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Values of special indefinite quadratic forms
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Guido Elsner (Bielefeld)

1. Introduction. Let Q denote a d-dimensional quadratic form. For
a, b ∈ R we consider the set E of points in the d-dimensional Euclidean
space at which Q takes values between a and b. In case the quadratic form
Q[x] is positive definite, E is an elliptic shell, but in this paper we will
investigate indefinite forms, and then E is a hyperbolic shell.

For a (measurable) set B ⊂ Rd the lattice volume of B is the number of
lattice points in B (formally volZB := #(B ∩ Zd)), and volB denotes the
Lebesgue measure of B. For the hyperbolic shell E we want to approximate
its lattice volume by the Lebesgue volume, and estimate a relative lattice
point rest of large parts of the hyperbolic shell E. Therefore we consider for
r > 0 the d-dimensional cube Cr with edge length r and intersect the cube
Cr with the hyperbolic shell E. The relative lattice point rest of E ∩ Cr is
now defined by

∆ :=
∣∣∣∣volZ(E ∩ Cr)− vol(E ∩ Cr)

vol(E ∩ Cr)

∣∣∣∣.
We will show, for special indefinite forms Q, that ∆ = O(1) as r →∞ (The-
orem 2.1) and that even ∆ = o(1) as r → ∞ provided that Q is irrational
(Theorem 2.2). Recall that a quadratic form Q[x] and the corresponding
operator Q with non-zero matrix Q = (qij), 1 ≤ i, j ≤ d, is called rational
if there exists a real number λ 6= 0 such that the matrix λQ has integer
entries only; otherwise it is called irrational.

Similar results for forms Q of signature (p, q) satisfying max(p, q) ≥ 3
have been proved by Eskin, Margulis and Mozes in [EMM98]. These are
quantitative versions of the well-known Oppenheim problem concerning the
distribution of values of Q[m], m ∈ Zd. In 1929, Oppenheim ([Opp29],
[Opp31]) conjectured that if d ≥ 5 then for an irrational non-degenerate
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quadratic form Q the quantity m(Q) := inf{|Q[m]| : m ∈ Zd, m 6= 0} equals
zero. In the rational case this was known by Meyer’s theorem (see [Cas78]).
Later it was conjectured that m(Q) = 0 even for d ≥ 3 and Q irrational
(for irrational diagonal forms this was suspected in [DH46] and it is not true
in dimensions 3 and 4 without the assumption of irrationality). The differ-
ent approaches to this and related problems involve various mathematical
methods from analytic number theory, ergodic theory, representation theory
of Lie groups, reduction theory and the geometry of numbers.

In [Mar89] Margulis established the Oppenheim conjecture in dimen-
sions d ≥ 3, as stated by Davenport and Heilbronn for d ≥ 5. In his seminal
work he proved that the set of values of Q at lattice points is dense in R.
Quantitative versions of this problem were later on developed by Dani and
Margulis ([DM93]) and Eskin, Margulis and Mozes ([EMM98]). They con-
sist of quantitative bounds on the ratio between the lattice volume and the
Lebesgue volume of the set of points in the cube Cr where the quadratic
form takes values in a small interval. The quantitative bounds provided in
these results yield the asymptotic number of points in these regions as a
polynomial in r up to a non-effective error term tending to zero in propor-
tion to the leading term. The estimates thus obtained are implicit, since
they do not provide explicit bounds in terms of diophantine approximations
of irrational coefficients of the form. For a detailed discussion of results on
these problems by Oppenheim, Heilbronn and Davenport and others, see
[Mar97]. In [BG99] Bentkus and Götze proved explicit error bounds in the
quantitative Oppenheim problem for the elliptic shell as well as for hyper-
bolic shells for d ≥ 9 by a common approach. They provide more explicit
bounds (in terms of diophantine approximation) for distribution functions
of the values of the quadratic form on Cr, whereas the direct application of
the previous methods seems to be restricted to the case of the concentration
in compact intervals.

In [Göt04] Götze showed that in the positive definite case for d ≥ 5
the lattice point rest is of order O(rd−2) for arbitrary forms, and of order
o(rd−2) if the form is irrational. These results refine earlier bounds of the
same order for dimensions d ≥ 9 (see also [Göt04] for the history of such
estimates and further references).

In the present paper we apply techniques of [Göt04] to special indef-
inite forms and we obtain explicit bounds in terms of certain Minkowski
minima of convex bodies related to these quadratic forms. When adapting
these techniques, the main problem is to estimate the difference between the
lattice volume and the Lebesgue volume by an integral of generalized theta
functions. In order to achieve such an estimate, we develop tools, different
from those in [Göt04], which involve adjustable smooth approximations of
the indicator functions of the hyperboloid and of the cube Cr. The bound
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given by an integral of theta functions does not use the special structure
of the indefinite forms under consideration. Furthermore, a careful modifi-
cation of the arguments in [Göt04] even leads to a bound in terms of the
Minkowski minima mentioned above, which holds for any indefinite form.
The special structure of the forms is only used when we estimate the appear-
ing functions of Minkowski minima by adapting the techniques of [Göt04]
to the indefinite case. As in the positive definite case, we show that in the
irrational case the maximal gap between successive values of the quadratic
form at lattice points converges to 0 as r tends to infinity (Corollary 2.4).
Furthermore, we extend the results of Bentkus and Götze ([BG99]) on dis-
tribution functions for values of quadratic forms to dimensions from 5 to 8
(Theorem 2.7). In addition, we obtain a result for multivariate diophantine
approximations for these special indefinite forms (Theorem 2.6).

This paper is organized as follows: In the second section, we state the
two main results about the asymptotics of the relative lattice point rest
and derive two important corollaries concerning gaps between values of the
quadratic form and concerning multivariate diophantine approximations.
Furthermore, we give explicit quantitative bounds for the relative lattice
point rest. In the third section, we prove the results of the second section.
In the fourth section, we collect auxiliary results (e.g. from geometry of
numbers, metric number theory, theory of theta functions), which are used
in the proofs of the theorems.

2. Results. Let Rd, 1 ≤ d < ∞, denote the d-dimensional Euclidean
space with scalar product 〈·, ·〉 and norm |·| defined by |x|2 = 〈x, x〉 =
x2

1 + · · ·+ x2
d for x = (x1, . . . , xd) ∈ Rd. Let Zd denote the standard lattice

of points with integer coordinates in Rd.
Consider the quadratic form

Q[x] := 〈Qx, x〉 for x ∈ Rd,

where Q : Rd → Rd denotes a symmetric linear operator in GL(d,R) with
eigenvalues, say, q1, . . . , qd. We write

q0 := min
1≤j≤d

|qj |, q := max
1≤j≤d

|qj |, q̄ := max{q−1
0 , q}.(2.1)

We always assume that the form is non-degenerate, that is, q0 > 0.
We say that a quadratic form Q is of block-type if Q = Q+ −Q−, where

Q+ and Q− are positive definite quadratic forms, Q+[x] only depends on
the first d1 coordinates of Rd and Q−[x] on the d− d1 remaining ones.

For a, b ∈ R with a ≤ b, and M ∈ Rd, we define

Ea,b;M := {x ∈ Rd : a ≤ Q[x−M ] ≤ b}.(2.2)

Note that if Q[x] is positive definite, then Ea,b;M is an elliptic shell.
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Recall that a quadratic form Q[x] and the corresponding operator Q
with non-zero matrix Q = (qij), 1 ≤ i, j ≤ d, is called rational if there exists
a real number λ 6= 0 such that the matrix λQ has integer entries only;
otherwise it is called irrational.

For r > 0 we set Cr := {x ∈ Rd : |x|∞ ≤ r}, where |·|∞ denotes the
maximum norm on Rd, and

Hr,M := Ha,b
r,M := Ea,b;M ∩ Cr.(2.3)

For any (measurable) set B ⊂ Rd let volB denote the Lebesgue measure
of B and volZB its lattice volume, that is, the number of lattice points in
B ∩ Zd. We want to investigate the approximation of the lattice volume of
Hr,M by the Lebesgue volume. Therefore we estimate the following relative
lattice point rest of large parts of hyperbolic shells Hr,M , M ∈ Rd, r large:

∆(r,M) :=
∣∣∣∣volZHr,M − volHr,M

volHr,M

∣∣∣∣.(2.4)

The two main results of this part of the paper are the following

Theorem 2.1. Let Q be a non-degenerate, d-dimensional , block-type
form with d ≥ 5, and let M ∈ Rd. Then

∆(r,M) = O(1) as r →∞.(2.5)

The estimate of Theorem 2.1 refines an explicit bound of order O(1)
obtained for dimensions d ≥ 9 in [BG97] for arbitrary ellipsoids and in
[BG99] for arbitrary hyperbolic shells. Since this bound is optimal in the
case of positive definite forms ([Göt04], p. 196), the bound in Theorem 2.1
is also optimal for block-type forms.

