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Introduction. A recent paper of Hsia and Silverman [3] describes an
analog of the Brauer–Manin obstruction in the setting of arithmetic dynam-
ics. The definition is based on work of Scharaschkin [6], who showed how
to reformulate the Brauer–Manin obstruction on curves of genus at least 2
as a purely adelic-geometric statement, with no reference to cohomology.
(See also [5].) In this note we prove a dynamical analog of Scharaschkin’s
conjecture for dynamical systems on P1. The proof uses a variety of tools,
including a Zsigmondy theorem for primitive divisors in dynamical systems
that was recently proven by Ingram and Silverman [4].

We recall from [3] the setup for the dynamical version of the Brauer–
Manin obstruction.

Notation. Let K be a number field, let X/K be a projective variety,
and let ϕ : X → X be a K-morphism of infinite order. Let AK denote the
ring of adeles of K, and for any point P ∈ X(K), write C(Oϕ(P )) for the
closure of the orbit Oϕ(P ) of P in X(AK). Let Z be a subvariety of X. We
clearly have an inclusion

(1) Oϕ(P ) ∩ Z(K) ⊂ C(Oϕ(P )) ∩ Z(AK).

The primary question raised in [3] is to determine when the inclusion (1) is
an equality.

More generally, we can ask a similar question after excluding a (finite)
set of places. For any set of places S we let

A′K,S =
∏′

v/∈S

Kv ⊂ AK ,
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where the product is the usual adelic restricted product, and we write
CS(Oϕ(P )) for the closure of the orbit in A′K,S .

Our main result is a proof of a local-global equality (1) for X = P1.

Theorem 1. Let K be a number field , let S be a finite set of places of K,
and let ϕ : P1 → P1 be a rational map of degree at least two defined over K.
Let Z ⊂ P1(K) be a finite set of points. Then with notation as above,

Oϕ(P ) ∩ Z(K) = CS(Oϕ(P )) ∩ Z(A′K,S).

Remark 2. As noted in [3], if (1) is to be an equality, one should
require that the subvariety Z contains no positive-dimensional ϕ-preperiodic
subvarieties. However, since our subvariety Z is a set of points, this condition
on Z is vacuous.

In Section 2 we prove an analogous result for function fields K/k. If the
map ϕ is not isotrivial, the proof is essentially the same as the proof of
Theorem 1, but the isotrivial case must be handled separately. Finally, in
Section 3, we make some further comments and raise some related questions.

1. Local-global dynamics on P1 over number fields. In this section
we prove Theorem 1. We briefly recall some basic definitions from dynamical
systems.

Definition. Let ϕ(z) ∈ K(z) be a rational function of degree d ≥ 2,
which we may view as a morphism ϕ : P1

K → P1
K . A point γ ∈ P1(K) is

periodic for ϕ if ϕn(γ) = γ for some n ≥ 1. The smallest such n is called
the ϕ-period of γ. We say that γ is preperiodic for ϕ if its ϕ-orbit

Oϕ(γ) = {γ, ϕ(γ), ϕ2(γ), . . . }
is finite. Equivalently, γ is preperiodic if some iterate ϕn(γ) is periodic.

Remark 3. During the proof of Theorem 1, we make use of the following
notation. For any two points x, y ∈ P1(K) and any prime ideal p of K, we
write

(2) x ≡ y (mod p)

to indicate that the reductions of x and y modulo p coincide. Formally, this
notation means that if we write x = [x1, x2] and y = [y1, y2] using p-integral
coordinates such that at least one coordinate is a p-unit, then

x1y2 − x2y1 ≡ 0 (mod p).

Alternatively, define a (nonarchimedean) chordal metric on P1 for the
absolute value v by (cf. [11, §2.1])

∆v(x, y) =
|x1y2 − x2y1|v

max{|x1|v, |x2|v} ·max{|y1|v, |y2|v}
.
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The value of ∆v(x, y) is independent of the choice of homogeneous coordi-
nates for x and y, and we define the congruence (2) to mean ∆v(x, y) < 1,
where v is the absolute value associated to the prime p. More generally, for
points αi, βi ∈ P1(K), we write

(3)
∏

(αi − βi) ≡ 0 (mod p)

to mean that
∏
∆v(αi, βi) < 1, in which case we say that

∏
(αi − βi) is

divisible by p. Equivalently, (3) means that there is some index j such that αj
and βj have the same reduction modulo p.

