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1. Introduction. Before providing a historical perspective on the study
of primitive divisors of Lehmer numbers, we define some notation.

Definition 1. Let z ∈ C and w ∈ C be such that w2 − z = 0.
We define z = |z| exp(

√
−1 arg(z)), where −π < arg(z) ≤ π, and w =

|w| exp(
√
−1 arg(w)), where −π/2 < arg(w) ≤ π/2.

Definition 2. A Lucas pair is a pair (α, β) of algebraic integers such
that α + β and αβ are non-zero coprime rational integers, and β/α is not
a root of unity. A real Lucas pair is such that (α, β) ∈ R × R. A complex
Lucas pair is such that (α, β) /∈ R× R.

Definition 3. A Lehmer pair is a pair (α, β) of algebraic integers such
that (α+β)2 and αβ are non-zero coprime rational integers, and β/α is not
a root of unity. A real Lehmer pair is such that (α2, β2) ∈ R×R. A complex
Lehmer pair is such that (α2, β2) /∈ R× R.

Definition 4. Given a Lucas or Lehmer pair, we define

L = (α+ β)2, κ = k(ξ),

M = αβ, η =
{

1 if κ ≡ 1 (mod 4),
2 otherwise,

ξ = M max{L− 4M,L},
where k(ξ) is the squarefree kernel of ξ.

Definition 5. Given a Lucas or Lehmer pair, we define a Lehmer se-
quence (un)∞n=0 by

un = un(α, β) =
αn − βn

αε(n) − βε(n)
, ε(n) =

{
1 if n ≡ 1 (mod 2),
2 if n ≡ 0 (mod 2).
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In 1930, Lehmer [11] introduced the sequences (un)∞n=0. He showed that
his sequences had similar divisibility properties to those of Lucas [12] se-
quences, and he used them to extend the Lucas test for primality.

Definition 6. A Lehmer number is a term of the Lehmer sequence
(un)∞n=0.

Definition 7. A real Lehmer triple is a triple (n, α, β) corresponding
to a Lehmer number un(α, β) and such that (α, β) is a real Lehmer pair.

Definition 8. A complex Lehmer triple is a triple (n, α, β) correspond-
ing to a Lehmer number un(α, β) and such that (α, β) is a complex Lehmer
pair.

We note that Lehmer numbers satisfy the following recurrence relation:

u0 = 0, u1 = 1, u2 = 1,
un = (1 + (

√
−1)n−1 sin(πn/2)(L− 1))un−1 −Mun−2, n ≥ 3,

and hence that Lehmer numbers are rational integers.

Definition 9. A primitive divisor of a Lehmer number un = un(α, β)
is a prime number p which divides un, but does not divide the product

(α2 − β2)2u3 · · ·un−1.

The first general result about the existence of primitive divisors of Leh-
mer numbers is attributed to Zsigmondy [30], and dates back to 1892. In
1904, Birkhoff and Vandiver [3] rediscovered Zsigmondy’s result. In 1913,
Carmichael [4] extended Zsigmondy’s result to include in particular the Fi-
bonacci sequence. After a long break corresponding to the period dominated
by the two world wars, the study was revived in the 1950’s by Ward [29],
who extended Carmichael’s result to real Lehmer triples, and Durst [5], who
continued Ward’s work. Motivated by Ward’s remark that nothing appears
to be known for complex Lehmer triples, in the 1960’s, Schinzel published
a series of papers extending Ward’s and Durst’s results to complex Lehmer
triples. In particular, Schinzel [15] showed that given a Lehmer pair, there
exists a constant n1(α, β), depending on α and β, such that if n > n1(α, β),
then un(α, β) has at least one primitive divisor. Later, in 1974, Schinzel
[20] showed that, rather surprisingly, the constant n1(α, β), depending on α
and β, may be replaced by an absolute constant n1. In 1977, Stewart [23]
made a remarkable improvement by not only making Schinzel’s work explicit
by using his estimates on linear forms in 2-logarithms in order to show that
we may take

n1 = e452467,

but also by showing that there are only finitely many Lehmer sequences
whose nth term, n > 6, n /∈ {8, 10, 12}, does not have a primitive divisor, and
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by establishing a cyclotomic criterion, and thereby an algorithm, from which
these exceptional sequences may be explicitly determined by solving the
implicated Thue equations. Moreover, Stewart showed that the restrictions
n > 6, n /∈ {8, 10, 12}, are best possible for the Lehmer sequence (un)∞n=0

in case (α, β) is a Lehmer pair, but may be replaced by the best possible
restrictions n > 4, n 6= 6 in case (α, β) is a Lucas pair. In the 1990’s,
Voutier made a number of refinements of Stewart’s work ([25]–[27]), and in
particular established that one may take

n1 = 30030,

and conjectured that one may take n1 = 30. At the turn of the millennium,
in a spectacular display of the interplay between computational number
theory and theoretical number theory in helping to resolve an outstanding
problem, Bilu, Hanrot, and Voutier [2] established the optimal value

n1 = 30.

In order to further motivate this article, consider the following problem:

Problem 1. Classify all Lehmer triples (n, α, β) such that (α, β) is a
Lehmer pair , and un has at least r primitive divisor(s), where n exceeds
some bound , and r is a given natural number.

The case r = 1 in Problem 1 has been completely resolved by Bilu,
Hanrot and Voutier. In this article we consider the case r = 2. Let n > 0
be an integer, a and b be relatively prime integers with |a| > |b| > 0, k(ab)
denote the squarefree kernel of ab, and let

η0 =
{

1 if k(ab) ≡ 1 (mod 4),
2 if k(ab) ≡ 2, 3 (mod 4).

In 1962, Schinzel showed that if n/(η0k(ab)) is an odd integer, and the
triple (n, a, b) is not from an explicit table, then the nth term of the sequence
(an−bn)∞n=0 has at least two primitive divisors. In the same year, Rotkiewicz
[14] generalised this theorem to real Lucas pairs ((α, β) ∈ R× R). In 1963,
Schinzel [17] generalised Rotkiewicz’s theorem to a result about the nth
term of the Lehmer sequence (un)∞n=0 having at least two primitive divisors.
In the same year, Schinzel [18] proved a theorem about un having at least
r primitive divisors, where r is 3, 4 or 6, while a few years later, in 1968,
Schinzel [19] refined all of his theorems on primitive divisors of Lehmer
numbers. Nonetheless, all of Schinzel’s theorems had the shape, ignoring
other conditions similar to the conditions described above for the sequence
(an − bn)∞n=0, that there exists a constant nr(α, β), depending on α and β,
such that if n > nr(α, β), then un has at least r primitive divisors, where
r is a natural number. Later, in 1974, Schinzel [20] showed that for each r,
nr(α, β) may be replaced by an absolute constant nr.
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In the next section we establish Theorem 1 on Lehmer numbers, gener-
ated by a real or complex Lehmer pair, in the direction of solving a part of
Problem 1. More precisely, Schinzel [20] proved that there exists an absolute
constant n2 such that if L and M are integers such that L > 0, M > 0,
L − 4M < 0, gcd(L,M) = 1, (L,M) /∈ {(1, 1), (2, 1), (3, 1)}, n > n2, and
n/(ηκ) is an odd integer, then un(α, β) has at least two primitive divisors.
We show that we may take n2 = 1.2 · 1010. Moreover, we extend Stewart’s
algorithm [23, Theorem 2] for classifying Lehmer triples with at least one
primitive divisor, to an algorithm for classifying Lehmer triples with at least
two primitive divisors. Finally, we show that the conditions n > 6, n 6= 12
in Theorem 1 cannot be improved, and so are best possible, when (α, β) is
a Lucas pair, under the assumption of two plausible conjectures.