In case Q is irrational Theorem 2.1 can be improved.

Theorem 2.2. Let Q be an irrational non-degenerate d-dimensional
block-type form with d ≥ 5, and let M ∈ Rd. Then

∆(r,M) = o(1).(2.6)

For irrational forms and dimension d ≥ 9 the bound of Theorem 2.2 has
already been proved in [BG99]. We should remark again that the bounds of
both theorems are explicit and effective.

Remark 2.3. For M ∈ Qd the condition ∆(r,M) = o(1) implies that Q
is irrational.

Using Theorem 2.2 we can easily derive a corollary about gaps between
values of block-type forms:

For a positive definite quadratic form, Davenport and Lewis [DL72] con-
jectured in 1972 that the distance between successive values vn of the qua-
dratic form Q[x] on Zd converges to zero as n → ∞, provided that the
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dimension d is at least five and Q is irrational. This conjecture was proved
by Götze [Göt04]. Now we can derive an analogous result for irrational
block-type forms and dimension d ≥ 5.

For a vector M ∈ Rd and a constant c0 > 0 let

V (r) := {Q[x−M ] : x ∈ Zd ∩ Cr/c0} ∩ [−c0r
2, c0r

2](2.7)

denote the set of values of Q[x−M ], lying in the interval [−c0r
2, c0r

2], for
lattice points x ∈ Zd in a box of edge length r/c0 .

We define the maximal gap between successive values as

d(r) := sup
u∈V (r)

(u,+∞)∩V (r)6=∅

inf{v − u : v > u, v ∈ V (r)}.(2.8)

Corollary 2.4. Let Q be a non-degenerate d-dimensional block-type
form with d ≥ 5. Then for c0 small enough:

(1) limr→∞ d(r) = 0 if Q is irrational.
(2) limr→∞ d(r) > 0 if M ∈ Qd and Q is rational.

Theorems 2.1 and 2.2 follow from Theorem 2.5 below. Furthermore, in
Theorem 2.5 (combined with (3.1) in the proof of Theorems 2.1 and 2.2),
estimates of the remainder terms in (2.5) and (2.6) in terms of certain dio-
phantine properties of Q will be given.

In order to describe the explicit bounds we need to introduce some more
notations. Let |(x, y)|∞ denote the maximum norm of a vector (x, y) in
Rd×Rd. For any t > 0 and r ≥ 2 consider the norm F on Rd×Rd given by

F (x, y) := |(r(x+ tQy), yr−1)|∞.(2.9)

We introduce the so called Minkowski minima of the convex body {F ≤ 1}
as

M1,t = inf{F (m,n) : (m,n) ∈ (Zd × Zd) \ 0}(2.10)

and we define in general Mk,t to be the infimum of λ > 0 such that the set
of lattice points with norm less than λ, that is,

{(m,n) ∈ Zd × Zd : F (m,n) < λ},

contains k linearly independent vectors. By definition we have rMk,t ≥ 1.
For d > 4 and r ≥ 2 we introduce

ΓT,r := inf{rdM1,t · · ·Md,t : T−1/(d−4) ≤ |t| ≤ T},(2.11)

ρ(r,Q, T ) := q̄d+1T−1/2 + q̄3d/2 max
{

2
πr
,

π

2q0qr
, T−1/(d−4)

}
(2.12)

+ q̄d+2Γ
−1/2+2/d
T,r log(q̄T 1/2ΓT,r + 1),
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(2.13) ρ(r,Q) := inf
T≥1
{(b− a)q̄dq−1T−1 + T−1/2q̄d/2q−1(2 + q1/2)d−2

+ (4T )K(r2−d + q
−d/2
0 r2−d/2 + q̄r2−d/2(1 + log r) + ρ(r,Q, T ))},

where K is a constant chosen according to (3.8) below.
For any fixed T > 1 and irrational Q it is shown in Lemma 4.23 that

lim
r→∞

ΓT,r =∞,(2.14)

with a rate depending on the diophantine properties of Q. This implies that

lim
r→∞

ρ(r,Q) = 0.(2.15)

With these notations we may state a theorem providing quantitative bounds
for the difference between the volume and the lattice volume of a hyperbolic
shell.

Theorem 2.5. Let Q be a non-degenerate d-dimensional block-type form
with d ≥ 5, and let M ∈ Rd. Furthermore, let c(Q,M) ≥ 1 be defined as in
Theorem 3.1 below. Then there exist constants cj > 0, j = 1, 2, depending
on d only and a constant r0 = r(Q,M, a, b) > 0 such that , for any r ≥ r0,

(1) |volZHr,M − volHr,M |
≤ c1r

d−2((b− a+ 1)q̄dq−1 + c(Q,M)q̄d+1(log q + 1) + 1),

(2) |volZHr,M − volHr,M | ≤ c2r
d−2

×
(

(b−a)q̄d+1q−1

(
|M |+2q−1/2 |a|+ |b|

r

)
r−1+c(Q,M)ρ(r,Q)

)
,

where limr→∞ ρ(r,Q) = 0 if Q is irrational.

Note that the summand ρ(r,Q)rd−2 in the bound in Theorem 2.5 is at
least of order O(rd/2 log r). It may be indeed of this order since rMj,t �d r

shows that the maximal value of ΓT,r is of order O(rd) and we may choose
T = O(rβ̄) with β̄ > 0 sufficiently large.

Note that an error bound of order rd/2+ε has been proved by Jarńık
[Jar28] for diagonal Q = diag(s1, . . . , sd), sj > 0, for Lebesgue almost all
coefficients sj .

The proof of Theorem 2.5 is based, roughly speaking, on a “continu-
ous” approximation of |volZHr,M−volHr,M | by an integral over generalized
theta functions. We will derive bounds for parts of this integral, which use
the distribution of the first Minkowski minimum M1,t. We investigate this
distribution using results from metric number theory. As a consequence of
this investigation, we also get a result for multivariate diophantine approx-
imation:
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For a vector x ∈ Rd let ‖x‖ := infm∈Zd |x − m|∞ denote the error of
integer approximation. For real numbers t > 0 and ν > 1 we introduce

D(t, ν) = νmin {‖tQn‖ : n ∈ Zd, 0 < |n|∞ ≤ ν},(2.16)

and let λ denote the Lebesgue measure. Then we have

Theorem 2.6. Let Q be a symmetric, non-degenerate block-type form,
normalized so that q0 = 1. Then there exists a constant c(d) > 1 depending
on d only such that for any r ≥ 1, 0 < ξ − κ < 1 and ν ≥ τQ,

λ{t ∈ [κ, ξ] : M1,t ≤ τ} ≤ c(d)(qτ2(ξ − κ) + τr−1),(2.17)
sup
t∈[κ,ξ]

M1,t ≥ min{τQ, r(ξ − κ)},(2.18)

sup
t∈[κ,ξ]

D(t, ν) ≥ min{τQ, ν(ξ − κ)/2},(2.19)

where

τQ :=
(
c(d) + 2
2c(d)q

)1/2

.

Refining the proofs, we may extend Theorems 2.1 and 2.2 to include the
case a = −∞, i.e. the case of distribution functions. This partially extends a
result obtained by Bentkus and Götze in [BG99] to dimensions from 5 to 8.

Theorem 2.7. Let Q be a non-degenerate, d-dimensional , block-type
form with d ≥ 5, let M ∈ Rd, and set

Fr,M (b) := {x ∈ Rd : Q[x−M ] ≤ b, |x|∞ ≤ r}.
Then ∣∣∣∣volZ Fr,M (b)− volFr,M (b)

volFr,M (b)

∣∣∣∣ =
{
o(1) if Q is irrational ,
O(1) otherwise,

as r →∞.

3. Proofs. First we deduce Theorems 2.1 and 2.2 from Theorem 2.5:

Proof of Theorems 2.1 and 2.2. By Lemma 4.1, for M = (M1, . . . ,Md)
and r large,

(3.1) volHr,M

�d (b− a)q−d/2(qd/20 + r−1|(|q1|1/2M1, . . . , |qd|1/2Md)|)d−2rd−2

�d (b− a)q−d/2qd(d−2)/2
0 rd−2.

Dividing the inequalities in Theorem 2.5(1) in the general case (resp. Theo-
rem 2.5(2) in the irrational case) by volHr,M and using (3.1) completes the
proof of Theorem 2.1 (resp. 2.2).
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Proof of Corollary 2.4. If Q is irrational, Theorem 2.5(2) and the es-
timate (3.1) imply that whenever c0 > 0 is small enough, for any u, v ∈
[−c0r

2, c0r
2] we have∣∣∣∣volZH

u,v
r,M

volRH
u,v
r,M

− 1
∣∣∣∣ < 1

2
as r →∞.(3.2)

Hence, Hu,v
r,M ∩Zd 6= ∅ for r sufficiently large. This implies that limr→∞ d(r)

= 0, proving (1).
If Q is rational, there exists a λ > 0 such that λQ has integer entries.

