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Integer points close to convex surfaces
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M. C. Lettington (Cardiff)

1. Introduction. Let C be the boundary surface of a strictly convex
bounded three-dimensional body. Strictly convex means that if P and Q are
points on C, then points on the line segment PQ between P and Q lie in
the convex body, but not on its boundary C. Let MC denote the dilation
of C by a factor M . Andrews [1] proved a general result which in three
dimensions gives the number of points of the integer lattice on MC to be

(1) O(M3/2),

as M tends to infinity. Strict convexity is necessary because a part of a
two-dimensional plane in the boundary C can give as many as a constant
times M2 integer points for infinitely many values of M .

We consider the integer points within a distance δ of the surface MC.
The two-dimensional case has been well-studied ([12], [5], [9], [6], [10], [11]).
Introducing δ requires some uniform approximability condition on the sur-
face C, usually expressed in terms of upper and lower bounds for derivatives
and determinants of derivatives. Let A be the two-dimensional area of C.
The search region has three-dimensional volume

(2) (2Aδ +O(δ2))M2,

and this is known to be the number of integer points on average over trans-
lations of the surface MC. To obtain an asymptotic formula one considers
the Fourier transform of the convex body, with conditions at least as far
as the 18th derivatives in order to estimate the multiple exponential in-
tegrals [7]. Hlawka [8] obtained a general dimensional asymptotic formula,
which in three dimensions yields an error of size (1); see also Krätzel [13].
Under the C∞ hypothesis of a convergent Taylor series, the error term in
the asymptotic formula has been improved, most recently by Müller [18].
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We derive an upper bound for the number of integer points within a
distance δ of the surface. We require only that C has a tangent plane at
every point, and that any two-dimensional cross-section through the normal
at some point P consists (in a neighbourhood of P ) of a plane curve C ′ with
continuous radius of curvature %′ satisfying a condition

1/M < c0 < %′ < c1.

This condition involves derivatives up to the second order. We actually sup-
pose that M is large and we assume the condition

(3) c0M + 1/2 ≤ % = %′M ≤ c1M − 1/2,

with C contained in a sphere of radius c1M .
Our upper bound has two terms whose orders of magnitude correspond

to (1) and (2). The constant factor in the second term is larger than 2A.
In Müller [18] the differential inequality assumed is that the Gaussian

curvature does not vanish. We can regard (3) as a corresponding quantitative
bound.

Under the curvature conditions we prove that an upper bound for the
number of integer points N lying on or within a distance δ from the surface C
is given by

N ≤
(
c1
c0

)2

216((c1M)3/2 + 29δ(c1M)2).

In Section 3 we consider the convex hull of the integer points in a
d-dimensional convex body satisfying the Curvature Condition (introduced
in Section 2), and find explicit bounds for the number of faces in different
dimensions.

There is a vast literature on the lattice points in a convex polytope.
We have been able to use some parts of this theory ([1], [2], [3], [4], [16],
[17], [19]). Where possible, this theory has been stated in the general d-
dimensional case. To extend all the results of this paper to d dimensions
requires more investigation of configurations in intermediate dimensions,
and of the distribution of large faces of the convex hull with short normal
vectors. This will be the subject of a following paper [15].

2. Shells and curvature. Let C0 be the locus of points at distance δ
from C measured along the interior normals to C, and let C1 be the locus
of points at distance δ measured along the exterior normals. Let E be the
d-dimensional shell bounded by C0 and C1 so that E has thickness 2δ. Let
S be the set of integer points in E, and let H be the convex hull of S, so
that H is a d-dimensional convex polytope. All points of S lie in H, but not
all integer points on the boundary of H lie in S.
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Curvature Condition (with size parameter M). For any point P on
C and any two-plane Π through the normal to C at P , let C(Π,P ) be the
closed plane curve C ∩Π. Then C(Π,P ) is twice differentiable with radius
of curvature % lying in the range

(4) c0M + 1/2 ≤ % ≤ c1M − 1/2,

where the constants c0, c1 and δ satisfy

(5) 1/M < c0 ≤ 1 ≤ c1, δ < 1/4.

As an immediate consequence of the Curvature Condition we have the
following lemma.

Lemma 2.1. Let C satisfy the Curvature Condition. For both of the
boundary hypersurfaces C0 and C1 of the shell E, at each point Q of the
hypersurface there is a tangent hyperplane. The two-dimensional section
C(Π,Q) by a 2-plane normal to the tangent hyperplane is twice differen-
tiable. The radius of curvature of C(Π,Q) lies in the range

(6) c0M ≤ % ≤ c1M.

The proof follows by direct consideration of points on C0(Π,Q) and
C1(Π,Q) with respect to C(Π,Q).

By the condition (4), S, the set of integer points, lies in a d-hypersphere
of radius R = c1M , and we recall the formulae for Vd, the volume, and for
Sd, the surface content, of a d-dimensional sphere [19]:

(7) Vd = αdR
d, Sd = dαdR

d−1,

where

(8) α2k =
πk

k!
, α2k+1 =

22k+1πkk!
(2k + 1)!

, αd ≤ 6.

3. Convex polytopes. In this section we again consider the general
d-dimensional case, so that the convex hull H of the set of integer points S
is a d-dimensional convex polytope, where d ≥ 2.

Lemma 3.1. To each hypersurface face of the convex polytope H we as-
sign a standard normal vector ; this is the unique outward normal integer
vector (A1, . . . , Ad), which is primitive in the sense that hcf(A1, . . . , Ad) = 1.
Then for each N ≥ 1 there are

(9) ≤ 3dNd

hyperfaces of H whose standard normal vector has length at most N .