2. Classifying Lehmer triples. We state our main result, which de-
pends on the following two conjectures on primes.

Conjecture 1. There are infinitely many prime numbers p > 5 such
that

1
5

(
(1 +

√
5)
(

3 +
√

5
2

)2p

+ (1−
√

5)
(

3−
√

5
2

)2p

+ 3
)

is a prime number.

Conjecture 2. There are infinitely many prime numbers p > 5 such
that

1
3

((1 +
√

3)(2 +
√

3)2p + (1−
√

3)(2−
√

3)2p + 1)

is a prime number.

Theorem 1. There are only finitely many triples (n, α, β), where n > 6,
n 6= 12, (α, β) is a Lehmer pair , and n/(ηκ) is an odd integer , such that
un(α, β) has fewer than two primitive divisors. Furthermore, the conditions
n > 6, n 6= 12 are best possible, subject to the truth of Conjectures 1 and 2.

2.1. Preliminary lemmas

Definition 10. We define the cyclotomic polynomial

Φn(x, y) =
n∏
i=1

(i,n)=1

(x− ζiny),

where
ζin = exp(2π

√
−1 i/n).

Lemma 1. Let ` > 1 be a squarefree integer , and let m be an integer
divisor of ` such that `/m is an odd integer. Then for N = ` or N = 2`, we
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have the following factorisation of the cyclotomic polynomial ΦN (x, y):

ΦN (x, y) = Φ
(1)
N,m(x, y)Φ(2)

N,m(x, y),

where if N = ` and m is odd ,

Φ
(1)
N,m(x, y) =

∏̀
s=1

gcd(s,`)=1
(s|m)=1

(
√
x− ζs`

√
y)

∏̀
t=1

gcd(t,`)=1
(t|m)=−1

(
√
x+ ζt`

√
y),(1)

Φ
(2)
N,m(x, y) =

∏̀
s=1

gcd(s,`)=1
(s|m)=1

(
√
x+ ζs`

√
y)

∏̀
t=1

gcd(t,`)=1
(t|m)=−1

(
√
x− ζt`

√
y);(2)

if N = 2` and m is odd ,

Φ
(1)
N,m(x, y) =

∏̀
s=1

gcd(s,`)=1
(s|m)=1

(
√
x−
√
−1 ζs`

√
y)

∏̀
t=1

gcd(t,`)=1
(t|m)=−1

(
√
x+
√
−1 ζt`

√
y),(3)

Φ
(2)
N,m(x, y) =

∏̀
s=1

gcd(s,`)=1
(s|m)=1

(
√
x+
√
−1 ζs`

√
y)

∏̀
t=1

gcd(t,`)=1
(t|m)=−1

(
√
x−
√
−1 ζt`

√
y);(4)

if N = 2` and m is even,

Φ
(1)
N,m(x, y) =

4∏̀
s=1

gcd(s,4`)=1
(m|s)=1

(
√
x− ζs4`

√
y),(5)

Φ
(2)
N,m(x, y) =

4∏̀
s=1

gcd(s,4`)=1
(m|s)=1

(
√
x+ ζs4`

√
y).(6)

Here (s|m), (t|m), and (m|s) are Jacobi symbols.

Proof. This is essentially line (4), (5), and (7) of [16, Theorem 1].

Lemma 2. Let n > 4, n 6= 6 be a positive integer , (α, β) be a Lehmer
pair such that αβ > 0, and n/(ηκ) be an odd integer. If the nth Lehmer
number un has fewer than two primitive divisors, then for (j = 1 and j = 2)
in case un has no primitive divisors, and for (j = 1 or j = 2) in case un
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has one primitive divisor , it follows that

(7) |δΦ(j)
N,κ(αn/ν , βn/ν)| ∈

{ {1, 2, 3, 6} if n = 12,
{1, P (n/gcd(n, 3))} otherwise,

where
δ = k((α+ β)2)−(φ(n)/4−bφ(n)/4c),

ν = ηκ
∏
p|n, p-ηκ p, ` = κ

∏
p|n, p-ηκ p, and N = ν, Φ(1)

N,κ(αn/ν , βn/ν) is defined

by equations (1), (3) or (5), and Φ(2)
N,κ(αn/ν , βn/ν) is defined by equations (2),

(4), or (6).

Proof. Schinzel [17, Lemma 2] deduced that

(8) |Φn(α, β)| = |δΦ(1)
N,κ(αn/ν , βn/ν)| |δΦ(2)

N,κ(αn/ν , βn/ν)|δ−2,

where

δ = k((α+ β)2)−(φ(n)/4−bφ(n)/4c), δΦ
(1)
N,κ(αn/ν , βn/ν), δΦ(2)

N,κ(αn/ν , βn/ν) ∈ Z,
and

(9) gcd(δΦ(1)
N,κ(αn/ν , βn/ν), δΦ(2)

N,κ(αn/ν , βn/ν)) = 1.

If un has no primitive divisor, then by [23, Theorem 2], and (8), the result
follows. Suppose that un has exactly one primitive divisor p1. Since by [24,
Lemma 6], the prime divisors of |Φn(α, β)| coincide with the primitive divi-
sors of un, except possibly for P (n/gcd(n, 3)), the greatest prime factor of
n/gcd(n, 3), which exactly divides Φn(α, β) if at all, we see that p1 |Φn(α, β).
Suppose p1 6= P (n/gcd(n, 3)). By (8) and (9), we may assume without loss
of generality that

p1 | δΦ(1)
N,κ(αn/ν , βn/ν).

If |δΦ(2)
N,κ(αn/ν , βn/ν)| 6= 1, let p be a prime divisor of δΦ(2)

N,κ(αn/ν , βn/ν), and
so of Φn(α, β). By (9), p 6= p1. By [24, Lemma 6] it follows that

p =
{

2 or 3 if n = 12,
P (n/gcd(n, 3)) otherwise,

from which we deduce (7). Suppose now that p1 = P (n/gcd(n, 3)). Then
p1 |n, from which it follows that

gcd(p1 + 1, n) = 1, gcd(p1 − 1, n) = 1.