If M ∈ Qd, there exists a µ ∈ Z, µ 6= 0, such that µM ∈ Zd. Hence,
Q[m−M ] ∈ λ−1µ−2Zd for all m ∈ Zd. Therefore d(r) ≥ λ−1µ−2 > 0 for all
r ≥ 1, which proves (2).

We remark that by using (3.14) and (3.1) one can obtain explicit bounds
for d(r) in terms of r and ρ(r,Q), representing diophantine properties of Q.

Proof of Remark 2.3. Analyzing the proof of Corollary 2.4(1) we see
that ∆(r,M) = o(1) already implies limr→∞ d(r) = 0. If M ∈ Qd and Q is
rational, then Corollary 2.4(2) yields limr→∞ d(r) > 0. Thus, the conditions
M ∈ Qd and ∆(r,M) = o(1) force the irrationality of Q.

The first step in proving Theorem 2.5 is to analyze smooth approxima-
tions of the lattice volume of Hr.

For a, b ∈ R and a smoothing parameter w > 0 we define ga,b,w : R →
[0, 1] by

ga,b,w(x) :=
1
w

((b+ w − x)+ − (b− x)+ − (a− x)+ + (a− w − x)+).(3.3)

This is a linear continuous approximation of the indicator function I[a,b] of
the interval [a, b]. By Lemma 4.8 we may rewrite ga,b,w as

ga,b,w(x) =
1

2πi

β+i∞�

β−i∞
(e(b+w−x)z − e(b−x)z − e(a−x)z + e(a−w−x)z)

dz

wz2
(3.4)

=
1

2πi

β+i∞�

β−i∞
exp{−xz}ha,b,w(z)

dz

z
,

where

ha,b,w(z) :=
exp{wz} − 1

wz
(exp{bz} − exp{(a− w)z}).

Using ga,b,w we construct a continuous approximation V Z
w,ε(r; a, b,M) of the

(monotone) lattice point counting function r 7→ volZ(Hr,M ) depending on
two smoothing parameters w > 0 and ε > 0. Setting Q+ := (QTQ)1/2, we
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define

V Z
w,ε(r; a, b,M) :=

∑
x∈Zd

exp
{
− 2
r2
Q+[x]

}
ga,b,w(Q[x−M ])χε

(
x

r

)
,(3.5)

V R
w,ε(r; a, b,M) :=

�

Rd
exp
{
− 2
r2
Q+[x]

}
ga,b,w(Q[x−M ])χε

(
x

r

)
dx,(3.6)

where χ±ε is a function with the following properties:

(1) For u ∈ Rd,

χ±ε(u) =
{

exp{2Q+[u]} if |u|∞ ≤ min{1, 1± ε},
0 if |u|∞ > max{1, 1± ε}.

(2) There exists a constant c1(Q,M) > 0 such that for

χ±ε(x) := χ±ε(x) exp{〈x, 2r−1QM〉}(3.7)

the following estimates hold for an appropriate K = K(d) ∈ N:

(3.8)

(a)
�

Rd
|χ̂±ε(v)| dv �d c1(Q,M)ε−K ,

(b)
�

{|v|∞>d−1/2r}

|χ̂±ε(v)| dv �d c1(Q,M)ε−Kr−1 for all r ≥ 1.

The existence of χ±ε follows by standard arguments in Fourier analysis (cf.
[Els06, p. 27, Lemma 2.4.5]). Note that the function

ψr,±ε(x) := exp
{
− 2
r2
Q+[x]

}
χ±ε

(
x

r

)
(3.9)

approximates the indicator function I{|x|∞≤r} and hence the equations
V Z

0,0(r; a, b,M) = volZ(Hr,M ) and V R
0,0(r; a, b,M) = volR(Hr,M ) are sugges-

tive.

Proof of Theorem 2.5. Let 0 < ε ≤ 1/4. By Lemma 4.4 there exists a
constant c = c(d) > 0 such that

(3.10) |volZHr,M − volHr,M | ≤ max{∆−ε, ∆ε}+ c(b− a)q−d/20 q(d−2)/2

× (ε+ q
−1/2
0 q1/2|M |r−1 + 2q−1/2

0 (|a|+ |b|)r−2)rd−2,

where ∆±ε is defined by using (3.9) as follows:

∆±ε :=
∣∣∣ �
Rd
IHr,M (x)ψr,±ε(x) dx−

∑
x∈Zd

IHr,M (x)ψr,±ε(x)
∣∣∣.(3.11)
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Hence, by Lemma 4.6,

∆±ε �d max
±

sup
a′∈[a−w,a+w]
b′∈[b−w,b+w]

|V R
w,±ε(r; a

′, b′,M)− V Z
w,±ε(r; a

′, b′,M)|(3.12)

+ 8wq−d/20 q(d−2)/2

(
1 + ε+ q1/2 |M |

r

)d−2

rd−2.

Collecting the estimates (3.10) and (3.12), for w > 0 and 0 < ε ≤ 1/4 we
obtain

(3.13) r2−d|volZHr,M − volHr,M | �d (b− a)q̄dq−1ε

+ (b− a) q̄d+1q−1

(
|M |
r

+ 2q−1/2 |a|+ |b|
r2

)
+ wq̄dq−1

(
1 + ε+ q1/2 |M |

r

)d−2

+ max
±

sup
a′,b′
|V R
w,±ε(r; a

′, b′,M)− V Z
w,±ε(r; a

′, b′,M)|r2−d.

If we now choose w = 1, ε = 1/4 and r > r0 large enough, (3.13) and the
result of the crucial Theorem 3.1(1) below yields (note that d ≥ 5)

|volZHr,M − volHr,M |

�d (b− a+ 1)q̄dq−1rd−2 + c(Q,M)(1 + q
−d/2
0 rd/2 + q̄d+1(log q + 1)rd−2)

�d ((b− a+ 1)q̄dq−1 + c(Q,M)q̄d+1(log q + 1) + 1)rd−2

for r large enough. This proves Theorem 2.5(1).
To prove Theorem 2.5(2), for T ≥ 1 we choose

w := T−1/2 and ε := (4T )−1,

and by (3.13) and Theorem 3.1(2) below we deduce that for r sufficiently
large,

r2−d|volZHr,M − volHr,M | �d (b− a)q̄dq−1(4T )−1

+ (b− a) q̄d+1q−1

(
|M |+ 2q−1/2 |a|+ |b|

r

)
r−1 + T−1/2q̄d/2q−1(2 + q1/2)d−2

+ c(Q,M)(4T )K(1 + q
−d/2
0 rd/2 + q̄drd/2(1 + log r) + rd−2ρ(r,Q, T ))r2−d.

By taking the infimum over all T ≥ 1 we get, with (2.13),

(3.14) r2−d|volZHr,M − volHr,M |

�d (b− a)q̄d+1q−1

(
|M |+ 2q−1/2 |a|+ |b|

r

)
r−1 + c(Q,M)ρ(r,Q),

which proves Theorem 2.5(2) for an appropriate choice of r0.
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The key tool in the previous proofs is the following

Theorem 3.1. Let Q denote a non-degenerate d-dimensional quadratic
form of block-type with d ≥ 5. Then for all M ∈ Rd there exist constants
c(Q,M), r0 > 0 such that for any r ≥ r0 and any T ≥ 1:

(1) |V Z
1,±ε(r; a, b,M)− V R

1,±ε(r; a, b,M)|

�d c(Q,M)ε−K(1 + 2q−d/20 rd/2 + q̄d+1(log q + 1)rd−2).

(2) |V Z
T−1/2,±ε(r; a, b,M)− V R

T−1/2,±ε(r; a, b,M)| �d c(Q,M)ε−K

×(1 + q
−d/2
0 rd/2 + q̄drd/2(1 + log r) + rd−2ρ(r,Q, T )),

where ρ(r,Q, T ) is defined in (2.12).

In both inequalities K = K(d) is chosen according to (3.8).

Proof. We want to estimate the difference between these two approxi-
mations by integrals of theta functions. By (3.4)–(3.6) we have

|V Z
w,±ε(r; a, b,M)− V R

w,±ε(r; a, b,M)|

=
∣∣∣∣∑
x∈Zd

exp
{
− 2
r2
Q+[x]

}
1

2πi

β+i∞�

β−i∞
exp{−zQ[x−M ]}ha,b,w(z)

dz

z
χ±ε

(
x

r

)

−
�

Rd
exp
{
− 2
r2
Q+[x]

}
1

2πi

β+i∞�

β−i∞
exp{−zQ[x−M ]}ha,b,w(z)

dz

z
χ±ε

(
x

r

)
dx

∣∣∣∣.
Choosing β = r−2, decomposing Q[x−M ] = Q[x]+Q[M ]−2〈x,QM〉 (recall
that Q is self-adjoint), and using Fubini’s theorem, we get

|V Z
w,±ε(r; a, b,M)− V R

w,±ε(r; a, b,M)|

=
∣∣∣∣ r
−2+i∞�

r−2−i∞

exp{−zQ[M ]}ha,b,w(z)

×
{∑
x∈Zd

exp
{
− 2
r2
Q+[x]− zQ[x] + i〈x, 2 Im(z)QM〉

}
χ±ε

(
x

r

)

−
�

Rd
exp
{
− 2
r2
Q+[x]− zQ[x] + i〈x, 2 Im(z)QM〉

}
χ±ε

(
x

r

)
dx

}
dz

z

∣∣∣∣,
where χ±ε is defined as in (3.7).