Proof. There are 2N + 1 possibilities for each vector entry, so that the
total possible number of vectors is

(2N + 1)d ≤ 3dNd.
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Lemma 3.2. Let U be a set of K integer points in d-dimensional space
that do not all lie on some hyperplane. Then there is a simplicial complex
of at least K − d non-overlapping simplices whose vertices are the K points
of U .

Proof. This lemma may be proved from the outside in, by successively
removing vertices of the convex hull of U , or from the inside out by choosing
simplices of minimal non-zero volume [14].

Lemma 3.3. Let H be a convex polytope contained in a hypersphere of
radius R, whose vertices are integer points. Then the number of (d − 1)-
hyperplane faces of H whose standard normal vector has length greater than
N is

(10) ≤ αdR
d−1d!
N

.

Proof. Consider d integer points x1, . . . ,xd lying on a hyperplane face
with primitive normal vector (A1, . . . , Ad), where the d-integer points form a
simplex with (d− 1)-dimensional volume V (d−1), and xd+1, an integer point
lying off the hyperplane face. The perpendicular distance from xd+1 to the
hyperplane face is

(11) D =
k√

(A2
1 + · · ·+A2

d)

for some positive integer k. We chose xd+1 so that the distance is minimal
and so k = 1. Then the d-dimensional volume V (d) of the convex hull of
these d+ 1 points satisfies

V (d)(x1, . . . ,xd+1) =
1
d
DV (d−1)(x1, . . . ,xd).

Since the volume of a d-simplex whose vertices are integer points is at least
1/d!, we have

V (d−1)(x1, . . . ,xd) ≥ d

(d)!
1
D

=
1

(d− 1)!

√
(A2

1 + · · ·+A2
d)(12)

≥ N

(d− 1)!
by the conditions of the lemma.

The (d − 1)-dimensional hypervolume of the hyperplane faces of the
convex polytope must be less than or equal to the (d − 1)-hypervolume of
the surface of the d-dimensional hypersphere enclosing it. Let Ai be the
hypervolume of each hyperplane face of the polytope; then by equation (7)
we have

(13)
∑

Ai ≤ Sd = dαdR
d−1.
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We obtain an upper bound for the number of large hyperplane faces of the
convex polytope by dividing the lower bound (12) into the upper bound (13)
to obtain

(14) ≤ dαdR
d−1(d− 1)!
N

.

Theorem 3.4. Let H be a convex polytope contained in a d-sphere of
radius R. Then H has at most

(15) 2(3αdd!)d/(d+1)Rd(d−1)/(d+1)

hyperplane faces.

Proof. We take

N =
(
αdd!
3d

)1/(d+1)

R(d−1)/(d+1)

in (9) of Lemma 3.1 and (10) of Lemma 3.3. The total number of hyperplane
faces is the sum of bounds for those with long normal vectors in (9) and those
with short normal vectors in (10), and is

≤ αdR
d−1d!
N

+ (3N)d = 2(3αdd!)d/(d+1)Rd(d−1)/(d+1).

Lemma 3.5. Let H be a convex d-polytope with vertices at integer points.
From each j-face Fi of H, we pick out j + 1 vertices vi,1, . . . ,vi,j+1 that do
not all lie on a (j − 1)-dimensional plane. Let wi be the centroid of these
vertices:

(16) wi =
1

j + 1
(vi,1 + · · ·+ vi,j+1).

Let T = {w1, . . . ,wh} be the set of centroids associated with all the j-faces
of H. For a set U , let conv{U} denote the smallest convex set containing
all the elements of U . Then the centroids wi are true vertices of conv{T},
in the sense that for any t = 1, . . . , h,

conv{T \ {wh}} 6= conv{T}.

Proof. We must rule out the possibility that

(17) wi =
h∑

g=1

λgwg,

with

(18) 0 ≤ λg ≤ 1,
h∑

g=1

λg = 1.
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Substituting for wg using (16) and multiplying by j + 1 to clear fractions
yields

(19) vi,1 + · · ·+ vi,j+1 =
h∑

g=1

j+1∑
f=1

λgvg,f .

Each j-face Fi is the intersection of at least d−j facets or hyperplanes of H,
and our j + 1 vertices of Fi are also vertices of each of these hyperplanes.
We label these hyperplanesΠ1, . . . ,Πk, . . . ,Πt with primitive integer normal
vectors nk, so that any point r lying on Πk satisfies the equation

r · nk = Dk.

As H is convex, all the Πk are supporting hyperplanes of P . Hence, for any
point x in H we have

(20) x · nk ≤ Dk,

where we have assumed (using a suitable integer vector translation) that H
contains the origin. Applying (20) to (19) yields

(vi,1 + · · ·+ vi,j+1) · nk = Dk(j + 1) =
h∑

g=1

j+1∑
f=1

λgvg,f · nk

≤ (j + 1)
h∑

g=1

λgDk = Dk(j + 1),

implying that

(21) Dk(j + 1) =
h∑

g=1

λg

j+1∑
f=1

vg,f · nk ≤ Dk(j + 1).

This equality is only satisfied if all of the vertices vg,f for which λg 6= 0 are
on the hyperplanes Πk, 1 ≤ k ≤ t.

Now any j-face Fi of a convex d-polytope H can be defined as the in-
tersection of the q-faces that contain Fi with j ≤ q ≤ d − 1. Therefore, as
the vertices vg,f lie on such an intersection with q = d− 1, we deduce that
the vertices vg,f for which λg 6= 0 are all vertices of our j-face Fi. That is,
vg,1, . . . ,vg,j+1 are vertices of Fi.