On the other hand, since p1 is a primitive divisor, p1 - (α2−β2)2, from which
it follows that

p1 |up1−1up1+1.

Since gcd(up1−1, up1+1) = ugcd(p1−1,p1+1) = 1, we have either

p1 | gcd(up1−1, un) = ugcd(p1−1,n) = 1,
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or
p1 | gcd(up1+1, un) = ugcd(p1+1,n) = 1,

in both cases, a contradiction.

Lemma 3. Let m,n ∈ N, m odd. Then
bn/2c∑
j=1

gcd(j,n)=1

(ζjn + ζ−jn )m = φ(n)
(m−1)/2∑
l=0

(
m

l

)
µ(n/gcd(n,m− 2l))
φ(n/gcd(n,m− 2l))

.

Proof. This follows from [6, Theorem 272] and the binomial theorem.

Lemma 4. Let m,n ∈ N, m even. Then
bn/2c∑
j=1

gcd(j,n)=1

(ζjn + ζ−jn )m =
m/2−1∑
l=0

(
m

l

)
φ(n)µ(n/gcd(n,m− 2l))
φ(n/gcd(n,m− 2l))

+ ξ(n)
(
m

m/2

)
,

where

ξ(n) =
{
φ(n)/2 if n is odd ,
φ(n/2) if n is even.

Proof. This follows from [6, Theorem 272] and the fact that
bn/2c∑
j=1

gcd(j,n)=1

1 = ξ(n).

Lemma 5. Let n,m ∈ N, and let d be an odd divisor of n. If n/gcd(n,m)
≡ 0 (mod d) and µ(d) 6= 0, then

n∑
h=1

gcd(h,n)=1

(h|d)ζhmn =
φ(n)µ

(
n

d gcd(n,m)

)(
n

d gcd(n,m)

∣∣d)( m
gcd(n,m)

∣∣d)√εd
φ
(

n
gcd(n,m)

) ,

where

ε =
{

1 if d ≡ 1 (mod 4),
−1 if d ≡ −1 (mod 4).

Proof. Let χ(h) = (h|d). Note that χ(h) is a quadratic character of
conductor d, and χ(h) = χ(h). Let m = gm0, and n = gn0, where g =
gcd(m,n) and gcd(m0, n0) = 1. By [7, Theorem IV],

n∑
h=1

gcd(h,n)=1

(h|d)ζhmn =
φ(n)
φ(n0)

µ(n0/d)χ(n0/d)χ(m0)
d∑

h=1

(h|d)ζhd .
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By [7, Theorem XI],
d∑

h=1

(h|d)ζhd =
{√

d if (−1|d) = 1,√
−d if (−1|d) = −1.

It remains to note that d is odd and (−1|d) = (−1)(d−1)/2.

Lemma 6. Let n be an odd positive integer , ν be the greatest squarefree
divisor of n, d ≡ 1 (mod 4) be a divisor of ν, d = d2d3, and let m be an odd
positive integer. Then

bν/2c∑
i=1

gcd(i,ν)=1

{
±(i|d)

√
d
n/ν
3 (ζiν + ζ−iν )

}m

=± d
m(n/ν)+1

2
3

√
d2

(m−1)/2∑
l=0

ν/gcd(ν,m−2l)≡0 (mod d)

(
m

l

)

×
φ(ν)µ

(
ν

d gcd(ν,m−2l)

)(
ν

d gcd(ν,m−2l)

∣∣d)( m−2l
gcd(ν,m−2l)

∣∣d)
φ(ν/gcd(ν,m− 2l))

.

Proof. This follows from Lemma 5 and the binomial theorem.

Lemma 7. Let n be an odd positive integer , ν be the greatest squarefree
divisor of n, d be a divisor of ν, d = d2d3, and let m be an even positive
integer. Then

bν/2c∑
i=1

gcd(i,ν)=1

{
±(i|d)

√
d
n/ν
3 (ζiν + ζ−iν )

}m

= d
mn/ν

2
3 φ(ν)

(m/2−1∑
l=0

(
m

l

)
µ(ν/gcd(ν,m− 2l))
φ(ν/gcd(ν,m− 2l))

+
1
2

(
m

m/2

))
.

Proof. This follows as in the proof of Lemma 4, on noting that since
gcd(i, d) = 1 and m is even, {±(i|d)}m = 1.

Lemma 8. Let 2 ≤ c ∈ Z, (α + β)2 = z2
2 , and αβ = z2

3 , where z2 ∈ Z,
z3 ∈ Z. Then

Φ3c(α, β) =
b3c/2c∏
i=1

gcd(i,3c)=1

(z2 − (ζi3c + ζ−i3c )z3)
b3c/2c∏
i=1

gcd(i,3c)=1

(z2 + (ζi3c + ζ−i3c )z3).

Proof. This follows directly by definition, factoring a difference of squares,
and pairing (ζi3c , ζ

−i
3c ).
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Lemma 9. Let 2 ≤ c ∈ Z, (α + β)2 = d2z
2
2 , and αβ = d3z

2
3 , where

(d2, d3) ∈ {(3, 1), (1, 3)}, z2 ∈ Z, z3 ∈ Z. Then

Φ2·3c(α, β) =
b3c/2c∏
i=1

gcd(i,3c)=1

(
√
d2 z2 −

√
−1 (ζi3c − ζ−i3c )

√
d3 z3)

×
b3c/2c∏
i=1

gcd(i,3c)=1

(
√
d2 z2 +

√
−1 (ζi3c − ζ−i3c )

√
d3 z3).

Proof. This follows directly from the identity Φl(x,−y) = Φ2l(x, y), valid
for any odd integer l > 1, factoring a difference of squares, and pairing
(ζi3c , ζ

−i
3c ).

Lemma 10. Let L and M be integers such that L > 0, M > 0, L− 4M
< 0, gcd(L,M) = 1, (L,M) /∈ {(1, 1), (2, 1), (3, 1)}, (α, β) be the correspond-
ing Lehmer pair , and let κ and η be as in Definition 4. If n > 4, n 6= 6,
n/(ηκ) is an odd integer , and

log |Φn(α, β)| − 1
2
φ(n) log |α| − 4

√
n (log n)2 − log n > 0,

then the nth Lehmer number un has at least two primitive divisors.

Proof. We use the notation of Lemma 2. It suffices to establish that

min(|δΦ(1)
N,κ(αn/ν , βn/ν)|, |δΦ(2)

N,κ(αn/ν , βn/ν)|) > n,

which is equivalent to

(10)
|Φn(α, β)|

max(|δΦ(1)
N,κ(αn/ν , βn/ν)|, |δΦ(2)

N,κ(αn/ν , βn/ν)|)
> n.