Since χ±ε(x) = (2π)−d
	
Rd χ̂±ε(v) exp{−i〈x, v〉} dv by the Fourier inver-

sion theorem, we obtain
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(3.15) |V Z
w,±ε(r; a, b,M)− V R

w,±ε(r; a, b,M)|

=
∣∣∣∣ r
−2+i∞�

r−2−i∞

exp{−zQ[M ]}ha,b,w(z)
1

(2π)d
�

Rd
χ̂±ε(v)

×
{∑
x∈Zd

exp
{
− 2
r2
Q+[x]− zQ[x] + i

〈
x, 2 Im(z)QM − v

r

〉}

−
�

Rd
exp
{
− 2
r2
Q+[x]− zQ[x] + i

〈
x, 2 Im(z)QM − v

r

〉}
dx

}
dv

dz

z

∣∣∣∣.
For v ∈ Cd we introduce the following theta sum and theta integral:

θv(z) := exp{−zQ[M ]}
∑
x∈Zd

exp{−ΘQ,M,r,v(z, x)},(3.16)

θ0,v(z) := exp{−zQ[M ]}
�

Rd
exp{−ΘQ,M,r,v(z, x)} dx(3.17)

where

ΘQ,M,r,v(z, x) :=
2
r2
Q+[x]− zQ[x]− i

〈
x,
v

r
− 2 Im(z)QM

〉
.

Then we can rewrite (3.15) as follows:

|V Z
w,±ε(r; a, b,M)− V R

w,±ε(r; a, b,M)|

=
∣∣∣∣r
−2+i∞�

r−2−i∞

ha,b,w(z)
1

(2π)d
�

Rd
χ̂±ε(v){θv(z)− θ0,v(z)} dv

dz

z

∣∣∣∣.
Consider the segments J0 := [r−2− i/r, r−2 + i/r] and J1 := (r−2 + iR)\J0.
Then we may split

(3.18) |V Z
w,±ε(r; a, b,M)− V R

w,±ε(r; a, b,M)|

�d

∣∣∣∣ �
J0

ha,b,w(z)
1

(2π)d
�

Rd
χ̂±ε(v){θv(z)− θ0,v(z)} dv

dz

z

−
�

J1

ha,b,w(z)
1

(2π)d
�

Rd
χ̂±ε(v)θ0,v(z) dv

dz

z

+
�

J1

ha,b,w(z)
1

(2π)d
�

Rd
χ̂±ε(v)θv(z) dv

dz

z

∣∣∣∣
= |I0 − I1 + I2|, say.
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Before estimating these integrals we derive a bound for ha,b,w(r−2 + it),
t ∈ R. Using

(3.19)
∣∣∣∣exp{w(r−2 + it)} − 1

w

∣∣∣∣ ≤ min
{
e|r−2 + it|, e+ 1

w

}
for r2 ≥ max(w, b) > 0, r ≥ 1, we obtain

(3.20)
∣∣∣∣ha,b,w(r−2 + it)

r−2 + it

∣∣∣∣� (ebr
−2

+ ear
−2

)
1

w|r−2 + it|2
� 1

w|r−2 + it|2
,

as well as

(3.21)
∣∣∣∣ha,b,w(r−2 + it)

r−2 + it

∣∣∣∣� (ebr
−2

+ ear
−2

)|r−2 + it|−1 � |r−2 + it|−1.

Estimation of I0. Inequality (3.21) and Lemma 4.12 for t ∈ J0 yield

Θt := |(r−2 + it)−1ha,b,w(r−2 + it)|

×
∣∣∣ �

Rd
χ̂±ε(v){θv(r−2 + it)− θ0,v(r−2 + it)} dv

∣∣∣
�d q

−d/2
0 |r−2 + it|−(d+2)/2 exp{−c(Q) Re((r−2 + it)−1)}

�

Rd
|χ̂±ε(v)| dv

+ 2|r−2 + it|−1
�

Rd
|χ̂±ε(v)|I(r,∞)(|v|) dv,

where c(Q) is described in Lemma 4.12. Writing

|r−2 + it| = r−2(1 + r4t2)1/2 and Re((r−2 + it)−1) = r2/(1 + r4t2),

we may introduce the variable s = (1 + r4t2)−1 and the function h(s) :=
s(d+2)/4 exp{−c(Q)sr2}. The maximal value of h on [0,∞) is attained at s0 =
(d+ 2)/(4c(Q)r2) and it is bounded by (c(Q)r2)−(d+2)/4 up to a constant
depending on d only.

Using the properties of χ±ε (see p. 209) and the fact that |v| ≥ r implies
|v|∞ ≥ d−1/2r we now obtain

sup
t∈J0

Θt �d q
−d/2
0 rd+2 sup

s≥0
h(s)

�

Rd
|χ̂±ε(v)| dv + 2r2

�

Rd
|χ̂±ε(v)|I(r,∞)(|v|) dv

�d q
−d/2
0 rd+2(c(Q)r2)−(d+2)/4

�

Rd
|χ̂±ε(v)| dv

+ 2r2
�

Rd
|χ̂±ε(v)|I(d−1/2r,∞)(|v|∞) dv

�d q
−d/2
0 rd+2(c(Q)r2)−(d+2)/4c1(Q,M)ε−K + c1(Q,M)ε−Kr.
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Integrating this bound over J0, for a suitably chosen constant c2(Q,M) > 0
we get

|I0| ≤
1/r�

−1/r

Θt dt�d c2(Q,M)ε−Kq−d/20 rd/2 + c1(Q,M)ε−K .(3.22)

Estimation of I1. Using Lemma 4.11, (4.13) and (4.15), we have

(3.23) |θ0,v(z)| �d q
−d/2
0 |z|−d/2.

Therefore, by the properties of χ±ε (p. 209) and (3.21) for r2 ≥ max{w, b, 1}
we get

|I1| �d q
−d/2
0 c1(Q,M)ε−K

�

J1

|(r−2 + it)−(1+d/2)| dt(3.24)

�d q
−d/2
0 c1(Q,M)ε−K

∞�

1/r

t−(1+d/2) dt

�d q
−d/2
0 c1(Q,M)ε−Krd/2,

using the symmetry in t around 0.
Estimation of I2. From (3.20) and (3.21) we obtain |ha,b,w(r−2 + it)| �d

min{1, (|r−2 + it|w)−1}, which implies

(3.25) |I2|

�d

�

Rd

�

|t|>1/r

∣∣∣∣θv( 1
r2

+ it

)∣∣∣∣min
{

1,
1

w|r−2 + it|

}
dt

|r−2 + it|
|χ̂±ε(v)| dv

�d

�

Rd

�

|u|>2/πr

|θv(r−2 + iπu/2)|g(u) du |χ̂±ε(v)| dv,

where

(3.26) g(u) = min{1, (w|u|)−1}|u|−1.

Using Lemma 4.15 and the properties of χ±ε (see p. 209), we have

|I2| �d q̄
drd/2

�

Rd

�

|u|>2/πr

(M1,t · · ·Md,t)−1/2g(u) du |χ̂±ε(v)| dv(3.27)

�d q̄
drd/2c1(Q,M)ε−K

�

|u|>2/πr

(M1,t · · ·Md,t)−1/2g(u) du,

where Mj,t denote Minkowski’s successive minima for the norm on R2d re-
lated to Q, defined by (4.27) and (4.30), and c1(Q,M) > 0 is a constant
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chosen according to (3.7). Define

G(κ, ξ) :=
ξ�

κ

g(t) dt for 0 < κ < ξ ≤ ∞.(3.28)

For κ ≥ ξ > 0 we define G(κ, ξ) = 0. Note that

G(κ, ξ) =


log(ξ/κ) for κ ≤ ξ ≤ w−1,
− log(wκ) + 1− (wξ)−1 for κ ≤ w−1 ≤ ξ,
(wκ)−1 − (wξ)−1 for w−1 ≤ κ ≤ ξ.