Remark 4. We recall that there are several equivalent definitions for
the map ϕ : P1

K → P1
K to have good reduction at p; see [11, Theorem 2.5].

For example, ϕ has good reduction if it can be written as a ratio of poly-
nomials ϕ = F/G such that F and G have p-integral coefficients and such
that the resultant Res(F,G) is a p-adic unit. It is clear that ϕ has good
reduction at all but finitely many primes of K. Further, if p is a prime of
good reduction associated to the absolute value v, then [11, Theorem 2.17]
states that

(4) ∆v(ϕ(x), ϕ(y)) ≤ ∆v(x, y) for all x, y ∈ P1(K).

In dynamical terminology, (4) says that ϕ is v-adically nonexpanding. With
our convention concerning congruences, the inequality (4) gives the following
useful implication:

(5)
∏

(αi − βi) ≡ 0 (mod p) ⇒
∏

(ϕ(αi)− ϕ(βi)) ≡ 0 (mod p).

Proof of Theorem 1. Without loss of generality, we may assume that the
set S contains all archimedean places of K and all nonarchimedean places
at which ϕ has bad reduction. Let β ∈ P1(K). If β is preperiodic, then its
orbit Oϕ(β) is finite, so the orbit is discrete in P1(Kv) for every place v.
Hence in this case we have C(Oϕ(β)) = Oϕ(β), so the equality

Oϕ(β) ∩ Z(K) = C(Oϕ(β)) ∩ Z(AK)

is obvious.
We suppose now that β ∈ P1(K) is a point with infinite ϕ-orbit. Since Z

is a finite set, there can be only finitely many iterates ϕn(β) that lie in Z,
so replacing β with some ϕn(β), we may assume that Oϕ(β) ∩ Z(K) = ∅.
Under this assumption, we suppose that there exists a point

α ∈ CS(Oϕ(β)) ∩ Z(A′K,S)

and derive a contradiction. The supposed existence of α means that there
is an increasing sequence of positive integers

N = {n1, n2, n3, . . .}
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such that the sequence of points ϕn(β) with n ∈ N converges adelically
to α ∈ Z(A′K,S). Looking at each coordinate of the adele α, we see in par-
ticular that for every prime p /∈ S of K there exists an integer Np such
that

ϕn(β) ≡ αp (mod p) for all n ∈ N with n ≥ Np.

Note that since Z is a finite subset of P1(K), each αp is a point in P1(K)
considered as a subset of P1(Kp).

We are going to use the dynamical Zsigmondy theorem from [4], whose
statement we recall after making one definition.

Definition. Let ϕ : P1 → P1 and let γ ∈ P1. We say that ϕ is of
polynomial type at γ if there is some k ≥ 1 such that γ is a totally ramified
fixed point of ϕk.

Remark 5. It is easy to check that ϕ is of polynomial type at γ if and
only if, when we conjugate ϕ by (z − γ)−1, the map ϕk is conjugated to a
polynomial in z. We also remark that it is an exercise using the Riemann–
Hurwitz genus formula to show that if ϕ is of polynomial type at γ, then
the ϕ-period of γ is at most 2; cf. [11, Theorem 1.7].

Theorem 6 (Ingram–Silverman [4]). Let K be a number field , let S be
a finite set of primes, let β ∈ P1(K) be a point with infinite orbit , and
let γ ∈ P1(K) be a preperiodic point. Let ϕ : P1 → P1 be a K-morphism
of degree at least two that is not of polynomial type at γ. There exists an
integer M = Mϕ,β,γ so that for all m ≥M there exists a prime ideal qm /∈ S
of K satisfying

ϕm(β) ≡ γ (mod qm), ϕi(β) 6≡ γ (mod qm) for all 0 ≤ i < m.

In the terminology of [4], the prime ideal pm is a primitive divisor
for ϕm(β) − γ. Theorem 6 says that ϕm(β) − γ has a primitive divisor for
all sufficiently large values of m. There are many classical theorems show-
ing the existence of primitive divisors for the multiplicative group and for
elliptic curves; see for example [7, 8, 12]. The proof of Theorem 6 uses a
dynamical analog [10] of Siegel’s theorem [9, IX.3.1] for integral points on
elliptic curves.

