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Addendum on the equation aX4 − bY 2 = 2

by

S. Akhtari (Kingston, ON), A. Togbé (Westville, IN) and
P. G. Walsh (Ottawa, ON)

In a recent paper [2], we proved that for t > 40 000, the Diophantine
equation (t+ 2)X4 − tY 2 = 2 has at most two solutions in positive integers
X,Y . In this addendum, we recall a simple argument due to Ljunggren [4]
which, together with an observation due to Voutier [5], shows that for any
two positive integers a and b, the quartic equation aX4 − bY 2 = 2 has at
most two solutions in positive integers X,Y .

By the main result in [1], we restrict our attention to pairs of odd integers
a, b, and furthermore, we need only consider those pairs a, b for which the
quadratic equation ax2− by2 = 2 is solvable in odd integers x, y. Given such
a pair of integers a, b, let (x, y) = (u1, v1) denote the smallest solution in
positive integers to ax2 − by2 = 2, and define

τ = τa,b =
u1
√
a+ v1

√
b√

2
.

For i ≥ 1 odd, define sequences {ui}, {vi} by

τ i =
ui
√
a+ vi

√
b√

2
.

Then all positive integer solutions (x, y) to the quadratic equation ax2 −
by2 = 2 are given by (x, y) = (ui, vi).

Theorem 1. If a, b are positive integers, then the equation

(1) aX4 − bY 2 = 2

has at most two solutions in positive integers X,Y .

As stated, Theorem 1 is best possible, since for the cases (a, b) = (2m2 +
2m + 2, 2m2 + 2m) and (a, b) = (2m2 + 2m + 2, (m2 + m)/2), there are
the two positive integer solutions (X,Y ) = (1, 1), (2m + 1, 4m2 + 4m + 3)
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and (X,Y ) = (1, 2), (2m + 1, 8m2 + 8m + 6) respectively to equation (1).
However, in the primary case considered in this paper, namely that a and b
are odd, we conjecture that there is at most one solution in positive integers
to (1). This conjecture was verified for (a, b) = (t+ 2, t), with t in the range
1 ≤ t < 1200.

Proof of Theorem 1. Let us first point out that Voutier [5] has refined
the argument in [2], thereby proving that for all odd positive integers t, the
quartic equation (t + 2)X4 − tY 2 = 2 has at most two solutions in odd
positive integers X,Y .

We will now assume that a, b are odd positive integers for which there is
at least one solution in odd integers (X,Y ) to the equation aX4− bY 2 = 2.
Thus, there is at least one odd positive integer k with the property that uk
is a square, and we assume that k represents the smallest such integer. The
purpose for choosing the minimal such value is to first show that this integer
k divides all indices k1 for which uk1 is a square, which will then allow us
to associate to the equation aX4 − bY 2 = 2 a minimal positive integer t,
and a corresponding equation of the form (t+ 2)X4− tY 2 = 2, and describe
a one-to-one correspondence between the positive integer solutions to these
two equations. Given k as above, define the positive integer X0 specifically
by uk = X2

0 .
Before proceeding, we remind the reader of two basic facts about the

sequence {un} defined above. These facts follow from the elementary theory
of Lucas functions given in [3], and can easily be proved using binomial
expansions. We forego the details, since the proofs are identical to those of
Theorems 1.5 and 1.6 in [3]. The first property simply states that {un} is a
divisibility sequence, while the second is referred to as the Law of Repetition.
We say that a prime power pl properly divides a positive integer n if pl divides
n and (p, n/pl) = 1.

I. If m and n are odd, and m divides n, then um divides un.
II. Let p denote an odd prime, l a positive integer with gcd(p, l) = 1,

and t a non-negative integer. If α is a positive integer for which pα

properly divides un, then pα+t properly divides ulnpt .

We now write u1 = l1s
2
1 with l1 a positive squarefree integer. Note that

since {un} is a divisibility sequence, u1 divides uk. If l1 = 1, then u1 is a
square, and hence k = 1. We observe in this case that l1 = 1 divides k.
Assume now that l1 > 1, and let p denote a prime dividing l1. Then p
divides u1 exactly to an odd power, say 2e + 1. Since u1 divides uk, we
see that p2e+1 divides uk, but as uk is a square, it follows that p2e+2 must
divide uk. By property II, it follows that p divides k, and since this holds
for all p dividing l1, it follows that l1 divides k.



Addendum on the equation aX4 − bY 2 = 2 201

If l1 > 1, write ul1 = l2s
2
2 with l2 a positive squarefree integer. Since l1

divides k, we see that ul1 divides uk. Also, note that gcd(l1, l2) = 1, since, by
the Law of Repetition, each prime dividing l1 divides ul1 = l2s

2
2 exactly to

an even power. By precisely the same reasoning as that given in the previous
paragraph, it follows that the squarefree integer l1l2 divides k, and that ul1l2
divides uk. Now if l2 = 1, then ul1 is a square, and so l1 = k. Otherwise, if
l2 > 1, then we write ul1l2 = l3s

2
3 with l3 squarefree, and just as above, it

follows that l1, l2, l3 are pairwise coprime, that the squarefree integer l1l2l3
divides k, and that ul1l2l3 divides uk. Since k is finite, this process evidently
must stop, and we conclude that there are pairwise coprime squarefree in-
tegers l1, . . . , lj such that k = l1 · · · lj . We remark that by arguing exactly
as above, if k1 is any odd positive integer for which uk1 is a square, then
k = l1 · · · lj is a divisor of k1.

With k and uk = X2
0 as above, define t by

t = au2
k − 2 = aX4

0 − 2 = bv2
k,

and put

γ =
√
t+ 2 +

√
t√

2
.

We note that γ = τk, and remark that the sequence {vn} is also a divisibility
sequence. For i ≥ 1 odd, we define new sequences {Ui}, {Vi} by

γi =
Ui
√
t+ 2 + Vi

√
t√

2
.

Then

Ui
√
t+ 2 + Vi

√
t√

2
= γi = τki =

uki
√
a+ vki

√
b√

2

=
(uki/uk)

√
t+ 2 + (vki/vk)

√
t√

2
,

from which it follows that for each odd i ≥ 1,

Uiuk = UiX
2
0 = uki.

Therefore, uki is a square precisely when Ui is a square. As remarked at the
end of the previous paragraph, the set of squares in the sequence {ui} is
contained in the subsequence {uki}, and hence there is a one-to-one corre-
spondence between the set of squares in {ui} and the set of squares in {Ui}.

To complete the proof, we observe that by Voutier’s recent refinement
[5] of the main result of [2], the sequence {Ui} contains at most two squares,
from which Theorem 1 now follows by the correspondence given in the pre-
vious paragraph.
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