(3.29)

The equality (3.29) and the definition of G imply

G(κ, ξ) ≤ min{|log(wκ)|+ 1, |log(ξ/κ)|, (wκ)−1} for κ, ξ > 0.(3.30)

If we write M(t) = M1,t · · ·Md,t, the upper bound for |I2| in (3.27) in terms
of Minkowski’s successive minima yields

|I2| �d q̄
drd/2c1(Q,M)ε−K

�

|t|>2/πr

g(t)
M(t)1/2

dt(3.31)

= 2q̄drd/2c1(Q,M)ε−KI3,

where

I3 =
∞�

2/πr

g(t)
M(t)1/2

dt.(3.32)

The last equality in (3.31) follows from the fact that the functions g(·) and
M(·) are even (see (4.33)).

After these preparations, we may now complete the proof of Theorem
3.1:

Proof of Theorem 3.1(1). Let

γ(κ, ξ) = rd inf
κ≤t≤ξ

M(t) for κ, ξ ∈ R.(3.33)

Applying Lemma 4.22 for the interval with endpoints κ = 2/πr and
ξ =∞, we get

I3 �d q
−1
0 rd/2−2

D0�

γ0

v−1/2+1/d
(
qv1/dG(κ0(v1/d),∞) + g(κ0(v1/d))

)dv
v

(3.34)

+G

(
2
πr
,∞
)
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with

(3.35)
γ0 = γ

(
2
πr
,∞
)
, D0 = max

{(
r

2d

)d
, γ0

}
,

κ0(v) = max
{

2
πr
,

1
2qvd1/2

}
.

Note that γ0 ≥ 1 by (4.29). In the following we choose w = 1. Using (3.26),
(3.30), (3.31), (3.34), (3.35) and hence g(κ0(v1/d)) �d qv

1/d, we obtain for
d > 4 and r ≥ max{2/πq, 2/π},

|I2| �d c1(Q,M)ε−K q̄d+1rd/2rd/2−2
D0�

1

v−1/2+2/d(log(qv1/d) + 2)
dv

v
(3.36)

+ c1(Q,M)ε−K q̄drd/2(log r + 1)

�d c1(Q,M)ε−K q̄d+1(log q + 1)rd−2.

For r ≥ r0 := max{2/πq, 2/π, r0(Q,M)}, where r0(Q,M) is a constant
chosen as in Lemmas 4.12 and 4.13, this bound for I2 implies, in view of
(3.18), (3.22) and (3.24), that

|V Z
1,±ε(r; a, b,M)− V R

1,±ε(r; a, b,M)| �d c2(Q,M)ε−Kq−d/20 rd/2

+ c1(Q,M)ε−K(1 + q
−d/2
0 rd/2 + q̄d+1(log q + 1)rd−2),

where the constants c1(Q,M) and c2(Q,M) are chosen according to Lem-
ma 3.7 and (3.22). Setting c(Q,M) := max{c1(Q,M), c2(Q,M)} proves
Theorem 3.1(1).

Proof of Theorem 3.1(2). In order to use non-trivial bounds for γ(κ, ξ)
in the irrational case we introduce further auxiliary parameters η, T such
that 2/πr ≤ η ≤ T with T ≥ 1 which will be determined and optimized
later. Thus we may split the integral I3 in (3.32) which bounds |I2| in (3.31)
into the parts

I3 =
η�

2/πr

g(t)
M(t)1/2

dt+
T�

η

g(t)
M(t)1/2

dt+
∞�

T

g(t)
M(t)1/2

dt(3.37)

= I4 + I5 + I6, say.

We define, similarly to (3.35),

γ1 = γ(2/πr, η), γ2 = γ(η, T ), γ3 = γ(T,∞),(3.38)

Dj = max{(2d)−drd, γj}, j = 1, 2, 3,(3.39)

κ1(v) = max{2/πr, f(v)}, κ2(v) = max{η, f(v)},
κ3(v) = max{T, f(v)},

(3.40)
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where f(v) = (2qvd1/2)−1, v > 0. By (4.29) we have again

γj ≥ 1, j = 1, 2, 3.(3.41)

Using (3.26) and (3.40), we see that

g(κj(v)) ≤ 2qvd1/2, j = 1, 2, 3.(3.42)

First, we apply Lemma 4.22 as above to the interval with endpoints κ = 2/πr
and ξ = η. Corollary 4.17 implies that if η ≥ π/2q0qr the quantity γ1

(defined by (3.33) and (3.38)) satisfies

γ1 ≥ δ := (dqη)−d,(3.43)

since d ≥ 5 and

inf
t∈[2/πr,η]

{
q0|t|r

2
,

1
q|t|r

}
=

1
qηr

whenever η ≥ π

2q0qr
.

In view of (3.29), (3.30), (3.42) and (3.43) Lemma 4.22 yields the estimate

(3.44) I4 �d q
−1
0 rd/2−2

D1�

γ1

v−1/2+1/d(v1/dq G(κ1(v1/d), η)

+ g(κ1(v1/d)))
dv

v
+G(2/πr, η)

�d q
−1
0 qrd/2−2

D1�

δ

v−1/2+2/d(|log(qv1/dη)|+ 1)
dv

v
+G(2/πr, η)

�d q
−1
0 qd/2−1rd/2−2ηd/2−2 +G(2/πr, η),

provided that d > 4, using the change of variables v = δu in the last in-
equality.

In order to estimate I5 we choose κ = η and ξ = T . By Lemma 4.22 we
obtain as above

I5 �d q
−1
0 rd/2−2

D2�

γ2

v−1/2+1/d(v1/dq G(κ2(v1/d), T )(3.45)

+ g(κ2(v1/d)))
dv

v
+G(η, T )

�d q
−1
0 qrd/2−2

D2�

γ2

v−1/2+2/d(|log(qv1/d/w)|+ 1)
dv

v
+G(η, T )

�d q
−1
0 qrd/2−2γ

−1/2+2/d
2 (|log(qγ2)|+ |logw|+ 1) +G(η, T ).

Finally, for the term I6 choose κ = T and ξ = ∞ and use (3.41) for j = 3.
Recall that we choose T ≥ 1. Thus, as above, using Lemma 4.22 and the
fact that G(κ3(v1/d),∞) ≤ G(T,∞) ≤ T−1w−1 and g(κ3(v1/d)) ≤ T−2w−1,
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we obtain (see (3.26), (3.30) and (3.40))

I6 �d q
−1
0 rd/2−2

D3�

1

v−1/2+1/d(v1/dq G(κ3(v1/d),∞)(3.46)

+ g(κ3(v1/d)))
dv

v
+G(T,∞)

�d q
−1
0 qrd/2−2T−1w−1 +G(T,∞).

Collecting (3.44)–(3.46), by combining the terms G(κ, ξ) and using (3.37)
and the estimates (3.41) we get

(3.47) I3 �d q
−1
0 rd/2−2

{
qd/2−1ηd/2−2 + qγ

−1/2+2/d
2 (log(qγ2)

+ |logw|+ 1) +
q

Tw

}
+G(2/πr,∞).

In view of (3.31) this bound for I3 yields

|I2| �d c1(Q,M)ε−Kqdrd/2(1 + log r) + c1(Q,M)ε−Kq−1
0 q̄drd−2

(3.48)

× {(Tw)−1 + qd/2−1ηd/2−2 + qγ
−1/2+2/d
2 (log(qγ2) + |logw|+ 1)}

�d c(Q,M)ε−K q̄drd/2(1 + log r) + c(Q,M)ε−Krd−2

×
{
q̄d+1

Tw
+ q̄3d/2ηd/2−2 + q̄d+2γ

−1/2+2/d
2 (log(q̄γ2) + |logw|+ 1)

}
,

where c(Q,M) := max{c1(Q,M), c2(Q,M)}. By Lemma 4.23 for η, T fixed,
we have γ2 →∞ as r →∞ and we may now choose the auxiliary parameters
η, w and T to minimize the right hand side of (3.48) as follows. Let

T ≥ 1, w = T−1/2, η = max
{

2
πr
,

π

2q0qr
, T−1/(d−4)

}
,(3.49)

provided that d ≥ 5.
For r ≥ r0 := max{2/π, π/2q0q, r0(Q,M)}, where r0(Q,M) is a constant

chosen as in Lemmas 4.12 and 4.13, in view of (3.18), (3.22), (3.24), (3.38),
(3.41), (3.48) and (3.49) we obtain the following bound:

|V Z
T−1/2,ε

(r; a, b,M)− V R
T−1/2,ε

(r; a, b,M)|

�d c(Q,M)ε−K(1 + q
−d/2
0 rd/2 + q̄drd/2(1 + log r) + rd−2ρ(r,Q, T )),

where ρ(r,Q, T ) is defined as in (2.12). This completes the proof of Theorem
3.1(2).