Remark 7. The theorem stated in [4] does not exclude a finite set of
primes, but since S is finite, we immediately get Theorem 6 from [4] by
increasing M so as to exclude the finitely many m such that the primitive
divisor of ϕm(β)− γ is in S.

We fix an integer R ≥ 3 and extend the field K so that all of the periodic
points of ϕ of exact period R are in P1(K). Let γ ∈ P1(K) be a point of
exact period R for ϕ. As noted in Remark 5, the map ϕ is not of polynomial
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type at γ, so we can apply Theorem 6 to find an integer M = Mϕ,β,γ such
that ϕm(β)− γ has a non-S primitive divisor for all m ≥M . Doing this for
each of the finitely many points of period R, we may choose one M = Mϕ,β,R

that works for all γ of period R.
Next we fix an integer T ≥ 1 and we choose a non-S primitive divisor

for ϕm(β) − γ for each m between M and M + T . Thus we find distinct
prime ideals qM,γ , qM+1,γ , . . . , qM+T,γ /∈ S such that

ϕm(β) ≡ γ (mod qm,γ) for M ≤ m ≤M + T .

We have indicated the dependence of qm,γ on both m and γ, because we
now replace γ by ϕiγ for each 1 ≤ i < R and apply the same argument.
Thus we find prime ideals qm,ϕiγ /∈ S satisfying

ϕm(β) ≡ ϕi(γ) (mod qm,ϕiγ) for M ≤ m ≤M + T and 0 ≤ i < R.

Further, for any particular value of i, the ideals qm,ϕiγ are distinct for
M ≤ m ≤ M + T . (These ideals also depend on ϕ and β, of course, but ϕ
and β are fixed throughout the proof.) This gives us a finite set of non-S
primes

Q = QR,T = {qm,ϕiγ : M ≤ m ≤M + T and 0 ≤ i < R}.

(Note that M = Mϕ,β,R is independent of T .)
Consider the product

(6)
R−1∏
r=0

(ϕm(β)− ϕr(γ)).

It is divisible by each of the (not necessarily distinct) prime ideals

(7) qm,γ , qm,ϕγ , qm,ϕ2γ , . . . , qm,ϕR−1γ .

(We remind the reader that according to our convention from Remark 3, this
“divisibility” is a brief way of saying that for each prime q in the list (7),
there is some 0 ≤ r < R such that the two points ϕm(β) and ϕr(γ) reduce
to the same point modulo q.)

We next show that the product

(8)
R−1∏
r=0

(ϕn(β)− ϕr(γ))

is divisible by all of the primes in the list (7) for every n ≥ m. To see
this, let q be any prime listed in (7). We use the R-periodicity of γ, the
assumption that ϕ has good reduction at primes not in S, and Remark 4 to
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derive the implications

R−1∏
r=0

(ϕn(β)− ϕr(γ)) ≡ 0 (mod q)

⇒
R−1∏
r=0

(ϕn+1(β)− ϕr+1(γ)) ≡ 0 (mod q) from (5) in Remark 4,

⇒
R−1∏
r=0

(ϕn+1(β)− ϕr(γ)) ≡ 0 (mod q) since γ is R-periodic.

Now an induction shows that for all n ≥ m, the divisibility of (8) by the
primes in the list (7) follows from the divisibility of (6).

Recall the sequence of positive integers N such that ϕn(β) converges
A′K,S-adelically to α as n → ∞ with n ∈ N . In particular, for each q ∈ Q
we have

(9) ϕn(β) ≡ αq (mod q)

for all sufficiently large n ∈ N . (Note that Q∩S = ∅.) We recall that each αq

is chosen from the finite set Z, so we can reformulate (9) as

(10)
∏
a∈Z

(ϕn(β)− a) ≡ 0 (mod q)

for sufficiently large n ∈ N and for every q ∈ Q.
For notational convenience, we define

QR,T =
∏

q∈QR,T

q = Radical
( ∏
M≤m≤M+T

∏
0≤i<R

qm,ϕiγ

)
.