By [21], in order to prove (10), it suffices to show that

(11)
|Φn(α, β)|

|α|φ(n)/2 exp(4
√
n (log n)2)

> n.

It remains to take the logarithm of both sides of (11).

Lemma 11. Let d ∈ N, d′ = max{527, d}, (α, β) be a complex Lehmer
pair , and γ = β/α. Then

log |1− γd| >− ([24.89(log d′)2 + 0.23][log |α|+ 9.503]
+ 2 log(d′ log d′) + 0.572).

Proof. Plainly,

|1− γd| ≥ 2
π
|arg γd|.(12)
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Furthermore, we may assume that 0 < arg γ < π, replacing γ by its complex
conjugate if necessary. Put b2 = d and let b1 be the nearest even integer to
d(arg γ)/π. Then 0 < b1 ≤ d, and

|arg γd| = |b1
√
−1π − b2 log γ|.

By (12), it follows that

(13) log |1− γd| ≥ log |b1
√
−1π − b2 log γ|+ log 2− log π.

Let λ = 1.8 in [2, Theorem A.1.3]. Then

% = 6.04 . . . , t = 0.008 . . . , k = 0.2946 . . . , D′ = 1,
a = log |α|+ 9.5027 . . . , B = max{527, b1, d}, d′ = max{527, d}.

Since
log |α| ≥ log 2

2
,

it follows that

H ≤ log d′ − 0.604 . . . < log d′.

By [2, Theorem A.1.3],

(14) log |b1
√
−1π − b2 log γ|

> −(c1(log d′)2 + 0.23)a− 2 log d′ − 2 log log d′ − c2,
where c1 = 24.88 . . . and c2 = 0.12 . . . . By (13) and (14) we deduce the
result.

Lemma 12. Let n ≥ 527, (α, β) be a complex Lehmer pair , and γ = β/α.
Then ∑

d|n
µ(n/d)=1

log |1− γd| > −2ω(n)−1F (n, α),

where

F (n, α) = [24.89(log n)2 + 0.23][log |α|+ 9.503] + 2 log(n log n) + 0.572.

Proof. This follows directly from∑
d|n

µ(n/d)=1

1 = 2ω(n)−1,

and Lemma 11, since log d′ ≤ log n.

Lemma 13. Let L and M be integers such that L > 0, M > 0, L− 4M
< 0, gcd(L,M) = 1, (L,M) /∈ {(1, 1), (2, 1), (3, 1)}, (α, β) be the correspond-
ing Lehmer pair , and let κ and η be as in Definition 4. If n ≥ 1.2 ·1010, and
n/(ηκ) is an odd integer , then the nth term un(α, β) of the Lehmer sequence
has at least two primitive divisors.
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Proof. Let γ = β/α. It follows from

Φn(α, β) =
∏
d|n

(αd − βd)µ(n/d) and φ(n) = n
∑
t|n

µ(t)
t

that

log |Φn(α, β)| = φ(n) log |α| −
∑
d|n

µ(n/d)=−1

log |1− γd|+
∑
d|n

µ(n/d)=1

log |1− γd|.

By Lemma 10, it suffices to show that

1
2
φ(n) log |α| −

∑
d|n

µ(n/d)=−1

log |1− γd|+
∑
d|n

µ(n/d)=1

log |1− γd|

− 4
√
n (log n)2 − log n > 0.

Since ∑
d|n

µ(n/d)=−1

log |1− γd| ≤ 2ω(n)−1 log 2,

it suffices to show that
1
2
φ(n) log |α|−2ω(n)−1 log 2 +

∑
d|n

µ(n/d)=1

log |1−γd|−4
√
n (log n)2− log n > 0.

By Lemma 12, it suffices to show that, for n ≥ 527,

(15)
1
2
φ(n) log |α| − 2ω(n)−1 log 2− 2ω(n)−1F (n, α)

− 4
√
n (log n)2 − log n > 0,

where

F (n, α) = [24.89(log n)2 + 0.23][log |α|+ 9.503] + 2 log(n log n) + 0.572.

Since

(16)
1

log |α|
≤ 2

log 2
,

it follows that
F (n, α)
log |α|

≤ F1(n),

where

F1(n) = [24.89(log n)2 + 0.23](1 + 2 · 9.503/log 2)
+ (4/log 2) log(n log n) + 2 · 0.572/log 2

= (707.37 . . .)(log n)2 + (5.77 . . .) log(n log n) + 8.18 . . . .
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Multiplying (15) by 2(log |α|)−1, and applying (16), it suffices to show that

φ(n)− 2ω(n)F ∗1 (n)− (16/log 2)
√
n (log n)2 − (4/log 2) log n > 0,(17)

where
F ∗1 (n) = 707.38(log n)2 + 5.78 log(n log n) + 10.19.

Since n > 1010, we have

(18)
√
n (log n)2

(
16

log 2
+

4
log 2

· 1√
n (log n)

)
<
√
n (log n)2

(
16

log 2
+

4
log 2

· 1√
1010 (10 log 10)

)
= (23.083123 . . .)

√
n (log n)2,

and

F ∗1 (n) = (log n)2
(

707.38 + 5.78
log(n log n)

(log n)2
+

10.19
(log n)2

)
(19)

< (log n)2
(

707.38 +
2 · 5.78

10 log 10
+

10.19
(10 log 10)2

)
= (707.901 . . .)(log n)2.

Substituting inequalities (18) and (19) in (17), we see that it suffices to show
that

φ(n)− 707.91 · 2ω(n)(log n)2 − 23.084
√
n (log n)2 > 0.

Since by [1, Proposition 4.1],

φ(n) > (0.496866 . . .)
n

log logn
for n > 6915878970,

and by [13, Théorème 11],

ω(n) ≤ (1.38401 . . .)
log n

log logn
for n ≥ 3,

it suffices to show that

0.49686 · n

log logn
− 707.91 · 21.3841 logn/log logn(log n)2

− 23.084
√
n (log n)2 > 0.

Since n > 1010,

(1.3841 log n/log logn) log 2 < (1.3841 log 2/log(10 log 10)) log n
= (0.305866 . . .) log n,

and we see that it suffices to show that

0.49686 · n

log log n
− 707.91 · n0.306(log n)2 − 23.084

√
n (log n)2 > 0,
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or equivalently,
L(n) > 0,

where

L(n) =
0.49686

√
n

(log n)2 log logn
− 707.91
n0.194

− 23.084.(20)

Note that

L(1.1 · 1010) = −0.026 . . . , L(1.2 · 1010) = 1.206 . . . .