Proof of Theorem 2.6. The estimate (2.17) immediately follows from
Corollary 4.21. This inequality ensures that there exists a t ∈ [κ, ξ] such
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that M1,t > τ whenever c(d)(qτ2(ξ − κ) + τr−1) < ξ − κ. This condition is
equivalent to

τ <

(
1
c(d)

− qτ2

)
(ξ − κ)r.(3.50)

Since τ ≤ τQ, where τQ := ((c(d) + 2)/2c(d)q)1/2, implies 1/c(d)−qτ2 ≥ 1/2,
we may conclude that the condition (3.50) (and hence M1,t > τ) follows from
the inequality τ ≤ min{τQ, r(ξ − κ)/2}, which proves (2.18).

By definition of M1,t the inequality M1,t > τ := min{τQ, r(ξ − κ)/2}
implies that if 0 < |n|∞ < τr then τr‖tQn‖ > τ2. For ν > τQ there
exists an r ≥ 1 such that ν = τr. Therefore, by (2.16) we get D(t, v) ≥ τ2.
Furthermore, we have τ2 = min{τ2

Q, ν(ξ−κ)/2}, since either r(ξ−κ)/2 > τQ
and τ = τQ, or τ = r(ξ − κ)/2. This proves (2.19).

Proof of Theorem 2.7. Since the cube Cr is compact the quantity

ar := min{Q[x−M ] : x ∈ Cr}(3.51)

is a well-defined real number and we obviously get

Fr,M (b) = Har,b
r,M ,(3.52)

where Har,b
r,M is defined as in (2.3).

A careful analysis of the proof shows that Theorem 3.1 also holds for
a = ar, r ≥ r0. This, together with Lemma 4.7 for ε = (4T )−1, T ≥ 1,
implies that there exist constants cj > 0, j = 1, 2, 3, depending on Q and
d only, and a constant r0 = r0(Q,M, b) > 0 such that, for any r ≥ r0 (cf.
proof of Theorem 2.5):

(1) |volZ Fr,M (b)− volFr,M (b)| ≤ rd−2(c1(b− ar + 1) + c2).
(2) |volZ Fr,M (b)− volFr,M (b)| ≤ rd−2(c3(b− ar)ρ̃(r,Q)),

where

ρ̃(r,Q) := inf
T≥1

{
T−1 +

T−1/2(1 + T−1)d−2

b− ar

+
(4T )K

b− ar
(r2−d + q

−d/2
0 r2−d/2 + q̄r2−d/2(1 + log r) + ρ(r,Q, T ))

}
,

and limr→∞ ρ̃(r,Q) = 0 if Q is irrational.
In the definition of ρ̃(r,Q) the constant K is chosen according to (3.8).
Dividing these inequalities by the inequality in Lemma 4.3(2) for ξ = 1

completes the proof of Theorem 2.7.

4. Lemmas. Let I = [a, b], a, b ∈ R, and I0 denote finite intervals. For
M ∈ Rd we consider

(4.1) H(r) := H(r, I0, I,M) := {x ∈ Rd : r−1|x|∞ ∈ I0, Q[x−M ] ∈ I}.
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The diagonal matrix D(Q) is defined by

(D(Q))i,i :=
√
|qi|, 1 ≤ i ≤ d.

Lemma 4.1. Let I0 = [0, ξ] and τ = ξ + |D(Q)M |/r, σ = q
d/2
0 ξ −

|D(Q)M |/r. Then

volH(r)�d (b− a)q−d/20 q(d−2)/2τd−2rd−2.

If σ > 0 and |a|+ |b| ≤ σ2r2/5 then

volH(r)�d (b− a)q−d/2σd−2rd−2.

Proof. See [BG99, p. 1023, Lemma 8.2], or [Els06, p. 24, Lemma 2.4.3].

Lemma 4.2. Let I0 = [1 − δ, 1 + δ], 0 ≤ δ ≤ 1/4. Assume that r is so
large that

ε1 := r−1|D(Q)M | ≤ q1/2
0 /4, ε2 := r−2(|a|+ |b|) ≤ q0/8.(4.2)

Then

volH(r)�d (b− a)(δ + q
−1/2
0 ε1 + 2q−1/2

0 ε2)rd−2q
−d/2
0 q(d−2)/2.

Proof. See [BG99, p. 1025, Lemma 8.3], or [Els06, p. 26, Lemma 2.4.4].

Since ar defined in (3.51) satisfies

|ar|/r2 ≤ q(4.3)

for r large enough, in the case a = ar we obtain the following lemma by
slightly modifying the proof of Lemma 4.1 given in [BG99] resp. [Els06].
Using these modifications we also get an analogue of Lemma 4.2.

Lemma 4.3. Let Ir := [ar, b] and let F (r) := H(r, I0, Ir,M) be defined
as in (4.1). There exist constants CQ,1, CQ,2, CQ,3 ≥ 1 depending on d and
Q only and a constant r0 = r0(Q,M, b) ≥ 1 such that for r ≥ r0:

(1) volF (r) ≤ (b− ar)CQ,1ξd−2rd−2 for I0 = [0, ξ].
(2) volF (r) ≥ (b− ar)CQ,2ξd−2rd−2 for I0 = [0, ξ].
(3) volF (r) ≤ (b− ar)CQ,3δrd−2 for I0 = [1− δ, 1 + δ], 0 ≤ δ ≤ 1/4.

The constants CQ,1, CQ,2, CQ,3 can be computed explicitly.

We want to estimate the error terms caused by the approximations of
the (lattice point) volumes of the hyperbolic shell Hr,M . In the notation of
(3.5)–(3.6), considering, for ε > 0,

ψr,±ε(x) = exp
{
− 2
r2
Q+[x]

}
χ±ε

(
x

r

)
and

∆±ε =
∣∣∣ �
Rd
IHr,M (x)ψr,±ε(x) dx−

∑
x∈Zd

IHr,M (x)ψr,±ε(x)
∣∣∣
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(see (3.9) and (3.11)), we define additionally

vε := vol(Hr,M ∩ {x ∈ Rd : r(1− ε) ≤ |x|∞ ≤ r(1 + ε)})(4.4)

and get the following estimate:

Lemma 4.4. For 0 < ε ≤ 1/4 there exists a constant c = c(d) > 0 such
that

(4.5) |volZHr,M − volHr,M | ≤ max{∆−ε, ∆ε}+ c(b− a)q−d/20 q(d−2)/2

× (ε+ q
−1/2
0 q1/2|M |r−1 + 2q−1/2

0 (|a|+ |b|)r−2)rd−2.

Proof. Obviously, we can estimate

volZHr,M ≤
∑
x∈Zd

IHr,M (x)ψr,ε(x), volHr,M ≤
�

Rd
IHr,M (x)ψr,−ε(x) dx+ vε,

volZHr,M ≥
∑
x∈Zd

IHr,M (x)ψr,−ε(x), volHr,M ≥
�

Rd
IHr,M (x)ψr,ε(x) dx− vε.

If volZHr,M − volHr,M ≥ 0 these estimates imply

|volZHr,M − volHr,M | ≤ ∆+ε + vε,

and otherwise we obtain

|volZHr,M − volHr,M | ≤ ∆−ε + vε.

Using Lemma 4.2 for I0 = [1− ε, 1 + ε], since |D(Q)M | ≤ q1/2|M | we get

vε �d (b− a)(ε+ q
−1/2
0 q1/2|M |r−1 + 2q−1/2

0 (|a|+ |b|)r−2)rd−2q
−d/2
0 q(d−2)/2,

which proves (4.5).

Lemma 4.5. Fix a, b ∈ R, w > 0 and let ga,b,w be defined as in (3.3).
Then:

(1) There exist a′ ∈ [a− w, a+ w] and b′ ∈ [b− w, b+ w] such that∑
x∈Zd

(I[a,b] − ga′,b′,w)(Q[x−M ])ψr,±ε(x) = 0.

(2) sup
a′∈[a−w,a+w]
b′∈[b−w,b+w]

∣∣∣ �
Rd

(I[a,b] − ga′,b′,w)(Q[x−M ])ψr,±ε(x) dx
∣∣∣

�d 8wq−d/20 q(d−2)/2

(
1 + ε+ q1/2 |M |

r

)d−2

rd−2.

Proof. The sum in (1) is finite, since ψr,±ε has bounded support. Hence,
the map G : (a′, b′) 7→

∑
x∈Zd(I[a,b]−ga′,b′,w)(Q[x−M ])ψr,±ε(x) is continuous

and (1) follows by the intermediate value theorem.
For all a′ ∈ [a− w, a+ w] and all b′ ∈ [b− w, b+ w] we can estimate

(4.6) |(I[a,b] − ga′,b′,w)(Q[x−M ])| ≤ I[a−2w,a+2w]∪[b−2w,b+2w](Q[x−M ]).
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This implies

(4.7) sup
a′,b′

∣∣∣ �
Rd

(I[a,b] − ga′,b′,w)(Q[x−M ])ψr,±ε(x) dx
∣∣∣

≤
�
I[a−2w,a+2w]∪[b−2w,b+2w](Q[x−M ])ψr,±ε(x) dx

≤
�
(I[a−2w,a+2w] + I[b−2w,b+2w])(Q[x−M ])I[0,r(1+ε)](|x|∞) dx,

since ψr,±ε(x) ≤ I[0,r(1+ε)](|x|∞).
Using Lemma 4.1 with I0 = [0, 1 + ε], by (4.7) we get

(4.8) sup
a′,b′

∣∣∣ �
Rd

(I[a,b] − ga′,b′,w)(Q[x−M ])ψr,±ε(x) dx
∣∣∣

�d 8wq−d/20 q(d−2)/2(1 + ε+ r−1|D(Q)M |)d−2rd−2

≤ 8wq−d/20 q(d−2)/2(1 + ε+ r−1q1/2|M |)d−2rd−2,

which proves (2).

