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A note on Jeśmanowicz’ conjecture concerning
primitive Pythagorean triplets
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1. Introduction. Let N,R be the sets of all positive integers and real
numbers respectively. Let (a, b, c) be a primitive Pythagorean triplet such
that

(1) a2 + b2 = c2, a, b, c ∈ N, gcd(a, b, c) = 1, 2 | b.
Then we have

(2) a = s2 − t2, b = 2st, c = s2 + t2,

where s, t are positive integers satisfying s > t, 2 | st and gcd(s, t) = 1. In
1956, L. Jeśmanowicz [5] conjectured that the equation

(3) ax + by = cz, x, y, z ∈ N,
has only the solution (x, y, z) = (2, 2, 2). This problem was solved for some
special cases (see [6] and its references). For example, V. A. Dem’yanenko
[3] proved that if s− t = 1, then the conjecture is true. But, in general, this
problem is not solved yet. Because the equation (3) relates to a generaliza-
tion of Fermat’s last theorem (see Problem B19 of [4]), it seems that the
conjecture is a very difficult problem.

Since gcd(a, c) = 1 by (1), there exists some positive integers n such that

(4) an ≡ λ (mod c), λ ∈ {−1, 1}.
Let d denote the least positive integer n satisfying (4). In this paper we deal
with the case where

(5) gcd
(
c,
ad − λ
c

)
= 1.

In fact, there are many primitive Pythagorean triplets (a, b, c) which have
the property (5). For example, if s−t = 1, then a = 2t+1, c = 2t2+2t+1 and
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a2 = 2c−1. This implies that d = 2 and (5) holds. Using the Gel’fond–Baker
method, we prove a general result as follows.

Theorem. Let (a, b, c) be a positive Pythagorean triplet satisfying (5).
If c > 4 · 109, then (3) has only the solution (x, y, z) = (2, 2, 2).

2. Preliminaries. Let (a, b, c) be a primitive Pythagorean triplet with
(1). Then a solution (x, y, z) of (3) will be called exceptional if (x, y, z) 6=
(2, 2, 2).

Lemma 1. Let f(X) ∈ R[X] be a polynomial of degree n. If there exist a
real number α0 such that α0>max(0,f(logα0),f (1)(logα0), . . . ,f (n)(logα0)),
where f (j)(X) (j = 1, . . . , n) is the jth derivative of f(X), then α > f(logα)
for any real number α with α ≥ α0.

Proof. For a real variable X, let

g(X) = X − f(logX), X > 0,(6)

and

gm(X) = X − f (m)(logX), X > 0, m = 1, . . . , n+ 1.(7)

Then g(X) and gm(X) (m = 1, . . . , n+ 1) are continuous and differentiable
functions. Further let g′(X) and g′m(X) denote the derivatives of g(X) and
gm(X) respectively. We see from (6) and (7) that

g′(X) =
g1(X)
X

, X > 0,(8)

and

g′m−1(X) =
gm(X)
X

, X > 0, m = 2, . . . , n+ 1.(9)

Since f(X) is a polynomial of degree n, we have f (n+1)(X) = 0. Hence,
by (7), we get gn+1(X) = X > 0, and by (9), we obtain g′n(X) > 0 for
X > 0. This implies that gn(X) is an increasing function. Further, since α0 >
f (n)(logα0), we see from (7) that gn(α0) > 0. Therefore, we get gn(X) > 0
for X ≥ α0. By the same method, we can successively prove that gn−1(X)
> 0, . . . , g1(X) > 0 and g(X) > 0 for X ≥ α0. Thus, by (6), we get X >
f(logX) for X ≥ α0. The lemma is proved.

Lemma 2. a >
√
c and b >

√
2c.

Proof. By (2), we get

a = s2 − t2 = (s+ t)(s− t) ≥ s+ t >
√
s2 + t2 =

√
c.

