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A note on primes of the form p = aq2 + 1
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Kaisa Matomäki (Egham)

1. Introduction. It is a long-standing conjecture that there are in-
finitely many primes of the form n2 + 1. Several approximations to this
problem have been made. Baier and Zhao [1, Theorem 5′] showed that for
any ε > 0, there are infinitely many primes of the form p = aq2 + 1, where
a ≤ p5/9+ε. We improve this result as follows.

Theorem 1. Let ε > 0. There are infinitely many primes of the form
p = aq2 + 1, where a ≤ p1/2+ε and q is a prime.

Baier and Zhao obtained their result as a corollary to their Bombieri–
Vinogradov type theorem for sparse sets of moduli. Our improvement comes
from using the sieve method of Harman [3, 4, 5].

We notice that in the interval [1, X] there are O(X3/4+ε/2) numbers of
the form aq2 + 1 with a ≤ X1/2+ε, so the set we are considering is quite
sparse.

Throughout the paper the symbol p is reserved for a prime variable
and P is the set of primes. Theorem 1 is an immediate consequence of the
following stronger result.

Theorem 2. Let ε > 0, X ≥ 1 and Q ∈ [X3ε, X1/2−ε]. Then for all but
O(Q1/2X−ε/4) prime squares q2 ∼ Q, we have, for any k ∈ {1, . . . , q2 − 1}
and q - k,

{aq2 + k | a ∼ X/Q} ∩ P� X

φ(q2) logX
.

The exponent 1/2 is the limit of the current method as it is in the
Bombieri–Vinogradov prime number theorem. In both cases the limit arises
from a large sieve result, more precisely from the term corresponding to the
number of points in outer summation in the large sieve (Q3/2 in Lemma 3
below, leading to a critical term (XQ)1/2 at the end of the proof of Theo-
rem 2).
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2. The method. First we introduce some standard notation. Let E be
a finite subset of N. Then we write |E| for the cardinality of E ,

Ed = {m | dm ∈ E}
and

S(E , z) = |{m ∈ E | (m,P (z)) = 1}|, where P (z) =
∏
p<z

p.

The elementary Buchstab’s identity states that

S(E , z) = S(E , w)−
∑

w≤p<z
S(Ep, p),

where z > w ≥ 2.
We write, for q2 ∼ Q, AQ = X,

A(q, k) = {aq2 + k | a ∼ A},
A(q) = {n | n ∈ [Aq2 + k, 2Aq2 + k], (n, q2) = 1}.

Here A(q, k) is the set to be sieved and A(q) is the comparison set. We
notice that the number of primes in A(q, k) is S(A(q, k), 3X1/2). We write
θ = 3/8+2ε and z = X1−2θ. Then we use Buchstab’s identity to decompose

S(A(q, k), 3X1/2)

= S(A(q, k), z)−
∑

z<p<Xθ

S(A(q, k)p, z)−
∑

Xθ≤p<3X1/2

S(A(q, k)p, p)

+
∑

z<p2<p1<Xθ

S(A(q, k)p1p2 , p2)

= S1(q, k)− S2(q, k)− S3(q, k) + S4(q, k)

≥ S1(q, k)− S2(q, k)− S3(q, k).

We write Si(q) for the sum Si(q, k) with A(q, k) replaced by A(q). We will
show in the next section that

(1)
∑
q∈P
q2∼Q

max
1≤k<q2
q-k

∣∣∣∣Si(q, k)− Si(q)
φ(q2)

∣∣∣∣� X1−ε/3

Q1/2
for i = 1, 2, 3.

As in [5, Section 3.5], this leads to

S(A(q, k), 3X1/2) ≥ 1
φ(q2)

(S(A(q), 3X1/2)− S4(q))(1 + o(1))

=
X(1+o(1))
logXφ(q2)

(
1−

θ�

1/4

min{α1,(1−α1)/2}�

1/4

dα2 dα1

α1α2(1−α1−α2)

)

≥ X(1 + o(1))
logXφ(q2)

(
1− 5

768
· 42 · 16

5

)
=

2X(1 + o(1))
3 logXφ(q2)
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for almost all prime squares q2 ∼ Q and all appropriate k. This implies
Theorem 2.