This implies that for g 6= i in equation (19) we must have λg = 0, as two
distinct j-faces of H cannot share j + 1 vertices. Hence there is only one
term, λg, with g = i and λi = 1 yielding the trivial expression, right hand
side is identical to left hand side in (19).

Therefore, wi has only one expression as a convex sum of

T = {w1, . . . ,wh},
and thus wi is not in the convex hull of T −wi.
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Theorem 3.6 is a version of Andrew’s Theorem [1] with explicit constants.
The second statement regarding the number of faces was not stated in [1].
McMullen [16] has upper bounds for the number of faces in terms of the
vertices. These bounds can be attained by polytopes with integer vertices
lying on a twisted quantic curve, but the parameter R is very large. Hence,
for a spherically contained convex d-polytope, there exist triples, (d, f0, j),
for which the second statement of Theorem 3.6 is an improvement on the
general upper bound stated by McMullen in [16].

Theorem 3.6. In d-dimensional space, a convex polytope H with f0

vertices, all at integer points, contained in a hypersphere of radius R satisfies

(22) f0 ≤ 2(3αdd!)d/(d+1)(2R)d(d−1)/(d+1) ≤ 36d!(2R)d(d−1)/(d+1).

Let 1 ≤ j ≤ d − 2. Under the conditions of the theorem, the number fj of
j-faces of P satisfies

(23) fj ≤ 2(3αdd!)d/(d+1)(2(j + 1)R)d(d−1)/(d+1).

Proof. Let T be the set of midpoints of edges of H, and let H ′ be the
convex hull of T . By Lemma 3.5 each point of T is a vertex of H ′. Let V
be the vertex of H where edges e1, . . . , er meet and let W1, . . . ,Wr be the
respective midpoints of these edges. The W1, . . . ,Wr are all vertices of H ′

but not necessarily of the same facet.
By construction, each vertex V of H is truncated by a facet F of H ′ and

we say that V belongs to the facet F . Geometrically we can think of V as
lying above the facet F . The supporting hyperplane Π of H ′ containing F
cuts H in a (d − 1)-dimensional convex polytope Q. The join of V to any
other vertex V ′ of H cuts Π within this convex polytope. We now show that
V ′ cannot lie above the facet F . The vertices of Q are points X1, . . . , Xr on
e1, . . . , er and Xi is either Wi, the midpoint of ei, or between V and Wi.
Therefore, if V ′ lies above F , then V ′ lies in conv(Q,V ) and so V ′ lies in
conv(V,X1, . . . , Xr). The only vertex of H in this list is V , so V ′ = V .

This implies that the number of facets of H ′ is greater than or equal to
the number of vertices of H.

Now 2H ′ is a polytope with integer vertices lying in a d-sphere of radius
2R, so the number of faces of H ′ is given by (15) of Theorem 3.4, but with
a larger implied constant. We deduce the result (22).

For each j-face G of H we choose j+ 1 vertices that do not all lie on the
same (j − 1)-plane and construct C(G), the centroid of the j + 1 vertices.
Since C(G) does not lie on the (j − 1)-dimensional boundary of G, we see
that C(G) cannot lie on any other j-face. Let U be the set of centroids C(G)
constructed from the j-faces of H.

By Lemma 3.5, U is a strictly convex set and we define H ′′ to be the
convex hull of the points C(G) in U . Then (j + 1)H ′′ is a polytope with
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integer point vertices lying in a sphere of radius (j + 1)R, so that the num-
ber of vertices of H ′′ is given by equation (22), but with a larger implied
constant. Each j-face G gives a distinct point C(G) in U which is a vertex
of the convex polytope H ′′. We deduce the result (23).

4. Major arcs and lattices. Throughout this section H is the convex
hull of the set S of integer points inside the shell E. It is helpful in many
problems to separate “major arcs”, regions where there is good Diophantine
approximation, from “minor arcs”, regions where there is not. In this paper a
major arc can be described informally as a region U of the shell E such that
the convex hull of all the integer points in U is contained in the intersection
of E with some hyperplane. In three dimensions, major arcs on the plane
faces and edges of the convex hull H can have dimension 1 or 2.

Lemma 4.1. The maximum length of a straight line segment in E is

(24) ≤ 4
√
δc1M.

A chord AB of C1 tangent to C0 has length

(25) 4
√
δc0M ≤ AB ≤ 4

√
δc1M.

Fig. 1. Section by 2-plane Π through l and X

Proof. Let R = c1M and let Π be a two-dimensional plane containing
the normal vector at a point X on C1 and any other point A also on the
outer boundary C1. The two-dimensional section E? of the shell E in Π is
depicted in Figure 1. We consider the line segment AB when it is wholly
contained within E? and so the perpendicular distance XY from AB to X
must be ≤ 2δ. Applying circular geometry to the circle of radius R with
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respect to the mid-point Y of chord AB we find that

(26)
(
AB

2

)2

= AY 2 = XY (2R−XY ),

and for fixed R, this is maximal when XY = R. Hence we take XY as large
as possible in (26), yielding the required result.

The lower bound in (25) corresponds to the case when the cross-sectional
curve is a circle of minimal radius of curvature R = c0M + 1/2. In this case,
by (26),

AB = 2AY = 4
√
δ(R− δ) ≥ 4

√
δc0M,

by (4) and (5).