The fact that the ideals qm,ϕiγ are distinct for fixed i and varying m implies
that

#QR,T > T,

so QR,T is a product of more than T distinct prime ideals.
With this notation, we can rewrite (10) as

(11)
∏
a∈Z

(ϕn(β)− a) ≡ 0 (mod QR,T ) for sufficiently large n ∈ N .

Similarly, it follows from our earlier discussion that

(12)
R−1∏
r=0

(ϕn(β)− ϕr(γ)) ≡ 0 (mod QR,T ) for all n ≥MR.
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Comparing (11) and (12) for any single sufficiently large value of n ∈ N , we
conclude that

(13)
R−1∏
r=0

∏
a∈Z

(ϕr(γ)− a) ≡ 0 (mod QR,T ).

This last congruence is very interesting, because the product on the left-hand
side does not depend on T , while the ideal QR,T is a product of more than T
distinct prime ideals. Letting T →∞, we conclude that there is at least one
value r0 and at least one point a0 ∈ Z such that

ϕr0(γ) ≡ a0 (mod q)

for infinitely many primes q. It follows that

ϕr0(γ) = a0.

To recapitulate, we have proven that given any point γ ∈ P1 that is
periodic for ϕ of period at least 3, there is some point in the ϕ-orbit of γ
that lies in the set Z. But a rational map on P1 has periodic points of
infinitely many periods. (More precisely, it has a periodic point of exact
period R for every R ≥ 5; see [2, §6.8].) This contradicts the assumption
that Z is a finite set.

2. Local-global dynamics on P1 over function fields. In this sec-
tion we prove the analogue of Theorem 1 for function fields. Let k be an
algebraically closed field and let K/k be a function field, that is, K is a
finitely generated extension of k of transcendence degree one. We employ
the same notation as in the Introduction except that we consider only the
places of K/k, i.e., the absolute values of K that are trivial on k.

Theorem 8. Let K/k be a function field as above, let S be a finite set of
places of K/k, and let ϕ : P1 → P1 be a rational map of degree at least two
defined over K. Let Z ⊂ P1(K) be a finite set of points. Then with notation
as in the Introduction,

Oϕ(P ) ∩ Z(K) = CS(Oϕ(P )) ∩ Z(A′K,S).

Proof. A rational map ϕ defined over K is isotrivial (or split) if there
exists a Möbius transformation M ∈ PGL2(K) such that M ◦ ϕ ◦M−1 has
coefficients in k. As pointed out by T. Tucker [4, Remark 4], the Zsigmondy
theorem in [4] can be proved for nonisotrivial rational maps over function
fields using the results of Baker [1]. We observe that the characteristic zero
assumption is not used in [1], and therefore is not needed to extend the
results of [4], contrary to what is stated there. Thus the argument used to
prove Theorem 1 applies verbatim in the function field case if ϕ is non-
isotrivial.
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Assume now that ϕ is isotrivial. There is no loss of generality in ex-
tending K by adjoining the coefficients of M , and then replacing ϕ by
M ◦ ϕ ◦M−1, we may assume that ϕ has coefficients in k.

With an argument again as in the proof of Theorem 1, the case of prepe-
riodic points is straightforward.

We now suppose that β ∈ P1(K) is a point with infinite ϕ-orbit. Since Z
is a finite set, there can be only finitely many iterates ϕn(β) that lie in Z,
so replacing β with some ϕn(β), we may assume that Oϕ(β) ∩ Z = ∅. Under
this assumption, we suppose that there exists a point

α ∈ CS(Oϕ(β)) ∩ Z(A′K,S)

and derive a contradiction. The supposed existence of α means that there
is an increasing sequence of positive integers

N = {n1, n2, n3, . . .}
such that the sequence of points ϕn(β) with n ∈ N converges adelically
to α ∈ Z(A′K,S).

We note first that β 6∈ k, since otherwise the sequence ϕni(β) ∈ k could
not converge p-adically for any place p of K/k unless it became eventually
constant, which would force β to be preperiodic, contrary to our current
assumption.