It suffices to show that L(n) is increasing for n > 1010. Since by the defini-
tion (20),

L′(n) =
0.49686n−1/2

(
1
2(log n)2 log logn− (log n)(1 + 2 log log n)

)
(log n)4(log log n)2

+
707.91 · 0.194

n1.194
,

= 0.49686
(

1
2
√
n (log n)2 log log n

− 1 + 2 log log n√
n (log n)3(log log n)2

)
+

707.91 · 0.194
n1.194

,

and for n > 1010,
1 + 2 log log n

(log n) log log n
< 0.1007 . . . ,

it follows that L′(n) > 0 for n > 1010.

Lemma 14. There are infinitely many triples (n, α, β), where n = 1,
(α, β) is a Lucas pair , and n/(ηκ) is an odd integer , such that un(α, β)
has no primitive divisor. There are infinitely many triples (n, α, β), where
n ∈ {3, 4, 6}, (α, β) is a Lucas pair , and n/(ηκ) is an odd integer , such that
un(α, β) has one primitive divisor. If Conjecture 1 is true, then there are
infinitely many triples (n, α, β), where n = 5, (α, β) is a complex Lucas pair ,
and n/(ηκ) is an odd integer , such that un(α, β) has one primitive divisor.
If Conjecture 2 is true, then there are infinitely many triples (n, α, β), where
n = 12, (α, β) is a complex Lucas pair , and n/(ηκ) is an odd integer , such
that un(α, β) has one primitive divisor.

Proof. In case n = 1, we observe that since u1 = 1, the result follows
from the fact that n/(ηκ) is an odd integer implies κ = 1, and L > 0 and
M > 0 may be chosen to be distinct squares infinitely often. Let L = d2z

2
2 ,

and M = d3z
2
3 , where d2 ∈ N, d3 ∈ N, z2 ∈ N, and z3 ∈ N.

In case n = 3, since n/(ηκ) being an odd integer implies d2 = d3 = 1,
we deduce that

u3 = (z2 − z3)(z2 + z3).
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There are infinitely many coprime solutions to the equations

z2 − z3 = 1, z2 + z3 = p,

given by z2 = t+1, z3 = t, t ∈ N, where p is a prime number, since there are
infinitely many odd prime numbers. Since p = L−M , p - L(L− 4M)u1u2.

In case n = 4, since n/(ηκ) being an odd integer and (α, β) a Lucas pair
implies (d2, d3) = (1, 2), we deduce that

u4 = (z2 − 2z3)(z2 + 2z3).

There are infinitely many coprime solutions to the equations

z2 − 2z3 = 1, z2 + 2z3 = p,

given by z2 = 2t + 1, z3 = t, t ∈ N, where p is a prime number, since
there are infinitely many prime numbers congruent to 1 (mod 4). Since
gcd(u1u2u3, u4) = 1, and p = L− 2M , p - L(L− 4M)u1u2u3.

In case n = 6, since n/(ηκ) being an odd integer and (α, β) a Lucas pair
implies (d2, d3) = (1, 3), we deduce that

u6 = u3(z2 − 3z3)(z2 + 3z3).

There are infinitely many coprime solutions to the equations

z2 − 3z3 = 1, z2 + 3z3 = p,

given by z2 = 3t+1, z3 = t, t ∈ N, where p is a prime number, since there are
infinitely many prime numbers congruent to 1 (mod 6). Since p = L− 3M ,
gcd(u1u2u3u4u5, p) = 1, and p - L(L− 4M)u1u2u3u4u5.

In case n = 5, we begin by noting that

u5(α, β) =
α5 − β5

α− β
= Φ5(α, β) =

5∏
j=1

gcd(j,5)=1

(α− ζj5β)

= Φ
(1)
k(αβ)(

√
α,
√
β)Φ(2)

k(αβ)(
√
α,
√
β),

where

Φ
(1)
k(αβ)(

√
α,
√
β) =

5∏
s=1

gcd(s,5)=1
(s|k(αβ))=1

(
√
α− ζs5

√
β)

5∏
t=1

gcd(t,5)=1
(t|k(αβ))=−1

(
√
α+ ζt5

√
β),

Φ
(2)
k(αβ)(

√
α,
√
β) =

5∏
s=1

gcd(s,5)=1
(s|k(αβ))=1

(
√
α+ ζs5

√
β)

5∏
t=1

gcd(t,5)=1
(t|k(αβ))=−1

(
√
α− ζt5

√
β).

Since 5/(ηκ) is an odd integer, and (α, β) is a Lucas pair, it suffices to
establish the result with k(αβ) = 1, α + β = x, and αβ = y2, for some
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integers x, y. It follows that

Φ
(1)
1 (
√
α,
√
β) =

5∏
s=1

gcd(s,5)=1
(s|1)=1

(
√
α− ζs5

√
β)

= (α+ β − (ζ1
5 + ζ4

5 )
√
αβ)(α+ β − (ζ2

5 + ζ3
5 )
√
αβ),

Φ
(2)
1 (
√
α,
√
β) =

5∏
s=1

gcd(s,5)=1
(s|1)=1

(
√
α+ ζs5

√
β)

= (α+ β + (ζ1
5 + ζ4

5 )
√
αβ)(α+ β + (ζ2

5 + ζ3
5 )
√
αβ),

and
u5(α, β) = f (1)(x, y)f (2)(x, y),

where

f (1)(x, y) = (x− (1/2)(−1 +
√

5)y)(x− (−1/2)(1 +
√

5)y) = x2 + xy − y2,

f (2)(x, y) = (x+ (1/2)(−1 +
√

5)y)(x+ (−1/2)(1 +
√

5)y) = x2 − xy − y2.

We observe that
gcd(f (1)(x, y), f (2)(x, y)) = 1,

since any common divisor divides

(x2 − 3xy + y2) · f (1)(x, y) + (−x2 + xy + 3y2) · f (2)(x, y) = −22 · (αβ)2.

In summary, we have established the factorisation

u5(α, β) = (x2 + xy − y2)(x2 − xy − y2),

where α+ β = x ∈ Z, αβ = y2, y ∈ Z, and

gcd(x2 + xy − y2, x2 − xy − y2) = 1.

Stewart [23, p. 90] observed that

(21) x2 − xy − (y2 + 1) = 0

is solvable in integers x and y for a given integer y whenever

(22) z2 − 5y2 = 4

for some z ∈ Z. Although equation (22) has infinitely many solutions by the
theory of Pell’s equation, Stewart argued that in fact it has infinitely many
coprime solutions (z, y), given in general, as p > 5 runs over the sequence of
primes, by

zp + yp
√

5 = 2
(

3 +
√

5
2

)p
,
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where

zp =
(

3 +
√

5
2

)p
+
(

3−
√

5
2

)p
, yp =

1√
5

((
3 +
√

5
2

)p
−
(

3−
√

5
2

)p)
.