Lemma 4.2. Let R = c1M and let F be a facet or hyperplane face of H
that lies in a hyperplane Ψ with outward normal n. Let X be the point of C1

at which n is the outward normal. Let h be the distance from X along the
inward normal to the nearest point Y on the hyperplane Ψ . Let E′ be the
(d−1)-dimensional section of E contained in Ψ , so that E′ contains all parts
of the face F that lie in the shell E. Then the (d − 1)-dimensional volume
V of E′ is bounded above by

(27) V ≤ 2(d+9)/2dδR(d−1)/2h(d−3)/2.

Proof. Let Π be a two-dimensional plane through XY , and let E? be the
two-dimensional section of E by Π (Figure 1). Then Π cuts Ψ in a straight
line l which meets C1 in two distinct points A and B. The points A and B
lie inside the circle of radius R through X with n as outward normal at X.
For clarity, the curves C0 and C1 in Figure 1 are drawn as circles. From (26)
in the proof of Lemma 4.1 we have

(28) AY ≤
√
h(2R− h) = k.

Hence the set E′ = E ∩ Ψ lies within a (d − 1)-sphere with centre Y and
radius ≤

√
2Rh.

Case 1. When h ≤ 2δ, the plane Ψ does not cut C0 and, by (6), the
diameter of E′ satisfies (24). This implies that the whole of the facet F is
contained within the shell E. Therefore, the (d−1)-dimensional volume V of
E′ is less than or equal to that of a (d−1)-sphere of radius

√
2hR. Applying

(7) yields

(29) V ≤ αd−1(2hR)(d−1)/2 ≤ 2(d+5)/2(hR)(d−1)/2.

Case 2. When h > 2δ, the hyperplane Ψ meets C0, and the line l in the
two-dimensional plane Π cuts C0 in two distinct points A0 and B0. Let A0T
be the normal from A0 to C1, so the distance A0T is 2δ, and let C? be the
hypersphere of radius R touching C1 at T . Let Π1 be the two-dimensional
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Fig. 2. Section by 2-plane Π1 through l and T

plane through the line l and the point T (Figure 2). Then C1 and the shell E
are contained within C?. The line l cuts C? at A? and B?, so that by the
geometry of circles

(30) AA0 ·A0B ≤ A?A0 ·A0B
? = 2δ(2R− 2δ) ≤ 4δR.

On the line l, the point A lies between A? and A0, with AA0 = η (say) and
η > 0. Hence

(31) η ≤ A?A0.

We also have

(32) A0B
? ≥ Y B? = k =

√
h(2R− h).

Each point of E′ lies within a distance η of the (d− 2)-dimensional surface
of C1 ∩ Ψ . The (d− 2)-dimensional volume of C1 ∩ Ψ is at most the surface
content of a (d− 1)-dimensional sphere of radius k, which by (7) is equal to

(d− 1)αd−1k
d−2.

Therefore, the (d− 1)-dimensional volume V of E′ satisfies

(33) V ≤ (d− 1)αd−1ηk
d−2.

From (30)–(32) we have

(34) ηk ≤ A?A0 ·A0B
? ≤ 4δR.

Hence we can write

V ≤ (d− 1)αd−1(4δR)kd−3,

which simplifies to

(35) V ≤ 2(d+7)/2(d− 1)δR(d−1)/2h(d−3)/2.

Combining (29) and (35) yields

V ≤ 2(d+9)/2dδR(d−1)/2h(d−3)/2

and hence the result.

Lemma 4.3. In d-dimensional space, the number of integer points of S
in E that lie strictly inside the convex hull H of S is

(36) ≤ 2δd!αdd(c1M)d−1.



Integer points close to convex surfaces 11

In particular , if d = 3, then the number of integer points lying within a short
distance δ of the convex hull H is

(37) ≤ 48πδ(c1M)2.

Proof. Given that the integer point vertices of our convex hull H lie
within a distance δ from the closed convex hypersurface C, we can associate
a hyperslab of width 2δ with each facet of the polytopal convex hull where
the hyperslabs will overlap.

Any integer points H ∩ E must lie within a distance 2δ of the nearest
polytope facet Fi with hypersurface area Ai. The internal or “dihedral”
angles between facets are≤ 180◦ due to convexity. Let P be such a point with
nearest hyperface Fi, so that the perpendicular from P to the hyperplane Fi

actually hits Fi. If not, then some other hyperplane is nearer (Fj say) under
the distance equation (11) defined in Lemma 3.3.

Therefore each integer point P lying inside the convex hull can be asso-
ciated uniquely with a nearest hyperface Fi.

Corresponding to each hyperface Fi we have a hyperslab Si consisting
of two completely parallel hyperfaces Fi and Fi shifted by 2δ in the normal
direction to the hyperplane. The hypervolume of Si equals 2δAi where Ai is
the hypersurface area of Fi.

We know from Lemma 3.2 that in d-dimensions, K points that do not all
lie on the same hyperplane form at least K − d non-overlapping simplices.
Each simplex has hypervolume 1/d! multiplied by an integer so that each of
these simplices has hypervolume ≥ 1/d!.

Therefore, if Ki is the number of internal integer points associated
uniquely with the hyperface Fi, which itself has at least d integer point
vertices, then the total number of internal and boundary integer points of
the hyperface is

≥ d+Ki,

so that we have at least Ki non-overlapping simplicies, yielding

Ki

d!
≤ 2δAi,

which implies
Ki ≤ 2d!δAi.

Hence the total number of integer points lying within a short distance δ of
the convex hull H is

≤
∑

i

Ki ≤
∑

i

2d!δAi.

