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Powers of a rational number modulo 1
cannot lie in a small interval

by

ARTURAS DUBICKAS (Vilnius)

1. Introduction. Let throughout R, Z and N be the sets of real num-
bers, integers and positive integers, respectively. We will denote by [z] and
{z} the integral part and the fractional part of x € R, respectively. For an
interval [s,s + ) C [0,1) and two integers p, g, where 1 < ¢ < p, put

Zpj(s,8+1) ={§#0:5 <{{(p/q)"} < s+t for all integer n > 0}.

In [14] Mahler asked whether the set Z3/5(0,1/2) is empty or not. A hy-
pothetical { € Z3/5(0,1/2) is called a Z-number. It seems very likely that
Z-numbers do not exist. An important step towards solution of this problem
has been made by Flatto, Lagarias and Pollington [12] (see also [11]). It was
proved in [12] that for coprime positive integers p > ¢ > 1 and any £ # 0
the inequality

(1) lim sup{¢(p/q)"} — liminf{&(p/q)"} = 1/p

holds. A generalization of (1) to powers of algebraic numbers is given in [9].
The case of positive integers, namely, p > 2, ¢ = 1 was studied in [7].

Inequality (1) implies that the fractional parts {{(p/q)"}, n=0,1,2,...,
cannot lie in an interval of length strictly smaller than 1/p. Can they all lie
in an interval of length 1/p? This small step towards Mahler’s problem turns
out to be very difficult. It was shown in [12] that the set of s € [0,1—1/p] for
which Z,, (s, s+1/p) is empty is everywhere dense in [0,1—1/p]. Naturally,
it was conjectured that Z,,(s,s + 1/p) is empty for each s € [0,1 — 1/p]
(see p. 138 in [12]).

This problem is still open, although Bugeaud has made some progress in
this direction in [6]. He was able to prove that Z, (s, s + 1/p) is empty for
almost all s € [0,1—1/p]. Moreover, he showed that the set Z35(s, s+ 1/3)
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is empty for
s € {0}U[8/57,4/19] U [4/15,2/5] U [26/57,10/19] U {2/3}.

In this paper, we prove the set Z,/,(s,s + 1/p) to be indeed empty for
each s € [0,1—1/p| provided that p, g are integers satisfying 1 < ¢ < p < ¢°.
More precisely, we prove the following:

THEOREM 1. Let p,q be two coprime integers satisfying 1 < q < p < ¢>,
and let I be a closed subinterval of length 1/p of the torus R/Z. Then for
each real number § # 0 we have {&(p/q)"} ¢ I for infinitely many n € N.

Of course, Theorem 1 implies that the set Z,, (s, s+1/p) is empty if 1 <
q<p<q®and s €[0,1—1/p]. In particular, the number p/q = 3/2 satisfies
the condition p < ¢2. So the most interesting application of Theorem 1 is
that the set Z3/5(s,s + 1/3) is empty for every s € [0,2/3]. This solves the
problem considered in Corollary 1.4a of [12] and Corollary 1 of [6].

2. Auxiliary results. We shall need some terminology which is usu-
ally used in combinatorics on words (see, e.g., [2], [4], [13]). Any sequence
(finite or infinite) of letters of an alphabet A is called a word. Any string of
consecutive letters of a word is called its factor. A string of letters starting
from the first letter is called a prefiz. Let p(w, m) be the number of distinct
factors of length m occurring in the word w. By an old result of Morse and
Hedlund [15], every infinite word w = wjwaws ... is either periodic (which
means that there exist ng,t € N such that wy,4; = w, for every n > ng) or
p(w,m) > m + 1 for each m € N. Every infinite word which is not periodic
is called aperiodic.

An infinite word w is called Sturmian if p(w,m) = m + 1 for every
m € N. In particular, every Sturmian word is over two letters. Below we
shall use the fact that an aperiodic word on the alphabet A = {U,V} is
Sturmian if and only if for any finite word u on A either UuU or VuV is
not a factor of w.

Fix two relatively prime integers p > ¢ > 1 and two real numbers & # 0
and v. Set

tn = [E(p/q)" +v] and y, = {&(p/q)" + v}

Let also

(2) Sn = qTnt1 — P and  ln = —qYni1 + PYn.
From (p/q)(xn + yn — V) = Tpt1 + Yn+1 — v it follows that
(3) Sn=1tn — (p— Qv

Using —q < t, < p we derive that
—q+(P-—qQr<sp <p—(p—qv
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for each n > 0. Let
A=Alp,q,v) =ZN(—q+(p—qQv,p—(p— Q).

With this notation, we have the following:

LEMMA 2. For relatively prime p > q > 1 and arbitrary & # 0 and v,
the word w = S9S818283 ... s an aperiodic word in the finite alphabet A.

This is exactly Lemma 2 of [10]. (The fact that in [10] it is stated only
for £ > 0 is irrelevant.) Lemma 2 combined with (3) implies that the word
totitats ... is an aperiodic word on the finite alphabet A + (p — q)v.

