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Powers of a rational number modulo 1
cannot lie in a small interval

by

Artūras Dubickas (Vilnius)

1. Introduction. Let throughout R, Z and N be the sets of real num-
bers, integers and positive integers, respectively. We will denote by [x] and
{x} the integral part and the fractional part of x ∈ R, respectively. For an
interval [s, s+ t) ⊂ [0, 1) and two integers p, q, where 1 < q < p, put

Zp/q(s, s+ t) = {ξ 6= 0 : s ≤ {ξ(p/q)n} < s+ t for all integer n ≥ 0}.

In [14] Mahler asked whether the set Z3/2(0, 1/2) is empty or not. A hy-
pothetical ξ ∈ Z3/2(0, 1/2) is called a Z-number. It seems very likely that
Z-numbers do not exist. An important step towards solution of this problem
has been made by Flatto, Lagarias and Pollington [12] (see also [11]). It was
proved in [12] that for coprime positive integers p > q > 1 and any ξ 6= 0
the inequality

(1) lim sup
n→∞

{ξ(p/q)n} − lim inf
n→∞

{ξ(p/q)n} ≥ 1/p

holds. A generalization of (1) to powers of algebraic numbers is given in [9].
The case of positive integers, namely, p ≥ 2, q = 1 was studied in [7].

Inequality (1) implies that the fractional parts {ξ(p/q)n}, n = 0, 1, 2, . . . ,
cannot lie in an interval of length strictly smaller than 1/p. Can they all lie
in an interval of length 1/p? This small step towards Mahler’s problem turns
out to be very difficult. It was shown in [12] that the set of s ∈ [0, 1−1/p] for
which Zp/q(s, s+1/p) is empty is everywhere dense in [0, 1−1/p]. Naturally,
it was conjectured that Zp/q(s, s + 1/p) is empty for each s ∈ [0, 1 − 1/p]
(see p. 138 in [12]).

This problem is still open, although Bugeaud has made some progress in
this direction in [6]. He was able to prove that Zp/q(s, s+ 1/p) is empty for
almost all s ∈ [0, 1− 1/p]. Moreover, he showed that the set Z3/2(s, s+ 1/3)
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is empty for

s ∈ {0} ∪ [8/57, 4/19] ∪ [4/15, 2/5] ∪ [26/57, 10/19] ∪ {2/3}.
In this paper, we prove the set Zp/q(s, s + 1/p) to be indeed empty for

each s ∈ [0, 1−1/p] provided that p, q are integers satisfying 1 < q < p < q2.
More precisely, we prove the following:

Theorem 1. Let p, q be two coprime integers satisfying 1 < q < p < q2,
and let I be a closed subinterval of length 1/p of the torus R/Z. Then for
each real number ξ 6= 0 we have {ξ(p/q)n} /∈ I for infinitely many n ∈ N.

Of course, Theorem 1 implies that the set Zp/q(s, s+1/p) is empty if 1 <
q < p < q2 and s ∈ [0, 1−1/p]. In particular, the number p/q = 3/2 satisfies
the condition p < q2. So the most interesting application of Theorem 1 is
that the set Z3/2(s, s+ 1/3) is empty for every s ∈ [0, 2/3]. This solves the
problem considered in Corollary 1.4a of [12] and Corollary 1 of [6].

2. Auxiliary results. We shall need some terminology which is usu-
ally used in combinatorics on words (see, e.g., [2], [4], [13]). Any sequence
(finite or infinite) of letters of an alphabet A is called a word. Any string of
consecutive letters of a word is called its factor. A string of letters starting
from the first letter is called a prefix. Let p(w,m) be the number of distinct
factors of length m occurring in the word w. By an old result of Morse and
Hedlund [15], every infinite word w = w1w2w3 . . . is either periodic (which
means that there exist n0, t ∈ N such that wn+t = wn for every n ≥ n0) or
p(w,m) ≥ m+ 1 for each m ∈ N. Every infinite word which is not periodic
is called aperiodic.