Each solution (zp, yp) of (22) gives rise to two solutions (xp, yp) of (21),
namely

(xp, yp) =
(
yp + zp

2
, yp

)
and (xp, yp) =

(
yp − zp

2
, yp

)
.

In particular, it is easily verified that(
yp + zp

2

)2

− 4y2
p < 0,

and hence that (xp, yp) generates a complex Lucas pair. It suffices now to
argue that for infinitely many prime numbers p,

x2
p + xpyp − y2

p

is a prime number q(p). To this end, we note that(
yp + zp

2

)2

+
(
yp + zp

2

)
yp − y2

p

=
1
5

(
(1 +

√
5)
(

3 +
√

5
2

)2p

+ (1−
√

5)
(

3−
√

5
2

)2p

+ 3
)
,

and appeal to Conjecture 1. We observe that if q(p) is prime, then q(p) is a
primitive divisor. Note first that if q(p) divides L(L− 4M) = x2

p(x
2
p − 4y2

p),
then since gcd(xp, yp) = 1, q(p) |x2

p or q(p) | (x2
p − 4y2

p), in either case a
contradiction to the definition of q(p). Further, we note that for 1 ≤ i < 5,

gcd(ui, q(p)) = gcd(ui, u5) = ugcd(i,5) = u1 = 1.

On the other hand, in case n = 12, we observe that

u12(α, β) =
∏
d|12
d 6=1,2

Φd(α, β) = Φ
(1)
k(αβ)(

√
α,
√
β)Φ(2)

k(αβ)(
√
α,
√
β)

∏
d|12

d 6=1,2,12

Φd(α, β),

where

Φ
(1)
k(αβ)(

√
α,
√
β) =

24∏
s=1

gcd(s,24)=1
(k(αβ)|s)=1

(
√
α− ζs24

√
β),

Φ
(2)
k(αβ)(

√
α,
√
β) =

24∏
s=1

gcd(s,24)=1
(k(αβ)|s)=1

(
√
α+ ζs24

√
β).
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Since 12/(ηk(αβ)) is an odd integer, and (α, β) is a Lucas pair, it suffices
to establish the result with k(αβ) = 2, α + β = x, and αβ = 2y2, for some
integers x, y. It follows that

Φ
(1)
2 (
√
α,
√
β) = (α+ β − (ζ1

24 + ζ23
24 )
√
αβ)(α+ β − (ζ7

24 + ζ17
24 )
√
αβ),

Φ
(2)
2 (
√
α,
√
β) = (α+ β + (ζ1

24 + ζ23
24 )
√
αβ)(α+ β + (ζ7

24 + ζ17
24 )
√
αβ),

and
u12(α, β) = f

(1)
2 (x, y)f (2)

2 (x, y)
∏
d|12

d 6=1,2,12

Φd(α, β),

where

f
(1)
2 (x, y) = x2 − 2xy − 2y2, f

(2)
2 (x, y) = x2 + 2xy − 2y2.

We observe that
gcd(f (1)

2 (x, y), f (2)
2 (x, y)) = 1,

since any common divisor divides

(x2 + 6xy + 6y2) · f (1)
2 (x, y) + (−x2 − 2xy + 10y2) · f (2)

2 (x, y) = −23 · (αβ)2.

Plainly, the equation

(23) x2 − 2xy − (2y2 + 1) = 0

is solvable in integers x and y for a given integer y whenever

(24) z2 − 12y2 = 4

for some z ∈ Z. The minimal solution of (24) is (z, y) = (4, 1), and thus the
general solution of (24) is given by

zn + 2yn
√

3 = ±2(2 +
√

3)n.

It follows that

zn = (2 +
√

3)n + (2−
√

3)n, yn =
1

2
√

3
((2 +

√
3)n − (2−

√
3)n).

Let p > 5 be a prime number, α0 = 2 +
√

3, and β0 = 2 −
√

3. Note that
(α0, β0) is a real Lucas pair, and that

zp = αp0 + βp0 = Φ2p(α0, β0)Φ2(α0, β0), yp =
1

2
√

3
(αp0 − β

p
0) = Φp(α0, β0).

Plainly, zp ≡ 0 (mod 2), since 2 |Φ2(α0, β0) = 4, and yp ≡ 1 (mod 2) by [24,
Lemma 6], since p 6= 2, and all prime factors of Φp(α0, β0), aside from p, are
congruent to ±1 (mod p).

Hence, as n runs through the primes p > 5, we find infinitely many
solutions (zp, yp) of (24) with zp even and yp odd, and hence, by equation
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(24), with zp and yp coprime. Each solution (zp, yp) of (24) gives rise to two
solutions (xp, yp) of (23), namely

(xp, yp) =
(

2yp + zp
2

, yp

)
and (xp, yp) =

(
2yp − zp

2
, yp

)
.

In particular, it is easily verified that(
2yp + zp

2

)2

− 8y2
p < 0,

and hence that (xp, yp) generate a complex Lucas pair. It now suffices to
argue that for infinitely many prime numbers p,

x2
p + 2xpyp − 2y2

p

is a prime number r(p). To this end, we appeal to Conjecture 2, and note(
2yp + zp

2

)2

+ 2
(

2yp + zp
2

)
yp − 2y2

p

=
1
3

((1 +
√

3)(2 +
√

3)2p + (1−
√

3)(2−
√

3)2p + 1).

Finally, as in case n = 5, we observe that for each prime p such that r(p)
is prime, r(p) is a primitive divisor. Plainly, r(p) does not divide L(L−4M).
Further, we note that for 1 ≤ i < 12,

gcd(ui, u12) = ugcd(i,12) ∈ {1, u3, u4, u6}
= {1, L−M,L− 2M, (L−M)(L− 3M)},

and
u12 = (L−M)(L− 2M)(L− 3M)r(p),

together with the fact that r(p) > L − jM for j = 1, 2, 3, imply, for 1 ≤ i
< 12, that

gcd(ui, r(p)) = 1.

2.2. Proof of Theorem 1. By [9, Theorem 1], it suffices to prove The-
orem 1 assuming L > 0, M > 0, L − 4M < 0, gcd(L,M) = 1 and
(L,M) /∈ {(1, 1), (2, 1), (3, 1)}. By Lemma 13, we have n < 1.2 · 1010. We fix

6 < n < 1.2 · 1010, n 6= 12.

It follows by Lemma 2 for j ∈ {1, 2} that

(25) δΦ
(j)
N,κ(αn/ν , βn/ν) ∈ {±1,±P (n/gcd(n, 3))},

where

δ = k((α+ β)2)−(φ(n)/4−bφ(n)/4c), κ = k(αβ(α+ β)2),

ν = ηκ
∏

p|n, p-ηκ

p, ` = κ
∏

p|n, p-ηκ

p, N = ν.
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Note that since κ is squarefree, we have three cases to consider, namely

κ ≡ 1, 2, 3 (mod 4).