It is easy to see that, for any m € N, we have Zy1m = (p/@)Tntm—1 +
Sn+m—1/q. Expressing &y m—1 by Zn4+m—2 and so on (up to z,), we find that
(4)  Tptm = (p/q)"Tn + ((p/Q)m_lsn + (p/Q)m_zsm—l + o+ Snpm-1)/4-

Analogously, using ¢, = s, + (p — q)v for n > 0, we derive that
(5) Yntm = (P/0)"yn — ((0/D)™ tn + (/)™ *tasr + - + tatm-1)/4.

Our next statement also holds for arbitrary coprime integers p > ¢ > 1,
but v will be selected in a special way:

THEOREM 3. Let p > q > 1 be two coprime integers, and let £ # 0 be a
real number. Suppose I = [s,s+ 1/p] (mod 1), where 0 < s < 1, is a closed
subinterval of the torus R/Z such that {{(p/q)"} € I for each integer n > 0.
Then the word sgs152S3 ..., where

sn = al€(p/@)" " — 5] = plE(p/0)" — 5]
for n > 0, is a Sturmian word on the two-symbol alphabet {k,k + 1} for
some k € 7.

Proof. Take v = —s. Then
0<yn={/0)" +v} ={/0)" — s} < 1/p

for each n > 0. Suppose first that the word w = sgs1s283... contains at
least three distinct letters (in this case simply integers). Then there exist
u,v € Z such that, for some 7, j > 0, we have s; = u, s; = v with u +2 < v.
Then, using (2), (3) with n = ¢ and the inequalities y; > 0 and y;4+1 < 1/p,
we deduce that
—u=—pyi + qyiv1+ (P —Qv < q/p+ (p— qv.
Similarly, from (2), (3) with n = j, we have
v=py; — Y1 —(P—q@v<1—(p—qv.

Adding these two inequalities, we obtain

2<v—u<q/ptp—qv+1l-(p—qv=q/p+1<2,
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which is impossible. Hence w must be a word on an alphabet of two letters
which are consecutive integers, say, k and k + 1, where k € Z.

By Lemma 2, we already know that the word w is aperiodic. If w is
not Sturmian, then there is a word u on the alphabet {k, k + 1} such that
(k4+1)u(k+1) and kuk are both factors of w (see, e.g., Proposition 2.1.3 and
Theorem 2.1.5 in [13]). Suppose that the factors kuk and (k+ 1)u(k + 1) of
length m start at the ith and jth places of w = sgsys2s3..., where 7,5 > 0.
Setting in (5) n = j and n = i and subtracting the second equality from the
first, we obtain

Yjtm — Yirm = 0/ (w5 — vi) — (p/0)™ " + 1) /q.
Since yi, Yj+m > 0 and y;, Yi+m < 1/p, this implies that

((p/a)" "+ 1) /a= 0/a)™(yj — ¥i) — Yj+m + Yirm < (p/0)™ + 1)/p.

Multiplying by p we obtain (p/q)™ +p/q < (p/q)™ + 1, i.e., p < q, a contra-
diction. Hence w must be a Sturmian word over the alphabet {k,k + 1}. =

3. Proof of Theorem 1. Suppose there is a closed subinterval I =
[s,s +1/p] (mod 1), where 0 < s < 1, of the torus R/Z and some £ # 0
such that {£(p/q)"} € I for each n > ny. On replacing £ by &(p/q)™, we
can assume that {{(p/q)"} € I for each integer n > 0. By Theorem 3,
W = S()S15983 ..., where

sn = alé(p/)" ™ — 5] = plE(p/@)" — 5] = qEnt1 — Py

for n > 0, must be a Sturmian word on an alphabet {k,%k + 1}. Using (4)
we will show that this is not the case.

Consider m+2 words of length m each, namely, s,Sp11 - - . Sprm—1, Where
n = 0,...,m + 1. Since w is Sturmian, we have p(w,m) = m + 1, so
at least two of these m + 2 words must be equal, say, s;Sj41...Sitm—1 =
$jSj4+1 - - Sjtm—1, where 0 < i =1i(m) < j = j(m) < m+ 1. Selecting in (4)
first n = i then n = j and subtracting the first equality from the second, we
obtain

(6) Tt — Tt = (p/0)™ (@) — ).

Since £ # 0, there is a positive integer mg such that the sequence z,, =
[€(p/q)™ — s| is increasing for m > myg if € > 0 or decreasing for m > myg if
§ < 0. In both cases, the difference x,; — T4, is nonzero for each m > my.
Hence, by (6), we have z; # z; for each m > my. Clearly, x,, € Z for each
integer n > 0, so (6) implies that the number ¢™ divides the difference
xj — ;. In particular,

q" < g — il < ail + o],
because z; # ;. Recall that s, € A(p, g, —s), so |s,| < 2p. Using (4) with
n = 0 we deduce that |z;| < ¢(p/q)" and |z;| < ¢(p/q)’, where the constant ¢
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is equal to, say, |zo| + 2p. It follows that
q"™ < il + 25] < e(p/a)' + c(p/q)’
< 2¢(p/q)™ " = 2¢(p/q)(p/9)™ < ep(p/a)™,

because i < j < m + 1. Taking mth roots and using p < ¢*> — 1, we derive
that

¢* < (ep)"™p < (ep)™(¢* - 1).