Since s > t ≥ 1, we have (2s2 − 1)(2t2 − 1) > 1. This implies that b2 =
4s2t2 > 2(s2 + t2) = 2c and b >

√
2c. The lemma is proved.
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Lemma 3. If (x, y, z) is an exceptional solution of (3), then x 6= y and
z > 2.

Proof. If x = y, then from (1) and (3) we get a2 ≡ −b2 (mod c) and
ax ≡ −bx (mod c) respectively. Hence, we have a2x ≡ (−1)xb2x ≡ b2x

(mod c). Since gcd(b, c) = 1, x must be even. Let x = 2t, where t is a positive
integer. Then we have a2t ≡ (−1)tb2t ≡ −b2t (mod c). This implies that t
must be odd. Further, since (x, y, z) 6= (2, 2, 2), we get t ≥ 3. Therefore, by
Lemma 2, we obtain cz ≥ a6 + b6 > 3c3 and z ≥ 4. By (1) and (3), we get

(10) 0 ≡ cz−2 ≡ a2t + b2t

a2 + b2
≡ a2t−2t (mod c2).

Since gcd(a, c) = 1, we see from (10) that c2 | t and

(11) t ≥ c2 ≥ 25.

On the other hand, let X = a2 and Y = −b2. We see from (1) and (3)
that X − Y = a2 + b2 = c2 and Xt − Y t = a2t + b2t = cz. This implies that
Xt − Y t has no primitive divisor. Therefore, by an earlier result of G. D.
Birkhoff and H. S. Vandiver [1], we have t ≤ 6, a contradiction with (11).
Thus, we obtain x 6= y.

By Lemma 2, if max(x, y) > 1, then z > 1. This implies that (3) has no
solution (x, y, z) with z = 1. Similarly, if z = 2, then we have min(x, y) = 1
and max(x, y) = 3. When (x, y) = (1, 3), since c2 = a2 + b2 = a+ b3, we get

(12) a(a− 1) = b2(b− 1).

Since gcd(a, b) = 1, by (12), we obtain b2 | a−1 and c > a> a−1≥ b2 > 2c,
a contradiction. By the same method, we can eliminate the case where (x, y)
= (3, 1). Thus, we get z > 2. The lemma is proved.

Lemma 4 ([8, Lemma 1]). If (5) holds and an ≡ λ′ (mod cr) for some
positive integers n and r, where λ′ ∈ {−1, 1}, then dcr−1 |n.

Lemma 5. If (5) holds and (x, y, z) is an exceptional solution, then
|x− y| ≥ c.

Proof. By (1) and (3), we get a2≡−b2 (mod c2) and ax≡−by (mod cz)
respectively. Since z > 2 by Lemma 3, we have a2y ≡ (−1)yb2y ≡ (−1)ya2y

(mod cz). Further, since gcd(a, c) = 1 by (1), we obtain

(13) a2|x−y| ≡ (−1)y (mod cz).

Furthermore, since x 6= y by Lemma 3, |x−y| is a positive integer. Therefore,
by Lemma 4, we see from (13) that dc | 2|x − y| and 2|x − y| ≥ dc. Since
c > a by (2), we have d ≥ 2 by (4). Thus, we obtain |x− y| ≥ dc/2 ≥ c. The
lemma is proved.
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Lemma 6 ([7, Lemma 5]). Let α1, α2, β1, β2 be positive integers with
min(α1, α2) > 103, and let Λ = β1 logα1 − β2 logα2. If Λ 6= 0, then

log |Λ| > −17.61(logα1)(logα2)(1.7735 +B)2,

where

B = max
(

8.445, 0.2257 + log
(

β1

logα2
+

β2

logα2

))
.