The boundary content of our convex d-polytope H is less than or equal to
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that of the hypersphere with radius of curvature c1M enclosing it. Therefore∑
i

Ki ≤ 2d!δαdd(c1M)d−1.

The next two lemmas are commonplaces of integer geometry, so we
merely sketch the proofs.

Lemma 4.4. Let Π be a hyperplane with equation

n · x = D,

where n is a primitive integer vector , and D is an integer. Then the integer
points of Π form a lattice with determinant |n|.

Proof. The lattice of integers on Π is congruent to the lattice of integers
on the plane n · x = 0. Let m = n · n. The lattice of integer vectors with
n · x ≡ 0 (mod m) consists of (d − 1)-dimensional lattices on the plane
n · x = 0 and on parallel planes at distance |n|.

Lemma 4.5. Let Λ be a j-dimensional lattice of determinant n, 1 ≤ j ≤ d.
Let U be a convex set in the j-plane of Λ, with j-dimensional volume V ,
containing K points of the lattice Λ. Then one of the following two cases
holds:

(1) Major arc case: All the points of Λ in the set U lie on a (j − 1)-
dimensional plane.

(2) Minor arc case:

K ≤ j! V
n

+ j ≤ (j + 1)!
V

n
.

Proof. In the minor arc case, by Lemma 3.2, there is a simplicial complex
of at least K − j non-overlapping simplices, each of volume at least n/j!,
whose vertices are the K points of U . The union of these simplices lies inside
U and this gives the first inequality. There is at least one such simplex, so
V ≥ n/j!, and we deduce the second inequality.

5. Vertex components. From this point on, we are restricted to three
dimensions.

For each point P in our shell E, there exists a normal to the outer
boundary surface C1, meeting C1 at a point R1. We call R1 the normal
projection of P onto C1 and R0 the normal projection of P onto C0. The
vertices of our polyhedron must, by definition, lie in E, and for every other
non-vertex integer point in E there must exist a nearest vertex. We now
formalise this concept with the following definition.

Definition. Let P be a point of S in the shell E and R1 be the normal
projection of P onto C1. Let V be a vertex of the convex polyhedral hull H
and E′ be the plane sectional strip of E containing V , P and R1. If the line
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segment R1V lies entirely within the closed strip E′, then we say that P lies
in the component S(V ) of S.

Lemma 5.1. Every point P of S belongs to some vertex component S(V ).

Proof. The line segment PR1 cuts the boundary of the polyhedral hull H
at some point Q between P and R1 inside E, so that Q lies in some plane
face F of H. If Q is a vertex of H then P belongs to S(Q) as QR1 will lie
on the line segment R0R1 inside E.

We now assume that Q is not a vertex of H and triangulate the face F
of H containing Q so that Q lies in some triangle W = V1V2V3. If QVi does
not enter the interior of the convex set bounded by C0 then neither does
R1Vi, implying that P lies in S(Vi).

If P lies in no S(Vi) then each line segment QVi on F cuts the interior
of C0 in some point Qi also on F but not in E. The whole convex triangle
Q1Q2Q3 therefore lies strictly inside C0 and contains Q. Hence, Q is not
in E, which is impossible, since Q lies on the line segment R0R1, which is
strictly inside E. This contradiction shows that for some i, the line segment
ViQ lies in E and so ViR1 lies in E and P is in the component corresponding
to Vi.

Lemma 5.2 (Spacing lemma). Let V be a vertex of the convex hull H.
Let P be a point of S not in the component S(V ) of V . Let R1 and R2 be
the respective normal projections of P and V onto C1. Then

(38) R1R2 >
√
c0δM

and the angle between the normals to C1 at R1 and R2 is

(39) >
1
c1

√
c0δ

M
.

Proof. Since P is not in the component of V , the line R1V cuts C0 in two
points W1 and W2. Let E′ be the plane sectional closed strip of E defined
by the line R1V and the point R2, so that E′ also contains the points W1

and W2. Between W1 and W2 on C0 is a point W where the tangent to C0

in E′ passes through R1. Then

R1V > R1W2 > R1W ≥ 2
√
δc0M

by (25). Hence, by (4) and (5),

R1R2 ≥ R1V − 2δ > 2
√
δc0M − 2δ ≥ 2

√
δc0M −

√
δc0M =

√
δc0M,

which is (38).
To obtain (39) we consider the sphere B with centre on R2V , and radius

c1M , touching C1 at R2. There is a point R′1 on B where the outward normal
is parallel to the outward normal to C1 at R1, making some angle θ with
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the outward normal at R2. Since C1 has sectional radius of curvature less
than or equal to c1M , the radius of B, we have

R1R2 ≤ R′1R2.

The shortest distance from R′1 to R2 along the surface of B is θc1M , so

θc1M ≥ R′1R2 ≥ R1R2 >
√
c0δM, that is, θ >

1
c1

√
c0δ

M
,

as required.

As each integer point P in S belongs to at least one component S(V )
labelled by some vertex V of the convex hull H, components labelled by
different vertices may well overlap and different vertices of the convex hull
may be close together. We pick a well-spaced set of vertices of H as follows.
Pick a vertex V1, and let the enlarged component S′(V1) be the union of all
components S(V ) with V in S(V1).

Now pick a vertex V2 not in S′(V1), and form the enlarged component
S′(V2). We pick Vi+1 not in S′(V1), . . . , S′(Vi), and so on until all of the
vertices V of the convex hull H lie in some enlarged component.

Lemma 5.3 (Thickness lemma). Let S′(V ) be an enlarged component
and let R2 be the normal projection of V onto C1. Let P be a point in
S′(V ). Then the distance h of P from the tangent plane at R2 satisfies

(40) h ≤ 52δc1
c0

.