We handle the case κ ≡ 1 (mod 4). The other cases are similar. In case
κ ≡ 1 (mod 4), note that Φ(1)

N,κ(·) and Φ
(2)
N,κ(·) in equations (25) are defined

by equations (1) and (2), with

ν = κ
∏

p|n,p-κ

p, ` = ν, N = ν, x = αn/ν , y = βn/ν .

Note further that
(−s|κ) = (−1|κ)(s|κ),

and since κ ≡ 1 (mod 4) that

(−1|κ) = (−1)(κ−1)/2 = 1.

Hence, s and −s both appear in the product indexed by s. We may group the
`th roots of unity into φ(`)/2 pairs (ζs` , ζ

−s
` ) with respect to the index s, and

similarly, φ(`)/2 pairs (ζt`, ζ
−t
` ) with respect to the index t. Then equations

(1) and (2) become

Φ(1)
ν,κ(αn/ν , βn/ν) =

b`/2c∏
s=1

gcd(s,`)=1

(x1 − (s|κ)(ζs` + ζ−s` )x2),(26)

Φ(2)
ν,κ(αn/ν , βn/ν) =

b`/2c∏
s=1

gcd(s,`)=1

(x1 + (s|κ)(ζs` + ζ−s` )x2),(27)

where each of (26) and (27) is a binary form of degree φ(`)/2 in x1 and x2,

x1 = αn/ν + βn/ν ,(28)

x2 = (αβ)n/(2ν).(29)

Since n/ν is an odd integer, we note the identity

(30)
αn/ν + βn/ν

α+ β

= ((α+ β)2)(n/ν−1)/2 −
(n/ν−1)/2∑

k=1

(
n/ν

k

)
(αβ)k

αn/ν−2k + βn/ν−2k

α+ β
.

We observe that since (α, β) is a Lehmer pair, it follows by induction and
the identity (30) that

αn/ν + βn/ν

α+ β
= z1
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for some integer z1. Furthermore, since

(α+ β)2 = k((α+ β)2)z2
2

for some integer z2, we write

x1 = z1z2
√
k((α+ β)2).

On the other hand, since
αβ = k(αβ)z2

3

for some integer z3, we write

x2 = z
n/ν
3

√
(k(αβ))n/ν .

We define

f
(1)
n,k((α+β)2),k(αβ)

(x, y)

=
bν/2c∏
s=1

gcd(s,ν)=1

(
√
k((α+ β)2)x− (s|κ)

√
(k(αβ))n/ν (ζsν + ζ−sν )y),

f
(2)
n,k((α+β)2),k(αβ)

(x, y)

=
bν/2c∏
s=1

gcd(s,ν)=1

(
√
k((α+ β)2)x− (−1)(s|κ)

√
(k(αβ))n/ν (ζsν + ζ−sν )y).

Then equations (26) and (27) become

(31) f
(1)
n,k((α+β)2),k(αβ)

(z1z2, z
n/ν
3 )

=
φ(ν)/2∑
s=0

as(
√
k((α+ β)2))φ(ν)/2−s(z1z2)φ(ν)/2−s(zn/ν3 )s,

(32) f
(2)
n,k((α+β)2),k(αβ)

(z1z2, z
n/ν
3 )

=
φ(ν)/2∑
s=0

bs(
√
k((α+ β)2))φ(ν)/2−s(z1z2)φ(ν)/2−s(zn/ν3 )s.

Because of Newton’s identities [10], we may write the as’s and the bs’s in
the form

a0 = 1, as = −1
s

s−1∑
j=0

p
(a)
s−jaj , s = 1, . . . , φ(ν)/2,

p
(a)
s−j =

bν/2c∑
i=1

gcd(i,ν)=1

{(i|κ)
√

(k(αβ))n/ν (ζiν + ζ−iν )}s−j , s− j = 1, . . . , φ(ν)/2,
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and

b0 = 1, bs = −1
s

s−1∑
j=0

p
(b)
s−jbj , s = 1, . . . , φ(ν)/2,

p
(b)
s−j =

bν/2c∑
i=1

gcd(i,ν)=1

{−(i|κ)
√

(k(αβ))n/ν (ζiν + ζ−iν )}s−j , s− j = 1, . . . , φ(ν)/2.

We note that there are only finitely many equations (31) and (32), since n/κ
is an odd integer, and κ = k((α + β)2)k(αβ) since gcd(L,M) = 1. For the
application of the next two lemmas, we let

d = κ, d2 = k((α+ β)2), d3 = k(αβ).(33)

It follows by Lemma 6 in case s− j ≡ 1 (mod 2), that

p
(a)
s−j =

(
(k(αβ))((s−j)(n/ν)+1)/2

(s−j−1)/2∑
l=0

ν/gcd(ν,s−j−2l)≡0 (modκ)

(
s− j
l

)

×
φ(ν)µ

(
ν

κ gcd(ν,s−j−2l)

)(
ν

κ gcd(ν,s−j−2l)

∣∣κ)( s−j−2l
gcd(ν,s−j−2l)

∣∣κ)
φ(ν/gcd(ν, s− j − 2l))

)√
k((α+ β)2),

and that p(b)
s−j = −p(a)

s−j . Since n/ν is odd and s − j is odd, we see that
(s− j)(n/ν) + 1 is even. Furthermore, we note that

φ(ν) ≡ 0 (mod φ(ν/gcd(ν, s− j − 2l))).

Hence, in case s − j ≡ 1 (mod 4), both p
(a)
s−j and p

(b)
s−j have the form

u1

√
k((α+ β)2) for some integer u1. Similarly, by Lemma 7 in case s−j ≡ 0

(mod 2),

p
(a)
s−j = (k(αβ))(s−j)(n/ν)/2φ(ν)

×
((s−j)/2−1∑

l=0

(
s− j
l

)
µ(ν/gcd(ν, s− j − 2l))
φ(ν/gcd(ν, s− j − 2l))

+
1
2

(
s− j

(s− j)/2

))
,

and p
(a)
s−j = p

(b)
s−j . Since s − j is even, we see that (s − j)(n/ν) is even.

