A note on primes of the form $p=a q^{2}+1$

 byKaisa Matomäki (Egham)

1. Introduction. It is a long-standing conjecture that there are infinitely many primes of the form $n^{2}+1$. Several approximations to this problem have been made. Baier and Zhao [1, Theorem 5^{\prime}] showed that for any $\varepsilon>0$, there are infinitely many primes of the form $p=a q^{2}+1$, where $a \leq p^{5 / 9+\varepsilon}$. We improve this result as follows.

Theorem 1. Let $\varepsilon>0$. There are infinitely many primes of the form $p=a q^{2}+1$, where $a \leq p^{1 / 2+\varepsilon}$ and q is a prime.

Baier and Zhao obtained their result as a corollary to their BombieriVinogradov type theorem for sparse sets of moduli. Our improvement comes from using the sieve method of Harman $[3,4,5]$.

We notice that in the interval $[1, X]$ there are $O\left(X^{3 / 4+\varepsilon / 2}\right)$ numbers of the form $a q^{2}+1$ with $a \leq X^{1 / 2+\varepsilon}$, so the set we are considering is quite sparse.

Throughout the paper the symbol p is reserved for a prime variable and \mathbb{P} is the set of primes. Theorem 1 is an immediate consequence of the following stronger result.

Theorem 2. Let $\varepsilon>0, X \geq 1$ and $Q \in\left[X^{3 \varepsilon}, X^{1 / 2-\varepsilon}\right]$. Then for all but $O\left(Q^{1 / 2} X^{-\varepsilon / 4}\right)$ prime squares $q^{2} \sim Q$, we have, for any $k \in\left\{1, \ldots, q^{2}-1\right\}$ and $q \nmid k$,

$$
\left\{a q^{2}+k \mid a \sim X / Q\right\} \cap \mathbb{P} \gg \frac{X}{\phi\left(q^{2}\right) \log X} .
$$

The exponent $1 / 2$ is the limit of the current method as it is in the Bombieri-Vinogradov prime number theorem. In both cases the limit arises from a large sieve result, more precisely from the term corresponding to the number of points in outer summation in the large sieve ($Q^{3 / 2}$ in Lemma 3 below, leading to a critical term $(X Q)^{1 / 2}$ at the end of the proof of Theorem 2).

[^0]2. The method. First we introduce some standard notation. Let \mathcal{E} be a finite subset of \mathbb{N}. Then we write $|\mathcal{E}|$ for the cardinality of \mathcal{E},
$$
\mathcal{E}_{d}=\{m \mid d m \in \mathcal{E}\}
$$
and
$$
S(\mathcal{E}, z)=|\{m \in \mathcal{E} \mid(m, P(z))=1\}|, \quad \text { where } \quad P(z)=\prod_{p<z} p
$$

The elementary Buchstab's identity states that

$$
S(\mathcal{E}, z)=S(\mathcal{E}, w)-\sum_{w \leq p<z} S\left(\mathcal{E}_{p}, p\right)
$$

where $z>w \geq 2$.
We write, for $q^{2} \sim Q, A Q=X$,

$$
\begin{aligned}
\mathcal{A}(q, k) & =\left\{a q^{2}+k \mid a \sim A\right\} \\
\mathcal{A}(q) & =\left\{n \mid n \in\left[A q^{2}+k, 2 A q^{2}+k\right],\left(n, q^{2}\right)=1\right\}
\end{aligned}
$$

Here $\mathcal{A}(q, k)$ is the set to be sieved and $\mathcal{A}(q)$ is the comparison set. We notice that the number of primes in $\mathcal{A}(q, k)$ is $S\left(\mathcal{A}(q, k), 3 X^{1 / 2}\right)$. We write $\theta=3 / 8+2 \varepsilon$ and $z=X^{1-2 \theta}$. Then we use Buchstab's identity to decompose $S\left(\mathcal{A}(q, k), 3 X^{1 / 2}\right)$

$$
\begin{aligned}
= & S(\mathcal{A}(q, k), z)-\sum_{z<p<X^{\theta}} S\left(\mathcal{A}(q, k)_{p}, z\right)-\sum_{X^{\theta} \leq p<3 X^{1 / 2}} S\left(\mathcal{A}(q, k)_{p}, p\right) \\
& +\sum_{z<p_{2}<p_{1}<X^{\theta}} S\left(\mathcal{A}(q, k)_{p_{1} p_{2}}, p_{2}\right) \\
= & S_{1}(q, k)-S_{2}(q, k)-S_{3}(q, k)+S_{4}(q, k) \\
\geq & S_{1}(q, k)-S_{2}(q, k)-S_{3}(q, k) .
\end{aligned}
$$