Lemma 4.6. Consider ∆±ε, ε > 0, defined in (3.11). Then

∆±ε �d sup
a′∈[a−w,a+w]
b′∈[b−w,b+w]

|V R
w,±ε(r; a

′, b′,M)− V Z
w,±ε(r; a

′, b′,M)|

+ 8wq−d/20 q(d−2)/2

(
1 + ε+ q1/2 |M |

r

)d−2

rd−2,

where V R
w,±ε(r; a

′, b′,M) and V Z
w,±ε(r; a

′, b′,M) are defined as in (3.6) and
(3.5) respectively.

Proof. Using functions ga,b,w defined in (3.3) by the triangle inequality
(recall the definition of ψr,±ε in (3.9)) we obtain

∆±ε =
∣∣∣ �
Rd
IHr,M (x)ψr,±ε(x) dx−

∑
x∈Zd

IHr,M (x)ψr,±ε(x)
∣∣∣(4.9)

≤
∣∣∣ �
Rd

(I[a,b] − ga′,b′,w)(Q[x−M ])ψr,±ε(x) dx
∣∣∣

+ |V R
w,±ε(r; a

′, b′,M)− V Z
w,±ε(r; a

′, b′,M)|

+
∣∣∣∑
x∈Zd

(I[a,b] − ga′,b′,w)(Q[x−M ])ψr,±ε(x)
∣∣∣.
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Choosing a′, b′ according to Lemma 4.5(1) and estimating the first summand
by taking the supremum, we obtain

∆±ε ≤ sup
a′∈[a−w,a+w]
b′∈[b−w,b+w]

∣∣∣ �
Rd

(I[a,b] − ga′,b′,w)(Q[x−M ])ψr,±ε(x) dx
∣∣∣(4.10)

+ sup
a′∈[a−w,a+w]
b′∈[b−w,b+w]

|V R
w,±ε(r; a

′, b′,M)− V Z
w,±ε(r; a

′, b′,M)|.

The application of Lemma 4.5(2) completes the proof.

Repeating the proofs of Lemmas 4.4–4.6 in the case a = ar with the use
of Lemma 4.3 instead of Lemmas 4.1 and 4.2 we get immediately

Lemma 4.7. Let Fr,M (b) be defined as in (3.52). Then there exist con-
stants r0 = r0(Q,M, b) ≥ 1 and cQ,1, cQ,2 ≥ 1 depending on Q and d only
such that for w > 0 and 0 < ε < 1/4,

|volZ Fr,M (b)− volFr,M (b)| ≤ (cQ,1(b− ar)ε+ cQ,2w(1 + ε)d−2)rd−2

+ sup
a′∈[ar−w,ar+w]
b′∈[b−w,b+w]

|V R
w,±ε(r; a

′, b′,M)− V Z
w,±ε(r; a

′, b′,M)|,

where V R
w,±ε(r; a

′, b′,M) and V Z
w,±ε(r; a

′, b′,M) are defined as in (3.6) and
(3.5) respectively.

Lemma 4.8. For any β > 0 and T ∈ R,

1
2πi

β+i∞�

β−i∞
exp{zT} dz

z2
= max{T, 0} = T+.(4.11)

Proof. Complement the interval (β−i∞, β+i∞) by an infinite half circle
in Re z ≥ 0 (resp. Re z ≤ 0) for T < 0 (resp. T ≥ 0) and apply standard
residue calculus.

Lemma 4.9. Let Ω be a symmetric, d× d complex matrix whose imagi-
nary part is positive definite. Then∑
m∈Zd

exp{πiΩ[m] + 2πi〈m, v〉} = (det(Ω/i))−1/2 exp{−πiΩ−1[v]}

×
∑
n∈Zd

exp{−πiΩ−1[n] + 2πi〈n,Ω−1v〉}

and �

Rd
exp{πiΩ[x] + 2πi〈x, v〉} dx = (det(Ω/i))−1/2 exp{−πiΩ−1[v]},
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where Ω−1
[
x
]

denotes the quadratic form 〈Ω−1x, x〉, defined by the inverse
operator Ω−1 : Cd → Cd (which exists since Ω is an element of Siegel’s
upper half plane).

Proof. See [Mum83, p. 195 (5.6) and Lemma 5.8].

Corollary 4.10. Let z ∈ Cd with Re z > 0, v ∈ Cd, and let Ω be a
positive definite, symmetric d× d matrix. Then∑

m∈Zd
exp{−zΩ[m] + 2πi〈m, v〉}

=
(

det
(
z
Ω

π

))−1/2 ∑
n∈Zd

exp
{
−π

2

z
Ω−1[n+ v]

}
.

Proof. Apply Lemma 4.9 to the matrix (i/π)zΩ.

Lemma 4.11. Let z = 1/r2 + it, r > 0, t ∈ R and v ∈ Cd. Then

(4.12)
∑
m∈Zd

exp
{
− 2
r2
Q+[m]− zQ[m] + 2πi〈m, v〉

}

= det
(

1
π

(
2
r2
Q+ + zQ

))−1/2

exp
{
−π2

(
2
r2
Q+ + zQ

)−1

[v]
}

×
∑
n∈Zd

exp
{
−π2

(
2
r2
Q+ + zQ

)−1

[n]− 2π2

〈(
2
r2
Q+ + zQ

)−1

n, v

〉}
,

and

(4.13)
�

Rd
exp
{
− 2
r2
Q+[x]− zQ[x] + 2πi〈x, v〉

}
dx

= det
(

1
π

(
2
r2
Q+ + zQ

))−1/2

exp
{
−π2

(
2
r2
Q+ + zQ

)−1

[v]
}
,

where
(

2
r2
Q+ + zQ

)−1[
x
]

denotes the quadratic form
〈(

2
r2
Q+ + zQ

)−1
x, x

〉
,

defined by means of the positive definite operator
(

2
r2
Q+ +zQ

)−1 : Rd → Rd.

Proof. For Ω := i
π

(
2
r2
Q+ + zQ

)
and z = 1/r2 + it, t ∈ R, the imaginary

part ImΩ is positive definite. The application of Lemma 4.9 to Ω completes
the proof.

Lemma 4.12. Let θv(z) and θ0,v(z) denote the theta sum and theta inte-
gral in (3.16) and (3.17) respectively. Then there is a constant c = c(Q) > 0
such that for r ≥ r0 = r0(Q,M) ≥ 1 and t ∈ R with |t| < 1/r,

|(θv − θ0,v)(r−2 + it)| �d q
−d/2
0 |r−2 + it|−d/2 exp{−cRe((r−2 + it)−1)}

+ 2I(r,∞)(|v|).
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Proof. Using Lemma 4.11, by (3.16), (3.17) and the self-adjointness of
the matrix

(
2
r2
Q+zQ

)−1 we obtain

(4.14) (θv − θ0,v)(z)

= exp{−zQ[M ]}det
(

1
π
Ω

)−1/2

exp
{
−π2Ω−1

[
− ṽ

2πr

]}
×

∑
n∈Zd\{0}

exp
{
−π2Ω−1[n]− 2π2

〈
Ω−1n,− ṽ

2πr

〉}

= exp{−zQ[M ]}det
(

1
π
Ω

)−1/2 ∑
n∈Zd\{0}

exp
{
−Ω−1

[
πn− ṽ

2r

]}
,

where Ω := 2
r2
Q+ + zQ and ṽ := 2r Im(z)QM − v. Note that for z =

r−2 + it and t ≤ 1/r there exists a constant c0 = c0(Q,M) > 0 such that
|2r Im(z)QM | ≤ c0 uniformly in r. Using

det
(

1
π
Ω

)
=

1
πd

∏
1≤j≤d

(
2
r2
|qj |+zqj

)
and

∣∣∣∣ 2
r2
|qj |+zqj

∣∣∣∣ ≥ |qj | · |r−2 + it|

for z = r−2 + it and all 1 ≤ j ≤ d, we have

(4.15)
∣∣∣∣det

(
1
π
Ω

)−1/2∣∣∣∣ ≤ πd/2q−d/20 |z|−d/2.