This is impossible if m > my is so large that (¢p)'/™ < 14 1/¢>. This proves
the theorem. =

4. Concluding remarks. Note that Theorem 1 only holds under the
condition p < ¢?. The question of whether the set Zyq(8,8 +1/p) is also
empty if p > ¢ remains open. The condition p < ¢ can be made less
restrictive in case the constant Ig described below is greater than 2.

Before giving a formal definition of the constant Ig, let us recall that ev-
ery Sturmian word w (in this context more often called Sturmian sequence)
begins in arbitrarily long squares, namely, there exist arbitrarily long pre-
fixes of w of the form v? (see, e.g., [1], [8]). Also, every Sturmian sequence
contains arbitrarily long cubes, i.e., the prefixes of w are of the form uv?
with arbitrarily large |v| (see [3], [16]). Given a Sturmian sequence w, we
define I(w) as

T+o

I(w)= sup ,
(w) o>0,r>2 1+ 0
where the supremum is taken over real numbers ¢ > 0 and 7 > 2 such that,
for every positive integer k, there exist two words u; and v;, satisfying the
following three conditions:

e u, vy is a prefix of w for each k € N,
o |ui| < o|vy| for each k € N,
o |vi| — 00 as k — oo.

Throughout, v7 is defined as a word of length [7|v|] consisting of [r] words v
and the prefix of v of length [{7}|v|]. The constant Ig is then defined by
the formula
Is= inf I(w).
w Sturmian

By the above-mentioned results, one can select ¢ = 0 and 7 = 2 for every
Sturmian sequence w, hence Ig > 2. We do not know whether Ig is strictly
greater than 2 or not. However, the result of Berthé, Holton and Zamboni
[5] implies that 7 must be at most 3 for some Sturmian sequences w. For
those w we have I(w) < 3, hence Is < 3. Consequently, 2 < Ig < 3.
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We claim that the conclusion of Theorem 1 holds for any coprime in-
tegers p, ¢ satisfying 1 < ¢ < p < ¢'s. Our argument follows the same line
as that in the proof of Theorem 1. It is based on Theorem 3 and repeated
application of (4).

Indeed, suppose that two integers p,q satisfy 1 < ¢ < p < ¢S. As
we already observed above, Ig < 3, so Ig < oo. Fix ¢ > 0 so small that
p < ¢'73¢ and fix two real numbers ¢ > 0, 7 > 2 for which the above
three conditions are satisfied for a Sturmian word w = s¢s15253... and
(t+0)/(1+0) > I(w)—e. Here s,, n =0,1,2,..., and v = —s are defined
as in Theorem 3. Note that I(w) > Ig, so (t+0)/(14+0) > Ig —e. We will
show that this is impossible.

Set wy, = v,i‘r}, so that v = v,[:] wy. Note that u,v

[7]

—1
= u, VgV, Wy both are prefixes of w. So the words s;s;41...8;4m—1 and
[7]-1
k

[7]

[r]-1 d
k W al ukvk Wi

$jSj4+1---Sj+m—1, where i = |ug|, j = |ug| + |vg| and m = |v" “wy|, are
equal. Selecting in (4) first n = 7 then n = j and subtracting the first equality
from the second, we obtain %y, +; — Tm4s = (p/q)"(x; — x;) as in (6). As
above, ¢™ | (z; — x;), where x; — x; is a nonzero integer for m large enough.
From (4) it follows that ¢" < |z;|+|z;| < c1(p/q)’, giving ¢™ 1 < ¢1p’ with

some positive number ¢; = ¢1(p, ¢, &, —s). Hence gt < ci/]p.

By the definition of u; and v, we have

m v Wil (7] = Dlvil + {7} val]

i lw Hvel [ug| + [vi
S (r—=1D)|vi| =1 > (1 —1)|vi| — 1
[ug| + [vi olvi| + [vil

Hence m/j > (1 —1)/(1+ o) — ¢ for k large enough, because 1/|vi| — 0 as
k — oco. Adding 1 to both sides gives

m/j+1>(r+o0)/(1+0)—¢e>1Ig— 2.

Therefore ¢™/711 > ¢s=2¢ Tt follows that ¢/s—2¢ < c}/jp < c}/jq15*3€, o)
¢ < ci/j. Clearly, if k — oo, then |vg| — 00, so m — oo and j — oco. By
taking k so large that c}/j < 14+¢/2, we deduce that ¢° < 1+¢/2. However,
this is impossible, because ¢° is greater than 1 + clogq > 1 + elog2 >

1 4 0.69¢. This proves our assertion.
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