Lemma 7 ([2, Theorem 2]). Let α1, α2 be positive odd integers, and let
β1, β2 be positive integers. Further , let Λ′ = αβ1

1 −α
β2
2 . If Λ′ 6= 0 and α1 ≡ 1

(mod 4), then
ord2 Λ

′ ≤ 208(logα1)(logα2)(log β′)2,

where ord2 Λ
′ is the order of 2 in Λ′,

logB′ = max
(

10, 0.04 + log
(

β1

logα2
+

β2

logα1

))
.

Lemma 8. Let min(a, b, c) > 103. If ax > b2y or by > a2x, then x <
4500 log c or y < 4500 log c.

Proof. We first consider the case of ax > b2y. Then, by (3), we get

z log c = log(ax + by) = log ax +
2by

2ax + by

∞∑
i=0

1
2i+ 1

(
by

2ax + by

)2i

(14)

= x log a+
2by

ax + cz

∞∑
i=0

1
2i+ 1

(
by

ax + cz

)2i

< x log a+
by

ax

∞∑
i=0

1
2i+ 1

(
by

ax

)2i

< x log a+
1
ax/2

∞∑
i=0

1
2i+ 1

(
1
ax

)i
< x log a+

2
ax/2

.

Let α1 = c, α2 = a, β1 = z, β2 = x and Λ = z log c − x log a. We see from
(14) that

(15) 0 < Λ <
2
ax/2

.

On the other hand, since min(a, c) > 103, by Lemma 6, we have

(16) logΛ > −17.61(log c)(log a)(1.7735 +B)2,

where

(17) B = max
(

8.445, 0.2257 + log
(

z

log a
+

x

log c

))
.
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The combination of (15) and (16) yields

(18) log 2 + 17.61(log c)(log a)(1.7735 +B)2 >
x

2
log a.

Further, since min(a, c) > 103, and B ≥ 8.445 by (17), we get

17.61(log c)(log a)(1.7735 +B)2 > 3360.

Therefore, by (18), we obtain

(19)
x

log c
< 35.24(1.7735 +B)2.

When 8.445 ≥ 0.2257 + log(z/log a+ x/log c), we deduce from (19) that
x < 3680 log c, so the assertion of the lemma holds in this case.

When 8.445 < 0.2557 + log(z/log a+ x/log c), we have

(20)
x

log c
< 35.25

(
1.9992 + log

(
z

log a
+

x

log c

))2

.

By (14), we get

(21)
z

log a
<

x

log c
+

2
ax/2(log a)(log c)

<
6x

5 log c
.

Hence, by (20) and (21), we obtain

(22)
x

log c
< 35.25

(
2.7878 + log

x

log c

)2

.

Let f(X) = 35.25(2.7878+X)2. Then f(X) ∈ R[X] is a polynomial of degree
two, f (1)(X) = 70.5(2.7878 +X) and f (2)(X) = 70.5. Let α0 = 4500. Since
α0 > max(0, f(logα0), f (1)(logα0), f (2)(logα0)), by Lemma 1, we have

(23) α > 35.25(2.7878 + logα)2, α ∈ R, α ≥ 4500.

Therefore, we see from (22) and (23) that x < 4500 log c. Thus, the assertion
of the lemma holds for ax > b2y.

By using the same method, we can prove that if by > a2x, then y <
4500 log c. This completes the proof.

3. Proof of Theorem. We now suppose that (3) has an exceptional
solution (x, y, z). We will reach a contradiction in each of the following four
cases.

Case I: ax > b2y. Since ax > b2y, by Lemma 2, if y ≥ x, then ax > b2y ≥
b2x > cx > ax, a contradiction. So we have y < x and |x − y| = x − y < x.
Hence, by Lemma 5, we obtain

(24) c < x.

On the other hand, by Lemma 8, we have

(25) x < 4500 log c.
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The combination of (24) and (25) yields

(26) c < 4500 log c.

Let f [X] = 4500X. Then f(X) ∈ R[X] is a polynomial of degree one, and
f (1)(X) = 4500. Let α0 = 37000. Since α0 > max(0, f(logα0), f (1)(logα0)),
by Lemma 1, we see from (26) that c < 37000, a contradiction with c > 4·109.