We write $S_{i}(q)$ for the $\operatorname{sum} S_{i}(q, k)$ with $\mathcal{A}(q, k)$ replaced by $\mathcal{A}(q)$. We will show in the next section that

$$
\begin{equation*}
\sum_{\substack{q \in \mathbb{P} \\ q^{2} \sim Q}} \max _{\substack{1 \leq k<q^{2} \\ q \nmid k}}\left|S_{i}(q, k)-\frac{S_{i}(q)}{\phi\left(q^{2}\right)}\right| \ll \frac{X^{1-\varepsilon / 3}}{Q^{1 / 2}} \quad \text { for } i=1,2,3 \tag{1}
\end{equation*}
$$

As in [5, Section 3.5], this leads to

$$
\begin{aligned}
S\left(\mathcal{A}(q, k), 3 X^{1 / 2}\right) & \geq \frac{1}{\phi\left(q^{2}\right)}\left(S\left(\mathcal{A}(q), 3 X^{1 / 2}\right)-S_{4}(q)\right)(1+o(1)) \\
& =\frac{X(1+o(1))}{\log X \phi\left(q^{2}\right)}\left(1-\int_{1 / 4}^{\theta} \int_{1 / 4}^{\min \left\{\alpha_{1},\left(1-\alpha_{1}\right) / 2\right\}} \frac{d \alpha_{2} d \alpha_{1}}{\alpha_{1} \alpha_{2}\left(1-\alpha_{1}-\alpha_{2}\right)}\right) \\
& \geq \frac{X(1+o(1))}{\log X \phi\left(q^{2}\right)}\left(1-\frac{5}{768} \cdot 4^{2} \cdot \frac{16}{5}\right)=\frac{2 X(1+o(1))}{3 \log X \phi\left(q^{2}\right)}
\end{aligned}
$$

for almost all prime squares $q^{2} \sim Q$ and all appropriate k. This implies Theorem 2.
3. Proof of the bound (1). Proving (1) reduces to showing that for type I sums

$$
\begin{equation*}
\sum_{\substack{q \in \mathbb{P} \\ q^{2} \sim Q}} \max _{\substack{\leq k<q^{2}}}\left|\sum_{\substack{m n \in \mathcal{A}(q, k) \\ m \sim M}} a_{m}-\frac{1}{\phi\left(q^{2}\right)} \sum_{\substack{m n \in \mathcal{A}(q) \\ m \sim M}} a_{m}\right| \ll \frac{X^{1-\varepsilon / 2}}{Q^{1 / 2}} \tag{2}
\end{equation*}
$$

and for type II sums

$$
\begin{equation*}
\sum_{\substack{q \in \mathbb{P} \\ q^{2} \sim Q}} \max _{\substack{1 \leq k<q^{2} \\ q \nmid k}}\left|\sum_{\substack{m n \in \mathcal{A}(q, k) \\ m \sim M}} a_{m} b_{n}-\frac{1}{\phi\left(q^{2}\right)} \sum_{\substack{m n \in \mathcal{A}(q) \\ m \sim M}} a_{m} b_{n}\right| \ll \frac{X^{1-\varepsilon / 2}}{Q^{1 / 2}}, \tag{3}
\end{equation*}
$$

where $\left|a_{m}\right|,\left|b_{m}\right| \leq \tau(m)$. Indeed, by [4, Lemma 2], and handling crossconditions using the Perron formula as in the proof of that lemma, we need to show only that (2) holds for any $M \leq X^{\theta}$ and that (3) holds for any $M \in\left[X^{\theta}, X^{1-\theta}\right]$.

We get type I information by the following elementary argument. Since

$$
\begin{aligned}
\left|\mathcal{A}(q, k)_{d}\right| & =\left|\left\{a \sim A \mid a q^{2} \equiv-k(\bmod d)\right\}\right| \\
& = \begin{cases}A / d+O(1) & \text { if }\left(d, q^{2}\right)=1 \\
0 & \text { else }\end{cases} \\
& =\frac{1}{\phi\left(q^{2}\right)}\left|\mathcal{A}(q)_{d}\right|+O(1)
\end{aligned}
$$

we have

$$
\sum_{\substack{m n \in \mathcal{A}(q, k) \\ m \sim M}} a_{m}=\frac{1}{\phi\left(q^{2}\right)} \sum_{\substack{m n \in \mathcal{A}(q) \\ m \sim M}} a_{m}+O\left(M(\log X)^{C}\right)
$$

which gives a sufficient bound for $M \leq X^{1-\varepsilon} Q^{-1}$, and hence, in particular, for $M \leq X^{\theta}$.

To get type II information we use the following large sieve result for square moduli.

Lemma 3. Let $\eta>0$. Then

$$
\begin{equation*}
\sum_{q^{2} \sim Q} \sum_{a=1}^{q^{2}}\left|\sum_{m \sim M} a_{m} e\left(\frac{a m}{q^{2}}\right)\right|^{2} \ll(Q M)^{\eta}\left(Q^{3 / 2}+M Q^{1 / 4}\right) \sum_{m \sim M}\left|a_{m}\right|^{2} \tag{4}
\end{equation*}
$$

Proof. This follows from [2, Theorem 1].