3. Proof of the bound (1). Proving (1) reduces to showing that for
type I sums

(2)
∑
q∈P
q2∼Q

max
1≤k<q2
q-k

∣∣∣∣ ∑
mn∈A(q,k)
m∼M

am −
1

φ(q2)

∑
mn∈A(q)
m∼M

am

∣∣∣∣� X1−ε/2

Q1/2
,

and for type II sums

(3)
∑
q∈P
q2∼Q

max
1≤k<q2
q-k

∣∣∣∣ ∑
mn∈A(q,k)
m∼M

ambn −
1

φ(q2)

∑
mn∈A(q)
m∼M

ambn

∣∣∣∣� X1−ε/2

Q1/2
,

where |am|, |bm| ≤ τ(m). Indeed, by [4, Lemma 2], and handling cross-
conditions using the Perron formula as in the proof of that lemma, we need
to show only that (2) holds for any M ≤ Xθ and that (3) holds for any
M ∈ [Xθ, X1−θ].

We get type I information by the following elementary argument. Since

|A(q, k)d| = |{a ∼ A | aq2 ≡ −k (mod d)}|

=
{
A/d+O(1) if (d, q2) = 1,
0 else

=
1

φ(q2)
|A(q)d|+O(1),

we have ∑
mn∈A(q,k)
m∼M

am =
1

φ(q2)

∑
mn∈A(q)
m∼M

am +O(M(logX)C),

which gives a sufficient bound for M ≤ X1−εQ−1, and hence, in particular,
for M ≤ Xθ.

To get type II information we use the following large sieve result for
square moduli.

Lemma 3. Let η > 0. Then

(4)
∑
q2∼Q

q2∑∗

a=1

∣∣∣∣ ∑
m∼M

ame

(
am

q2

)∣∣∣∣2 � (QM)η(Q3/2 +MQ1/4)
∑
m∼M

|am|2.

Proof. This follows from [2, Theorem 1].
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Remark 4. Since the outer summation in (4) goes over approximately
Q3/2 points a/q2, the expected form of the large sieve would be

∑
q2∼Q

q2∑∗

a=1

∣∣∣∣ ∑
m∼M

ame

(
am

q2

)∣∣∣∣2 � (Q3/2 +M)
∑
m∼M

|am|2.

A crucial point here is that Lemma 3 implies this apart from a (QM)η-factor
for M � Q5/4. In our type II sums we have max{M,X/M} � Q5/4 in the
most difficult case Q = X1/2−ε.

With standard techniques Lemma 3 implies

Lemma 5. Let η > 0. Then∑
q2∼Q

q2

φ(q2)

∑∗

χ (mod q2)

max
x≤X

∣∣∣ ∑
mn≤x
m∼M

ambnχ(mn)
∣∣∣

� (QX)η(Q3/2 +MQ1/4)1/2

×
(
Q3/2 +

X

M
Q1/4

)1/2( ∑
m∼M

|am|2
∑

n≤X/M

|bn|2
)1/2

.

Using this and the classical large sieve, we have∑
q∈P
q2∼Q

max
1≤k<q2
q-k

∣∣∣∣ ∑
mn∈A(q,k)
m∼M

ambn −
1

φ(q2)

∑
mn∈A(q)
m∼M

ambn

∣∣∣∣
�

∑
q∈P
q2∼Q

1
φ(q2)

∑∗

χ (mod q2)

∣∣∣ ∑
mn∈A(q)
m∼M

ambnχ(mn)
∣∣∣

+
∑
q∈P
q2∼Q

1
φ(q2)

∑∗

χ (mod q)

∣∣∣ ∑
mn∈A(q)
m∼M

ambnχ(mn)
∣∣∣

�
(

(XQ)1/2 +
(
M +

X

M

)1/2X1/2

Q1/8
+

X

Q3/4

)
Xε/4 � X1−ε/2

Q1/2

for M ∈ [Xθ, X1−θ] and Q ∈ [X3ε, X1/2−ε], which completes the proof of
condition (1).
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