Proof. The integer point P lies in some component S(V ′) with V ′ in
S′(V ). Let R1 and R′2 be the respective normal projections of P and V ′

onto C1. The line segments R1V
′ and R′2V lie inside the shell E, so by

Lemma 4.1,
R1V

′ ≤ 4
√
δc1M, R′2V ≤ 4

√
δc1M.

The distances V ′R′2 and V R2 are at most 2δ, so

(41) R1R2 ≤ R1V
′ + V ′R′2 +R′2V + V R2 ≤ 8

√
δc1M + 4δ ≤ 10

√
δc1M,

where we have used (4) and (5).
Let E′ be the plane sectional strip of E defined by R1, V and the normal

projection R2 of V onto C1. Let C ′ be the convex curve defined by the
intersection of C1 and E′.

For fixed distance R1R2 = D, the distance of R1 from the tangent to C ′

at R2 in E′ is greatest when the radius of curvature is least, which is when
C ′ is an arc of a circle of radius c0M . Let α be the angle between R1R2 and
the tangent at R2. In the extreme case when C ′ is a circle of radius c0M ,
the chord R1R2 subtends an angle 2α at the centre of the circle, so

D = 2c0M sinα,
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and the distance of R1 from the tangent at R2 is

D sinα =
D2

2c0M
≤ 100δc1M

2c0M
=

50δc1
c0

.

The distance of P from the tangent plane to C1 at R2 is therefore

≤ 50δc1
c0

+ 2δ ≤ 52δc1
c0

.

Remark. If we can obtain a bound valid for δ sufficiently small, then we
can deduce a possible weaker bound for large δ by dividing the shell E into
concentric shells Er, 1 ≤ r ≤ R, of thickness δ0, bounded by shrunken copies
of the exterior surface C1 of E. By inequality (6), we have a uniform upper
bound of c1M for the sectional radius of curvature at any point on each
shell Er. Hence, when regarding maximum sectional radius of curvature, we
can work within the general shell boundary C1, whose sectional radius of
curvature is also ≤ c1M .

Lemma 5.4 (Flatness lemma). Let S′(V ) be an enlarged vertex compo-
nent of our convex polyhedral hull H. If

(42) δ < δ0 =
√

c0
273 · 5213c1

· 1√
c1M

,

then all the points of S′(V ) lie on a plane through the vertex V .

Proof. Let R2 be the normal projection of V onto C1. All points P of
S′(V ) lie within a distance 52δc1/c0 from the tangent plane at R2, and
by (41),

PV ≤ PR1 +R1V
′ + V ′R2 +R2V ≤ 8

√
δc1M + 4δ ≤ 10

√
δc1M.

Hence, the set S′(V ) of integer points lies within a rectangular box L, of
volume Vol(L), with

(43) Vol(L) ≤ 52δc1
c0

(20
√
δc1M)2 <

1
6
,

where we have used the assumption (42). Therefore, by Lemma 4.5 the
major arc case holds, and all points of the enlarged vertex component S′(V ),
including V itself, lie on a plane.

Lemma 5.5 (Approximate tangency). Let S′(V ) be an enlarged compo-
nent. Let T be the point of C1 closest to V . Let P be another point of S′(V ),
and let g be the integer vector V P . Then the angle α between V P and the
normal to C1 at T satisfies

(44) |cosα| ≤ 52δc1
c0|g|

.

Proof. LetΠ be the plane through P and the normal to C1 at T throughV.
Then C1 will appear in Π as a convex curve C ′. Let l be the tangent to C ′
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at T , and let U be the foot of the perpendicular from P to l in Π. If W
is the foot of the perpendicular from V to PU then V TUW is a rectangle
in Π.

By Lemma 5.3 we have

PU ≤ 52δc1/c0.

Now if P is between W and U , then

V P |cosα| = PW ≤WU = V T ≤ 2δ,

and if W is between P and U then

V P |cosα| = PW ≤ PU ≤ 52δc1/c0.

The inequality (44) holds in both cases.

Lemma 5.6 (Sums of reciprocals). We have

(45)
∑

1≤|e|≤E

1
|e|
≤ 26E2.

Proof. Applying the Cauchy condensation method, we divide the normal
vectors into ranges

F/2 < |e| ≤ F, F = 1, 2, 4, . . . , 2K ,

where 2K is the largest power of 2 less than or equal to E. The number of
integer vectors in this range is

≤ (2F + 1)3 − (F + 1)3 ≤ 19F 3

so that ∑
F/2<|e|≤F

1
|e|
≤ 19F 3 · 2

F
= 38F 2.

Summing over the ranges for F , we have∑ 1
|e|
≤ 38(1+4+16+ · · ·+22K) ≤ 39(22K+2 − 1)

4− 1
≤ 13 ·4(22K) ≤ 26E2.

6. Plane faces and edges. In Lemma 4.3, we counted all of the integer
points in the extended vertex components that lie strictly inside the convex
hull H. Therefore we need only consider the set S(H) of integer points in our
extended vertex components that lie strictly on the plane faces and edges
of H in S.

Let S?(Vi) be the subset of S′(Vi) consisting of integer points on the
boundary of H. We will call this a boundary component. We have shown
that for each extended vertex component S′(Vi), if δ is sufficiently small
then S′(Vi) lies in a plane and so S?(Vi) lies in the same plane.
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Lemma 6.1. The number of integer points on one-dimensional boundary
components is estimated by

(46)
∑

dim S?(Vi)=1

|S?(Vi)| ≤
21633πc1

c20
δ(c1M)2.