An infinite word w is called Sturmian if p(w,m) = m + 1 for every
m ∈ N. In particular, every Sturmian word is over two letters. Below we
shall use the fact that an aperiodic word on the alphabet A = {U, V } is
Sturmian if and only if for any finite word u on A either UuU or V uV is
not a factor of w.

Fix two relatively prime integers p > q > 1 and two real numbers ξ 6= 0
and ν. Set

xn = [ξ(p/q)n + ν] and yn = {ξ(p/q)n + ν}.
Let also

(2) sn = qxn+1 − pxn and tn = −qyn+1 + pyn.

From (p/q)(xn + yn − ν) = xn+1 + yn+1 − ν it follows that

(3) sn = tn − (p− q)ν.
Using −q < tn < p we derive that

−q + (p− q)ν < sn < p− (p− q)ν
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for each n ≥ 0. Let

A = A(p, q, ν) = Z ∩ (−q + (p− q)ν, p− (p− q)ν).

With this notation, we have the following:

Lemma 2. For relatively prime p > q > 1 and arbitrary ξ 6= 0 and ν,
the word w = s0s1s2s3 . . . is an aperiodic word in the finite alphabet A.

This is exactly Lemma 2 of [10]. (The fact that in [10] it is stated only
for ξ > 0 is irrelevant.) Lemma 2 combined with (3) implies that the word
t0t1t2t3 . . . is an aperiodic word on the finite alphabet A+ (p− q)ν.

It is easy to see that, for any m ∈ N, we have xn+m = (p/q)xn+m−1 +
sn+m−1/q. Expressing xn+m−1 by xn+m−2 and so on (up to xn), we find that

(4) xn+m = (p/q)mxn + ((p/q)m−1sn + (p/q)m−2sn+1 + · · ·+ sn+m−1)/q.

Analogously, using tn = sn + (p− q)ν for n ≥ 0, we derive that

(5) yn+m = (p/q)myn − ((p/q)m−1tn + (p/q)m−2tn+1 + · · ·+ tn+m−1)/q.

Our next statement also holds for arbitrary coprime integers p > q > 1,
but ν will be selected in a special way:

Theorem 3. Let p > q > 1 be two coprime integers, and let ξ 6= 0 be a
real number. Suppose I = [s, s+ 1/p] (mod 1), where 0 ≤ s < 1, is a closed
subinterval of the torus R/Z such that {ξ(p/q)n} ∈ I for each integer n ≥ 0.
Then the word s0s1s2s3 . . . , where

sn = q[ξ(p/q)n+1 − s]− p[ξ(p/q)n − s]
for n ≥ 0, is a Sturmian word on the two-symbol alphabet {k, k + 1} for
some k ∈ Z.

Proof. Take ν = −s. Then

0 ≤ yn = {ξ(p/q)n + ν} = {ξ(p/q)n − s} ≤ 1/p

for each n ≥ 0. Suppose first that the word w = s0s1s2s3 . . . contains at
least three distinct letters (in this case simply integers). Then there exist
u, v ∈ Z such that, for some i, j ≥ 0, we have si = u, sj = v with u+ 2 ≤ v.
Then, using (2), (3) with n = i and the inequalities yi ≥ 0 and yi+1 ≤ 1/p,
we deduce that

−u = −pyi + qyi+1 + (p− q)ν ≤ q/p+ (p− q)ν.
Similarly, from (2), (3) with n = j, we have

v = pyj − qyj+1 − (p− q)ν ≤ 1− (p− q)ν.
Adding these two inequalities, we obtain

2 ≤ v − u ≤ q/p+ (p− q)ν + 1− (p− q)ν = q/p+ 1 < 2,



236 A. Dubickas

which is impossible. Hence w must be a word on an alphabet of two letters
which are consecutive integers, say, k and k + 1, where k ∈ Z.

By Lemma 2, we already know that the word w is aperiodic. If w is
not Sturmian, then there is a word u on the alphabet {k, k + 1} such that
(k+1)u(k+1) and kuk are both factors of w (see, e.g., Proposition 2.1.3 and
Theorem 2.1.5 in [13]). Suppose that the factors kuk and (k+ 1)u(k+ 1) of
length m start at the ith and jth places of w = s0s1s2s3 . . . , where i, j ≥ 0.
Setting in (5) n = j and n = i and subtracting the second equality from the
first, we obtain

yj+m − yi+m = (p/q)m(yj − yi)− ((p/q)m−1 + 1)/q.

