we have

1
Z amby, — m Z ambn

qelP “atk mn€eA(q,k) mneA(q)

< Z ¢(}]2) Z* ‘ Z ambnx(mn)‘

q€eP X (mod ¢2) mneA(q)
qsz mn~M
£ e TS bt
qE]P’ X (mod q) mnéeA(q)
°~Q m~M
1/2 X /4
YT I S N P e

for M € [X? X179 and Q € [X?3, X'/27¢], which completes the proof of
condition (1). m
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