Proof. First we note that at most two one-dimensional components can
lie on the same straight line. If this were not the case and there were more
than two, then there would exist at least two seperate sections of a straight
line segment that do not lie in the shell E. This in turn means that there
exists a straight line segment that cuts C0 or C1 more than twice, which
contradicts the convexity property assumed.

We consider all the boundary components S?(Vi) which are one-dimen-
sional lying parallel to some primitive integer vector e. Suppose that the
component contains l points of S(H), where

(47) L+ 1 ≤ l ≤ 2L

for some L equal to a power of two. We can take g = (l−1)e in Lemma 5.5,
with

|g| ≥ (l − 1)|e| ≥ L|e|.
In Lemma 5.5 the angle α between the vector e and the normal to C1 at T ,
the point of C1 nearest to V , satisfies

|cosα| ≤ 52δc1
c0L|e|

.

Hence

(48)
∣∣∣∣π2 − α

∣∣∣∣ ≤ 26c1πδ
c0L|e|

.

We want to discuss the spacing of the vertices Vi that label the enlarged
components S′(Vi) and so the boundary components S?(Vi). Each Vi has a
normal projection Ti on C1. Consider a sphere B of radius c1M . We map Ti

on C1 to the point Wi on B where the outward normal n to B is parallel to
the outward normal to C1 at Ti.

Let Vi and Vj be distinct vertices labelling enlarged vertex components.
Since Vj /∈ S(Vi), we have

TiTj >
√
c0δM,

by (38) of Lemma 5.2. Since C1 has sectional radii of curvature at most
c1M ,

WiWj ≥ TiTj >
√
c0δM.

Hence balls Bi of radii 1
2

√
c0δM centred at the points Wi on B are disjoint.

The ball Bi intersects with the surface of the sphere B in a set Ai which
contains the centre Wi of Bi and is a two-dimensional ball in spherical
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geometry. As the Bi are disjoint, the areas Ai, on the surface of the sphere B
are also disjoint and do not overlap. Hence different sets S′(Vi) correspond
to disjoint sets Ai, centred at Wi, on the surface of the sphere B. The area of
Ai is greater than the area of the intersection of a plane through Wi with Bi,
which is

(49) πc0δM/4.

As Vi ∈ S?(Vi) and S?(Vi) ⊆ S′(Vi), different sets S?(Vi) also correspond to
disjoint sets Ai, centred at Wi, on the surface of the sphere B.

For each vector e, there is an equatorial plane of the sphere B at right
angles to e. By (48) the point Wi on the surface of B, where the normal is
parallel to the normal n to C1 at T , lies within a distance

≤ 26πδc1M
c0L|e|

from the equatorial plane measured along the surface of B. As stated, the
set Ai is the intersection of the surface of B with a ball of radius 1

2

√
c0δM ,

so it forms a two-dimensional ball in the spherical geometry of the surface
of B, whose radius in spherical geometry is

≤ π

2
·
√
c0δM

4
≤ π

√
c0δM

16
· 4
√
δc1M

L|e|
=
πδc1M

L|e|

√
c0
c1
≤ πδc1M

c0L|e|
,

by equation (4) and Lemma 4.1.
Hence, each point of Ai lies within a distance

≤ 26πδc1M
c0L|e|

+
πδc1M

c0L|e|
=

27πδc1M
c0L|e|

from the equatorial plane, measured along the surface of the sphere B.
We consider the “girdle” of one-dimensional boundary components S?(Vi)

which are parallel to the fixed vector e. The components in the girdle satis-
fying (47) correspond to points Wi and disjoint sets Ai on the surface of B,
such that every point of Ai lies close to the equatorial plane perpendicu-
lar to e. The disjoint sets Ai lie in an annulus whose volume in spherical
geometry is at most

(2πc1M)
(

54πδc1M
c0L|e|

)
=

27(2π)2δ(c1M)2

c0L|e|
.

By formula (49) the number of disjoint sets Ai in the girdle is at most

(50)
22

π(c0δM)
· 27(2π)2δ(c1M)2

c0L|e|
=

27(4πc1)2M
πc20L|e|

,

so the boundary components S?(Vi) in the girdle for which the number l of
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points is in the range (47) contribute at most

(51)
54π(4c1)2M

c20|e|
integer points. The estimate (51) refers only to components in the girdle for
which l lies in the range (47).

We keep the condition (47), and sum over primitive integer vectors e.
Since each component is a straight line segment lying within the strip E, by
Lemma 4.1 we have

L|e| ≤ (l − 1)|e| ≤ 4
√
δc1M.

We note that if two boundary components lie on the same line, then the
vertices Vi which label the boundary components S?(Vi) must be different,
so they are counted separately in this argument. We use Lemma 5.6 to
sum over e, so that the number of points on one-dimensional boundary
components with l in the range (47) is at most

(52)
54π(4c1)2M

c20
· 26

(
4
√
δc1M

L

)2

=
21533c1πδ(c1M)2

c20L
2

.

Finally, we remove the condition (47) by summing L through powers
of 2, and noting that(

1 +
1
2k

+
1
4k

+
1
8k

+ · · ·
)
≤ 2k

2k − 1
≤ 2.

Hence the total number of integer points of S(H) which lie on one-dimen-
sional boundary components is at most(

21633c1π

c20

)
δ(c1M)2 ≤

(
21633πc1

c20

)
δ(c1M)2.

Lemma 6.2. The number of integer points lying on the plane boundary
components is

(53) ≤ 219δ(c1M)2.