Since yi, yj+m ≥ 0 and yj , yi+m ≤ 1/p, this implies that

((p/q)m−1 + 1)/q = (p/q)m(yj − yi)− yj+m + yi+m ≤ ((p/q)m + 1)/p.

Multiplying by p we obtain (p/q)m + p/q ≤ (p/q)m + 1, i.e., p ≤ q, a contra-
diction. Hence w must be a Sturmian word over the alphabet {k, k + 1}.

3. Proof of Theorem 1. Suppose there is a closed subinterval I =
[s, s + 1/p] (mod 1), where 0 ≤ s < 1, of the torus R/Z and some ξ 6= 0
such that {ξ(p/q)n} ∈ I for each n ≥ n1. On replacing ξ by ξ(p/q)n1 , we
can assume that {ξ(p/q)n} ∈ I for each integer n ≥ 0. By Theorem 3,
w = s0s1s2s3 . . . , where

sn = q[ξ(p/q)n+1 − s]− p[ξ(p/q)n − s] = qxn+1 − pxn
for n ≥ 0, must be a Sturmian word on an alphabet {k, k + 1}. Using (4)
we will show that this is not the case.

Consider m+2 words of length m each, namely, snsn+1 . . . sn+m−1, where
n = 0, . . . ,m + 1. Since w is Sturmian, we have p(w,m) = m + 1, so
at least two of these m + 2 words must be equal, say, sisi+1 . . . si+m−1 =
sjsj+1 . . . sj+m−1, where 0 ≤ i = i(m) < j = j(m) ≤ m+ 1. Selecting in (4)
first n = i then n = j and subtracting the first equality from the second, we
obtain

(6) xm+j − xm+i = (p/q)m(xj − xi).
Since ξ 6= 0, there is a positive integer m0 such that the sequence xm =

[ξ(p/q)m − s] is increasing for m ≥ m0 if ξ > 0 or decreasing for m ≥ m0 if
ξ < 0. In both cases, the difference xm+j−xm+i is nonzero for each m ≥ m0.
Hence, by (6), we have xj 6= xi for each m ≥ m0. Clearly, xn ∈ Z for each
integer n ≥ 0, so (6) implies that the number qm divides the difference
xj − xi. In particular,

qm ≤ |xj − xi| ≤ |xi|+ |xj |,
because xj 6= xi. Recall that sn ∈ A(p, q,−s), so |sn| < 2p. Using (4) with
n = 0 we deduce that |xi| ≤ c(p/q)i and |xj | ≤ c(p/q)j , where the constant c
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is equal to, say, |x0|+ 2p. It follows that

qm ≤ |xi|+ |xj | ≤ c(p/q)i + c(p/q)j

≤ 2c(p/q)m+1 = 2c(p/q)(p/q)m ≤ cp(p/q)m,

because i < j ≤ m + 1. Taking mth roots and using p ≤ q2 − 1, we derive
that

q2 ≤ (cp)1/mp ≤ (cp)1/m(q2 − 1).

This is impossible if m ≥ m0 is so large that (cp)1/m < 1+1/q2. This proves
the theorem.

4. Concluding remarks. Note that Theorem 1 only holds under the
condition p < q2. The question of whether the set Zp/q(s, s + 1/p) is also
empty if p > q2 remains open. The condition p < q2 can be made less
restrictive in case the constant IS described below is greater than 2.