Furthermore, we note that φ(ν) is even. Hence, in case s − j ≡ 0 (mod 2),
both p(a)

s−j and p(b)
s−j have the form u2 for some integer u2. It follows from the

above Newton’s identitites that as and bs have the form{
q1
√
k((α+ β)2) if s ≡ 1 (mod 2),

q2 otherwise
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for some rational numbers q1 and q2. On the other hand, as and bs are
elementary symmetric functions of

±(s|κ)
√

(k(αβ))n/ν (ζsν + ζ−sν ),

and thus are algebraic integers. It follows that as and bs have the form

(34)
{
u3

√
k((α+ β)2) if s ≡ 1 (mod 2),

u4 otherwise,

where u3 and u4 are integers. Plainly, in case κ = 1, the coefficients of the
equations (31) and (32) defining f (j)

n,k((α+β)2),k(αβ)
(z1z2, z

n/ν
3 ), for j = 1 and

j = 2, are integers. In case κ > 1, it follows from κ ≡ 1 (mod 4), φ(κ) ≡ 0
(mod 4), and

φ(ν) = φ(κ)φ
(∏
p|n
p-κ

p
)
,

that φ(ν)/2 is an even integer. We observe that (34), and the fact that
φ(ν)/2 is an even integer, imply that the coefficients of the equations (31)
and (32) are integers.

By [22, Theorem 5.1], for j = 1 and j = 2, we deduce that each of the
equations

(35) f
(j)
n,k((α+β)2),k(αβ)

(z1z2, z
n/ν
3 ) = m,

where f
(1)
n,k((α+β)2),k(αβ)

(z1z2, z
n/ν
3 ) and f

(2)
n,k((α+β)2),k(αβ)

(z1z2, z
n/ν
3 ) are de-

fined by (31) and (32) respectively, and

m ∈ {±1,±P (n/gcd(n, 3))}

is a non-zero integer, has only finitely many solutions in integers (z1z2, z
n/ν
3 )

whenever each of f (j)
n,k((α+β)2),k(αβ)

(z1z2, z
n/ν
3 ), j = 1, 2, has at least three

distinct roots.
Plainly, on recalling the identities

ζsν + ζ−sν = 2 cos(2πs/ν), − cos(2πs/ν) = cos(π − 2πs/ν),(36)

it is easily seen that each of f (j)
n,k((α+β)2),k(αβ)

(z1z2, z
n/ν
3 ), j = 1, 2, has at

least three distinct roots whenever

φ(ν)/2 ≥ 3

which is true provided we assume∏
p|n

(p− 1) ≥ 6,(37)
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since ∏
p|n

(p− 1) = φ
(∏
p|n

p
)

= φ(ν).

Plainly, in any case κ ≡ 1, 2, 3 (mod 4), there are only finitely many triples

(n,L,M) = (n, κ((α+ β)2)z2
2 , κ(αβ)z2

3)

under the assumptions (37) and

(38)
∏

2<p|n
4|n

(p− 1) ≥ 4,

where (38) appears after considering the case κ ≡ 2 (mod 4).
We now consider the remaining cases. Suppose that

∏
p|n, 4-n(p− 1) = 4.

Let n = 5c and n/ν = 5c−1, c ≥ 2. It suffices to show that the equations

(39) u2(z1z2)2 + u3(z1z2)zn/ν3 + u4(zn/ν3 )2 = m1

have finitely many solutions in integers z1z2, z3, where m1 ∈ {±1,±5}, and

(k((α+ β)2), k(αβ), u2, u3, u4) ∈ {(1, 1, 1,±1,−1), (5, 1, 5,∓5, 1),

(1, 5, 1,∓5(n/ν+1)/2, 5n/ν)}.
Moreover, if

∏
2<p|n, 4|n(p − 1) = 2, let n = 4 · 3c and n/ν = 3c−1, where

c ≥ 2. It suffices to show that the equations

(40) u5(z1z2)2 + u6(z1z2)zn/ν3 + u7(zn/ν3 )2 = m2

have finitely many solutions in integers z1z2, z3, where m2 ∈ {±1,±3}, and

(k((α+ β)2), k(αβ), u5, u6, u7)

∈ {(2, 1, 2,∓2,−1), (1, 2, 1,∓2(n/ν+1)/2,−2n/ν), (6, 1, 6,∓6, 1),

(3, 2, 3,∓2(n/ν+1)/2 · 3, 2n/ν), (2, 3, 2,∓2 · 3(n/ν+1)/2, 3n/ν),

(1, 6, 1,∓6(n/ν+1)/2, 6n/ν)}.
The finiteness result in either case n = 5c or n = 4 · 3c follows by [22,
Theorem 6.1], on recalling (39) and (40), and noting that equations (39) are
solvable in integer z1z2 for a given integer z3 only if

(41) (u2
3 − 4u4)z2n/ν

3 = w2
1 − 4m1

for some integer w1, while equations (40) are solvable in integer z1z2 for a
given integer z3 only if

(42) (u2
6 − 4u7)z2n/ν

3 = w2
2 − 4m2

for some integer w2.
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On the other hand, we consider the case that
∏
p|n, 4-n(p − 1) = 2. Let

n = 3c, where c ≥ 2. By Lemma 8, we have a factorisation

(43) Φ3c(α, β) = f
(1)
3c (z2, z3)f (2)

3c (z2, z3).

It is easily seen that f (j)
3c (z2, z3) ∈ Z for j = 1 and j = 2 by Newton’s

identities and Lemmas 3 and 4. By [28, pp. 104–105], any common divi-
sor of f (1)

3c (z2, z3) and f
(2)
3c (z2, z3) divides the resultant of f (1)

3c (z2, z3) and
f

(2)
3c (z2, z3), and hence the discriminant of Q(ζ3c +ζ−1

3c ). By [8, pp. 443, 523–
525], the discriminant of Q(ζ3c + ζ−1

3c ) divides the discriminant of Q(ζ3c),
and by the formula for the discriminant of Q(ζ3c) in [8, pp. 443, 523–525],
we deduce that the greatest common divisor of f (1)

3c (z2, z3) and f
(2)
3c (z2, z3)

divides 3αβ. Since gcd(u3c(α, β), αβ) = 1 and 3c - (3± 1), it follows that

gcd(f (1)
3c (z2, z3), f (2)

3c (z2, z3)) = 1.

By an argument similar to the proof of Lemma 2, we deduce for j = 1 and
j = 2 that

(44) f
(j)
3c (z2, z3) = m,

where m ∈ {±1,±3}. It remains to note that each f
(j)
3c (z2, z3) has at least

three distinct roots on recalling the identities (36), since 3c−1 ≥ 3. Hence,
[22, Theorem 5.1] implies the finiteness of the solutions (z2, z3) of (44).
Moreover, the case n = 2 · 3c, where c ≥ 2, follows similarly, but with
Lemma 9, the argument underlying the analogue of Lemma 6 and Lemma 7
in case κ ≡ 3 (mod 4), by the analogue of [8, pp. 443, 523–525], by the
analogue of the identities (36) in case κ ≡ 3 (mod 4), and with respect to
the implied integer Thue equations

δf
(j)
2·3c(z2, z3) = m.

Finally, by Lemma 14, we note that the conditions n > 6, n 6= 12 are best
possible subject to the truth of Conjectures 1 and 2.
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