Proof. For each plane boundary component, by (43) of Lemma 5.4, the
integer points will all lie in a square of area

400δc1M.

The boundary components are convex sets lying on the convex hull H. Hence
the convex hull of the plane boundary components, H ′ say, is a convex
polyhedron contained within H, and the boundary components lie on the
boundary planes ofH ′. If the boundary of the convex polyhedronH ′ contains
two parallel planes, then the convex body includes all points of the joins
of any point on one plane with any point on the other plane. It follows
that the outward normal vectors must be in opposite directions. Boundary
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components lie on boundary planes of H ′, so the direction of the outward
normal determines the boundary plane.

Therefore, either the plane boundary components will all have different
outward normal vectors ni, or some will share vectors and so form convex
sets that all lie on the same plane. In the latter instance, these plane bound-
ary components will all lie in an annulus as described in Lemma 4.2. As
each component is convex in this annulus we can apply Lemma 4.5, and
summing over all possible normal vectors gives the total number of integer
points to be

(54) ≤ 3!263δc1M
∑ 1
|ni|

.

Applying similar logic to the former case yields

(55) ≤ 3!400δc1M
∑ 1
|ni|

integer points. The constant in (55) is greater than that in (54) and for each
ni only one of the cases can occur. Hence we need only calculate the sum
in (55). We note that the sum over all possible short normal vectors (length
≤ N) will be greater than the sum over all possible long normal vectors
(length ≥ N) and so we consider twice the sum over the short normal
vectors, giving

≤ 2 · 3!400δc1M
∑

1≤|ni|≤N

1
|ni|

,

where, by Theorem 3.4,

N = 2K =
(

8π
27

)1/4

(c1M)1/2.

Applying Lemma 5.6 yields

2 · 3!400δc1M
∑

1≤|ni|≤N

1
|ni|
≤ 2123 · 52δc1MN2

≤ 2123 · 52δ(c1M)2 ≤ 219δ(c1M)2,

as required.

Lemma 6.3. The number of integer points on three-dimensional bound-
ary components, when δ = δ0, is estimated by

(56)
∑

dim S?(Vi)=3

|S?(Vi)| ≤ 8 · 243/4(2c1M)3/2 ≤ 29(c1M)3/2.
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Proof. From (43), the three-dimensional boundary component S?(Vi)
will have a volume Vol(Hi), with

Vol(Hi) ≤
52δc1
c0

(20
√
δc1M)2.

Since δ = δ0 this gives a volume of at most 1/6. Applying the minor arc
case of Lemma 4.5 then gives

(57) Ki ≤ 24 Vol(Hi) ≤ 4,

where Ki is the number of integer points contained in S?(Vi). However, the
existence of a three-dimensional S?(Vi) in S′(Vi) requires that Ki ≥ 4, and so
if we consider δ = δ0, then Ki, the number of integer points in the boundary
component, is exactly 4. The number of vertices of the convex hull is

≤ 2 · 243/4(2c1M)3/2,

by (22) in Theorem 3.6. Hence, when δ = δ0, the total number of integer
points in the three-dimensional boundary components is

(58) ≤ 8 · 243/4(2c1M)3/2 ≤ 29(c1M)3/2.

We now collect together the terms (22), (46), (53), (56) and (36) to
obtain an upper bound for the total number of integer points contributed
from the j-dimensional extended vertex components, 0 ≤ j ≤ 3, along with
the internal integer points, when δ ≤ δ0. This gives

≤
(
c1
c0

)
((27 + 29)(c1M)3/2 + (219 + 21633π + 28)δ0(c1M)2)(59)

≤
(
c1
c0

)
(210(c1M)3/2 + 223δ0(c1M)2).

This result is valid for a shell of thickness δ = δ0 and consists of terms
independent of δ (degree zero), and those with a factor of δ (degree one).

We cover the shell E of all extended vertex components, bounded inter-
nally by C0 and externally by C1, by R thinner concentric shells E1, . . . , ER

of thickness δ0. The distance between C1 and C0 along any inward normal
vector to these two surfaces is 2δ. Hence we choose R to be the smallest
such integer with

Rδ0 ≥ 2δ, (R− 1)δ0 < 2δ,

so that

(60) R < 2δ/δ0 + 1.

The shell Er consists of the points on some inward normal whose distance l
from the surface C1 lies in the range

(r − 1)δ0 ≤ l ≤ rδ0.
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When we replace δ with rδ0 in Lemma 2.1, we see that each shell Er will
satisfy the Curvature Condition, so that any plane sectional curve of Er will
lie in the range

c0M ≤ % ≤ c1M.

Therefore, expression (59) gives a uniform upper bound for the number of
integer points contributed by any shell Er. We note that

(61) δ0
√
c1M ≤

c1
c0
· 1

28

and

(62) (δ0
√
c1M)−1 ≤ c1

c0
29.

Theorem 6.4. The number of integer points lying on or within a short
distance δ from a convex closed surface that is contained in a sphere of radius
c1M in three-dimensional Euclidean space is

≤
(
c1
c0

)2

216((c1M)3/2 + 29δ(c1M)2).

Proof. We multiply the upper bound (59) by the maximum number of
shells given by (60). This yields(

2δ
δ0

+ 1
)
c1
c0

(210(c1M)3/2 + 223δ0(c1M)2).

Simplifying using (61) and (62) and combining terms we have at most(
c1
c0

)2

216((c1M)3/2 + 29δ(c1M)2)

integer points.
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of my PhD thesis in the University of Wales.
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