Before giving a formal definition of the constant IS , let us recall that ev-
ery Sturmian word w (in this context more often called Sturmian sequence)
begins in arbitrarily long squares, namely, there exist arbitrarily long pre-
fixes of w of the form v2 (see, e.g., [1], [8]). Also, every Sturmian sequence
contains arbitrarily long cubes, i.e., the prefixes of w are of the form uv3

with arbitrarily large |v| (see [3], [16]). Given a Sturmian sequence w, we
define I(w) as

I(w) = sup
σ≥0, τ≥2

τ + σ

1 + σ
,

where the supremum is taken over real numbers σ ≥ 0 and τ ≥ 2 such that,
for every positive integer k, there exist two words uk and vk satisfying the
following three conditions:

• ukvτk is a prefix of w for each k ∈ N,
• |uk| ≤ σ|vk| for each k ∈ N,
• |vk| → ∞ as k →∞.

Throughout, vτ is defined as a word of length [τ |v|] consisting of [τ ] words v
and the prefix of v of length [{τ}|v|]. The constant IS is then defined by
the formula

IS = inf
w Sturmian

I(w).

By the above-mentioned results, one can select σ = 0 and τ = 2 for every
Sturmian sequence w, hence IS ≥ 2. We do not know whether IS is strictly
greater than 2 or not. However, the result of Berthé, Holton and Zamboni
[5] implies that τ must be at most 3 for some Sturmian sequences w. For
those w we have I(w) ≤ 3, hence IS ≤ 3. Consequently, 2 ≤ IS ≤ 3.
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We claim that the conclusion of Theorem 1 holds for any coprime in-
tegers p, q satisfying 1 < q < p < qIS . Our argument follows the same line
as that in the proof of Theorem 1. It is based on Theorem 3 and repeated
application of (4).

Indeed, suppose that two integers p, q satisfy 1 < q < p < qIS . As
we already observed above, IS ≤ 3, so IS < ∞. Fix ε > 0 so small that
p < qIS−3ε and fix two real numbers σ ≥ 0, τ ≥ 2 for which the above
three conditions are satisfied for a Sturmian word w = s0s1s2s3 . . . and
(τ +σ)/(1 +σ) > I(w)− ε. Here sn, n = 0, 1, 2, . . . , and ν = −s are defined
as in Theorem 3. Note that I(w) ≥ IS , so (τ + σ)/(1 + σ) > IS − ε. We will
show that this is impossible.

Set wk = v{τ}k , so that vτk = v[τ ]
k wk. Note that ukv

[τ ]−1
k wk and ukv

[τ ]
k wk

= ukvkv
[τ ]−1
k wk both are prefixes of w. So the words sisi+1 . . . si+m−1 and

sjsj+1 . . . sj+m−1, where i = |uk|, j = |uk| + |vk| and m = |v[τ ]−1
k wk|, are

equal. Selecting in (4) first n = i then n = j and subtracting the first equality
from the second, we obtain xm+j − xm+i = (p/q)m(xj − xi) as in (6). As
above, qm | (xj − xi), where xj − xi is a nonzero integer for m large enough.
From (4) it follows that qm ≤ |xj |+ |xi| < c1(p/q)j , giving qm+j < c1p

j with
some positive number c1 = c1(p, q, ξ,−s). Hence qm/j+1 < c

1/j
1 p.

By the definition of uk and vk, we have

m

j
=
|v[τ ]−1
k wk|
|uk|+ |vk|

=
([τ ]− 1)|vk|+ [{τ}|vk|]

|uk|+ |vk|

>
(τ − 1)|vk| − 1
|uk|+ |vk|

≥ (τ − 1)|vk| − 1
σ|vk|+ |vk|

.

Hence m/j ≥ (τ − 1)/(1 + σ)− ε for k large enough, because 1/|vk| → 0 as
k →∞. Adding 1 to both sides gives

m/j + 1 ≥ (τ + σ)/(1 + σ)− ε > IS − 2ε.

Therefore qm/j+1 > qIS−2ε. It follows that qIS−2ε < c
1/j
1 p < c

1/j
1 qIS−3ε, so

qε < c
1/j
1 . Clearly, if k → ∞, then |vk| → ∞, so m → ∞ and j → ∞. By

taking k so large that c1/j1 < 1 + ε/2, we deduce that qε < 1 + ε/2. However,
this is impossible, because qε is greater than 1 + ε log q ≥ 1 + ε log 2 >
1 + 0.69ε. This proves our assertion.
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