Case II: b2y > ax > by. Since b2y > ax, by Lemma 2, we have c2y >
b2y > ax > cx/2. This implies that y > x/4 and |x − y| < 4y. Hence, by
Lemma 5, we get

(27) c < 4y.

Let α1 = c, α2 = a, β1 = z, β2 = x and Λ′ = cz − ax. Then, by (1) and
(2), we have Λ′ = bx, ord2 Λ

′ = y ord2 b, ord2 b ≥ 2 and

(28) ord2 Λ
′ ≥ 2y.

On the other hand, since c ≡ 1 (mod 4), by Lemma 7, we have

(29) ord2 Λ
′ ≤ 208(log c)(log a)(logB′)2,

where

(30) logB′ = max
(

10, 0.04 + log
(

z

log a
+

x

log c

))
.

The combination of (28) and (29) yields

(31) 2y ≤ 208(log c)(log a)(logB′)2.

When 10 ≥ 0.04 + log(z/log a + x/log c), we infer from (27), (30) and
(31) that

(32) c < 41600(log c)(log a) < 41600(log c)2.

Let f [X] = 41600X2. Then f(X) ∈ R[X], f (1)(X) = 83200X and f (2)(X) =
83200. Let α0 = 1.2 · 107. Since

α0 > max(0, f(logα0), f (1)(logα0), f (2)(logα0)),

by Lemma 1, we see from (32) that c < 1.2 · 107, a contradiction.
When 10 < 0.04 + log(z/log a+ x/log c), we have

(33) y < 104(log c)(log a)
(

0.04 + log
(

z

log a
+

x

log c

))2

.

Since ax > by, we have 2ax > cz by (3). Further, since b2y > ax, we get
c2y+1 > b2y+1 > axb > 2ax > cz. This implies that 2y ≥ z. Therefore,
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by (33), we obtain

(34)
z

log a
< 208(log c)

(
0.04 + log

(
z

log a
+

x

log c

))2

< 208(log c)
(

0.04 + log
2z

log a

)2

< 208(log c)
(

0.7332 + log
z

log a

)2

.

Let f [X] = 208(log c)(0.7332 +X)2. Then f (1)(X) = 416(log c)(0.7332 +X)
and f (2)(X) = 416 log c. Let α0 = 2080(log c)3. Since c > 4 · 109, we have
α0 > max(0, f(logα0), f (1)(logα0), f (2)(logα0)). Therefore, by Lemma 1,
we see from (34) that

(35)
z

log a
< 2080(log c)3,

whence we get

(36) z < 2080(log c)4.

By Lemma 2, we see from (3) that cz > by > cy/2 and z > y/2. Therefore,
by (27) and (36), we obtain

(37) c < 16640(log c)4.

Let f [X] = 16640X4 and α0 = 4 · 109. Then we have α0 > max(0, f(logα0),
f (1)(logα0), f (2)(logα0), f (3)(logα0), f (4)(logα0)). Thus, we see from (37)
that c < 4 · 109, a contradiction.

Case III: a2x > by > ax. By Lemma 2, we have cy > by > ax > cx/2

and y > x/2. This implies that |x− y| < 2y. Further, by Lemma 5, we get

(38) c < 2y.

Thus, by Lemma 7, using the same method as in the proof of Case II, we
can deduce from (38) that c < 4 · 109, a contradiction.

Case IV: by > a2x. By Lemma 2, we have cy > by > a2x > cx and
y > x. This implies that |x− y| < y. Further, by Lemma 5, we get

(39) c < y.

On the other hand, by Lemma 8, we have

(40) y < 4500 log c.

The combination of (39) and (40) yields (26). Thus, using the same method
as in the proof of Case I, we can deduce from (36) that c < 37000, a contra-
diction.

To sum up, the theorem is proved.
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