Assume now that ϕ is not purely inseparable. Choose an element b ∈ k
that is periodic with respect to ϕ and such that the backwards orbit of b
with respect to ϕ is infinite and such that no element of Z is in the (forward)
orbit of b. It follows that the set T of places p of K/k for which an element
of Z is congruent modulo p to an element of the (forward) orbit of b is finite.
Now choose an element a ∈ k in the backward orbit of b with respect to ϕ,
such that a is not in the (forward) orbit of b and such that the places of K/k
extending the place β−a of k(β) do not belong to T . Let p be a place of K/k
extending the place β − a of k(β). By assumption, there exists αp ∈ Z(K)
with ϕni(β) converging p-adically to αp. Thus, for all large i, we have

ϕni(a) ≡ ϕni(β) ≡ αp (mod p).

But, for i large, ϕni(a) belongs to the forward orbit of b. This forces p ∈ T ,
which is a contradiction.

Finally, we have to deal with the case that ϕ is purely inseparable. With-
out loss of generality, we may assume that ϕ(z) = zq, where q is a power
of the characteristic of K. Let a ∈ k and let p be a place of K/k extending
the place β − a of k(β). Then the only way that a sequence ϕni(β) can
converge p-adically is if a is in a finite field, and in this case it converges to
an element in the Frobenius orbit of a. There are only finitely many such a
whose orbits intersect the finite set Z, and hence ϕni(β) cannot converge
adelically. This completes the proof.
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3. Comments and speculations

Remark 9. We have stated our principal results (Theorems 1 and 8)
for rational maps of degree at least two, but we can also consider maps of
degree one. After a finite extension of the field K, any map ϕ : P1 → P1 of
degree one may be conjugated to a map either of the form ϕ(z) = az or of
the form ϕ(z) = z + 1. There are three cases to consider.

(1) If ϕ(z) = az and a is a root of unity, say an = 1, then ϕn(z) = z is
the identity map, so every point has finite orbit. Hence the closure
of Oϕ(P ) is equal to Oϕ(P ), so the conclusions of Theorems 1 and 8
are clearly true.

(2) If ϕ(z) = az and a is not a root of unity, then we can mimic the proof
of Theorem 1, replacing Theorem 6 with the classical Zsigmondy
theorem for the multiplicative group. So Theorems 1 and 8 are also
true in this case.

(3) If ϕ(z) = z+ 1, then Theorem 1 is not true in general. For example,
takeZ= {0,∞} and β=1. Then the orbit of β isOϕ(β) = {1, 2, 3, . . .},
which does not intersect Z. On the other hand, the orbit of β contains
the subsequence

{n! : n = 1, 2, 3, . . . },
and this subsequence converges to the point in Z(AQ) that is ∞
at the archimedean place and is 0 at all nonarchimedean places.
Hence C(Oϕ(β)) ∩ Z(AQ) 6= ∅.

Remark 10. Let K/Q be a number field, let f(z) ∈ K(z) be a rational
function of degree at least two, and let ϕ(z) = z − f(z)/f ′(z). Iteration
of ϕ(z) is Newton’s method of finding a root of f(z). Let α ∈ K be a point
whose orbit Oϕ(α) does not contain a root of f , e.g., any point that is
not preperiodic for ϕ. Then Theorem 1 says that there are infinitely many
places v such that Newton’s method applied to α does not converge to a
root of f(z). We raise the question of whether it is also true that there
are infinitely many places such that Newton’s method applied to α does
converge to a root of f(z). (It is not hard to show that this is the case
for deg(f) = 2, but for maps of higher degree it is not clear.)

Remark 11. We observe that an equality

Oϕ(P ) ∩ Z(K) = C(Oϕ(P )) ∩ Z(AK),

such as given in [3] and in Theorem 1, provides an algorithm for determining
whether Oϕ(P )∩Z(K) is nonempty. Thus “by day” one computes elements
of the orbit and checks if they are in Z, while “by night” one checks if there
are points in Oϕ(P ) ∩ Z modulo Q for ideals Q that are more and more
divisible by primes not in S. For a fixed Q this is a finite computation.
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This is analogous to the fact that the Scharaschkin conjecture [6] gives an
algorithm to decide whether a curve of genus at least two has any rational
points (but not necessarily to find them all).

Remark 12. The referee has asked whether Theorem 1 is true if the
set S is allowed to be an infinite set of places with density δ(S) = 0. This is
an interesting question to which we do not know the answer.
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