REMARK 4. Since the outer summation in (4) goes over approximately $Q^{3 / 2}$ points a / q^{2}, the expected form of the large sieve would be

$$
\sum_{q^{2} \sim Q} \sum_{a=1}^{q^{2}} *\left|\sum_{m \sim M} a_{m} e\left(\frac{a m}{q^{2}}\right)\right|^{2} \ll\left(Q^{3 / 2}+M\right) \sum_{m \sim M}\left|a_{m}\right|^{2}
$$

A crucial point here is that Lemma 3 implies this apart from a $(Q M)^{\eta}$-factor for $M \ll Q^{5 / 4}$. In our type II sums we have $\max \{M, X / M\} \ll Q^{5 / 4}$ in the most difficult case $Q=X^{1 / 2-\varepsilon}$.

With standard techniques Lemma 3 implies
Lemma 5. Let $\eta>0$. Then

$$
\begin{aligned}
\sum_{q^{2} \sim Q} \frac{q^{2}}{\phi\left(q^{2}\right)} & \sum_{\chi\left(\bmod q^{2}\right)}^{*} \max _{x \leq X}\left|\sum_{\substack{m n \leq x \\
m \sim M}} a_{m} b_{n} \chi(m n)\right| \\
& \ll(Q X)^{\eta}\left(Q^{3 / 2}+M Q^{1 / 4}\right)^{1 / 2} \\
& \quad \times\left(Q^{3 / 2}+\frac{X}{M} Q^{1 / 4}\right)^{1 / 2}\left(\sum_{m \sim M}\left|a_{m}\right|^{2} \sum_{n \leq X / M}\left|b_{n}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Using this and the classical large sieve, we have

$$
\begin{aligned}
& \sum_{\substack{q \in \mathbb{P} \\
q^{2} \sim Q}} \max _{\substack{1 \leq k<q^{2}}}\left|\sum_{\substack{m \nmid k \in \mathcal{A}(q, k) \\
m \sim M}} a_{m} b_{n}-\frac{1}{\phi\left(q^{2}\right)} \sum_{\substack{m n \in \mathcal{A}(q) \\
m \sim M}} a_{m} b_{n}\right| \\
& \ll \sum_{\substack{q \in \mathbb{P} \\
q^{2} \sim Q}} \frac{1}{\phi\left(q^{2}\right)} \sum_{\chi\left(\bmod q^{2}\right)}^{*}\left|\sum_{\substack{m n \in \mathcal{A}(q) \\
m \sim M}} a_{m} b_{n} \chi(m n)\right| \\
&+\sum_{\substack{q \in \mathbb{P} \\
q^{2} \sim Q}} \frac{1}{\phi\left(q^{2}\right)} \sum_{\chi(\bmod q)}^{*}\left|\sum_{\substack{m n \in \mathcal{A}(q) \\
m \sim M}} a_{m} b_{n} \chi(m n)\right| \\
& \ll\left((X Q)^{1 / 2}+\left(M+\frac{X}{M}\right)^{1 / 2} \frac{X^{1 / 2}}{Q^{1 / 8}}+\frac{X}{Q^{3 / 4}}\right) X^{\varepsilon / 4} \ll \frac{X^{1-\varepsilon / 2}}{Q^{1 / 2}}
\end{aligned}
$$

for $M \in\left[X^{\theta}, X^{1-\theta}\right]$ and $Q \in\left[X^{3 \varepsilon}, X^{1 / 2-\varepsilon}\right]$, which completes the proof of condition (1).

Acknowledgments. The author thanks Glyn Harman for his helpful comments and suggestions.

The author was supported by EPSRC grant GR/T20236/01.

References

[1] S. Baier and L. Zhao, Bombieri-Vinogradov type theorems for sparse sets of moduli, Acta Arith. 125 (2006), 187-201.
[2] —, 一, An improvement for the large sieve for square moduli, J. Number Theory 128 (2008), 154-174.
[3] G. Harman, On the distribution of α p modulo one I, J. London Math. Soc. (2) 27 (1983), 9-18.
[4] -, On the distribution of αp modulo one II, Proc. London Math. Soc. (3) 72 (1996), 241-260.
[5] -, Prime-detecting Sieves, London Math. Soc. Monogr. 33, Princeton Univ. Press, 2007.

Department of Mathematics
Royal Holloway, University of London
Current address:
Egham, Surrey TW20 0EX 20014 University of Turku, Finland
United Kingdom
E-mail: ksmato@utu.fi

Received on 4.12.2007
and in revised form on 2.12.2008

[^0]: 2000 Mathematics Subject Classification: 11N13, 11N36.
 Key words and phrases: primes in quadratic progressions, sieve methods.