Since Ω can be orthogonal diagonalized, the matrix Re(Ω−1) has eigenvalues
Re
((

2
r2
|qj |+ zqj

)−1), 1 ≤ j ≤ d. For t ≤ 1/r we have

Re
((

2
r2
|qj |+ zqj

)−1)
≥ 1
|qj |

Re(z−1) ≥ 1
q

Re(z−1), 1 ≤ j ≤ d.

Hence, ∣∣∣∣exp
{
−π2Ω−1

[
n− ṽ

2πr

]}∣∣∣∣ = exp
{
−Re

(
Ω−1

[
πn− ṽ

2r

])}
(4.16)

= exp
{
−Re(Ω−1)

[
πn− ṽ

2r

]}
≤ exp

{
−1
q

Re(z−1)
∣∣∣∣πn− ṽ

2r

∣∣∣∣2}.
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Using (4.14)–(4.16) we get

(4.17) |(θv − θ0,v)(r−2 + it)| �d exp
{
− 1
r2
Q[M ]

}
q
−d/2
0 |r−2 + it|−d/2

×
∑

n∈Zd\{0}

exp
{
−1
q

Re((r−2 + it)−1)
∣∣∣∣πn− ṽ

2r

∣∣∣∣2}.
For |ṽ| ≤ πr we obtain

exp
{
−1
q

Re((r−2 + it)−1)
∣∣∣∣πn− ṽ

2r

∣∣∣∣2} ≤ exp
{
−1
q

Re((r−2 + it)−1)
|πn|2

2

}
and hence, for an appropriate constant c = c(Q) > 0,

(4.18)
∑

n∈Zd\{0}

exp
{
−1
q

Re((r−2 + it)−1)
∣∣∣∣πn− ṽ

2r

∣∣∣∣2}
≤

∑
n∈Zd\{0}

exp
{
−1
q

Re((r−2 + it)−1)
|πn|2

2

}
� exp{−cRe((r−2 + it)−1)}.

For |ṽ| > πr set ṽ = Lπr + w with L ∈ Z, |w| ≤ πr. Then w = ṽ′ for
v′ := v+Lπr. By (4.14) we have obviously θv = θv′ , and therefore by (4.18)
and (4.17) we get

(4.19) |(θv − θ0,v)(r−2 + it)|
≤ |(θv′ − θ0,v′)(r−2 + it)|+ |(θ0,v′ − θ0,v)(r−2 + it)|

�d exp
{
− 1
r2
Q[M ]

}
q
−d/2
0 |r−2 + it|−d/2 exp{−cRe((r−2 + it)−1)}

+ |θ0,v′(r−2 + it)|+ |θ0,v(r−2 + it)|

≤ exp
{
− 1
r2
Q[M ]

}
q
−d/2
0 |r−2 + it|−d/2 exp{−cRe((r−2 + it)−1)}+ 2.

The result now follows by (4.17)–(4.19) for r ≥ r0, r0 ≥ 1 large enough,
since |ṽ| > πr implies |v| ≥ πr − c0(Q,M) ≥ r for r large enough.

Lemma 4.13. Let θv(z) denote the theta function in (3.16) depending on
Q and v ∈ Cd. For r ≥ r0 = r0(Q,M) ≥ 1 and t ∈ R,

(4.20) |θv(r−2 + it)| �d (detΩ)−1/4rd/2ψ(r, t)1/2,

where

ψ(r, t) =
∑

m,n∈Zd
exp
{
−r

2

2
Ω−1[πm− 2tQn]− 2

r2
Ω[n]

}
,

with Ω := 2Q+ +Q.
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Note that the right hand side of this inequality is independent of v ∈ Cd.

Proof. For any x, y ∈ Rd we have

2(Ω[x] +Ω[y]) = Ω[x+ y] +Ω[x− y],(4.21)
〈Ω(x+ y), x− y〉 = Ω[x]−Q[y].(4.22)

Rearranging θv(z) θv(z) and using (4.22), we would like to use m + n and
m− n as new summation variables on a lattice. But both vectors have the
same parity, i.e., m + n ≡ m − n mod 2. Since they are dependent one has
to consider the 2d sublattices indexed by α = (α1, . . . , αd) with αj = 0, 1,
for 1 ≤ j ≤ d:

Zdα := {m ∈ Zd : m ≡ α mod 2},

where, for m = (m1, . . . ,md), m ≡ α mod 2 means mj ≡ αj mod 2 for
1 ≤ j ≤ d. Thus writing

θv,α(z) :=
∑
m∈Zdα

exp
{
− 2
r2
Q+[m]− zQ[m]− i

〈
m,

v

r
− 2tQM

〉}
,

we obtain θv(z) = exp{−zQ[M ]}
∑

α θv,α(z) and hence by the Cauchy–
Schwarz inequality

|θv(z)|2 ≤ 2d exp
{
− 2
r2
Q[M ]

}∑
α

|θv,α(z)|2.(4.23)

Using (4.22) and the absolute convergence of θα(z), we may rewrite the
quantity θv,α(z)θv,α(z) for z = 1/r2 + it and ṽ := v − 2trQM as

(4.24) θv,α(z)θv,α(z)

=
∑

m,n∈Zdα

exp
{
− 1
r2

(Ω[m] +Ω[n])− it(Q[m]−Q[n])− i
〈
m− n, ṽ

r

〉}

=
∑

m,n∈Zdα

exp
{
− 2
r2

(Ω[m] +Ω[n])− 2i
〈

2tQm+
ṽ

r
, n

〉}

where m = (m+ n)/2 and n = (m− n)/2. Note that the map

H :
⋃
α

Zdα × Zdα → Zd × Zd, (m,n) 7→ ((m+ n)/2, (m− n)/2),
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is a bijection. Therefore by (4.23) we get

(4.25) exp
{

2
r2
Q[M ]

}
|θv(z)|2

�d

∑
α∈{0,1}d

∑
m,n∈Zdα

exp
{
− 2
r2

(Ω[m] +Ω[n])− 2i
〈

2tQm+
ṽ

r
, n

〉}

=
∑

m,n∈Zd
exp
{
− 2
r2

(Ω[m] +Ω[n])− 2i
〈

2tQm+
ṽ

r
, n

〉}
.

In this double sum fix n and sum over m ∈ Zd first. Using Corollary 4.10
for z = 2/r2, we get for δ :=

(
det
(

2
πr2

Ω
))−1/2, by the symmetry of Q,

θv(z, n) :=
∑
m∈Zd

exp
{
− 2
r2

(Ω[m] +Ω[n])− 2i
〈

2tQm+
ṽ

r
, n

〉}

= δ
∑
m∈Zd

exp
{
−r

2

2
Ω−1[πm− 2tQn]− 2

r2
Ω[n]− 2i

〈
ṽ

r
, n

〉}
.

Thus,

(4.26) |θv(z, n)| ≤ δ
∑
m∈Zd

exp
{
−r

2

2
Ω−1[πm− 2tQn]− 2

r2
Ω[n]

}
.

Hence, by (4.25) and (4.26) we obtain

|θv(z)|2 �d exp
{
− 2
r2
Q[M ]

}
(detΩ)−1/2rd

×
∑

m,n∈Zd
exp
{
−r

2

2
Ω−1[πm− 2tQn]− 2

r2
Ω[n]

}
,

which proves Lemma 4.13 for r > r0 = r0(Q,M) := |Q[M ]|1/2 + 1 .

In the following we shall use some facts from the geometry of numbers
(see [Dav58]).

Let F : Rd → [0,∞) denote a norm on Rd, that is, F (αx) = |α|F (x)
for α ∈ R, and F (x + y) ≤ F (x) + F (y). The successive minima M1 ≤
· · · ≤ Md of F with respect to the lattice Zd are defined as follows: Let
M1 = inf{F (m) : m 6= 0, m ∈ Zd} and define Mk as the infimum of λ > 0
such that the set {m ∈ Zd : F (m) < λ} contains k linearly independent
vectors. It is easy to see that these infima are attained, that is, there exist
linearly independent vectors a1, . . . , ad ∈ Zd such that F (aj) = Mj .

Lemma 4.14. Let Lj(x) =
∑d

k=1 qjkxk, 1 ≤ j ≤ d, denote linear forms
on Rd such that qjk = qkj , j, k = 1, . . . , d. Assume that r ≥ 1 and let ‖v‖
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denote the distance of the number v to the nearest integer. Then the number
of m = (m1, . . . ,md) ∈ Zd such that

‖Lj(m)‖ < r−1, |mj | < r, for all 1 ≤ j ≤ d,

is bounded from above by cd(M1 · · ·Md)−1, where cd > 0 denotes a constant
depending on d only , M1 ≤ · · · ≤ Md are the first d of the 2d successive
minima M1 ≤ · · · ≤ M2d of the norm F : R2d → [0,∞) defined for y =
(x, x) ∈ R2d, x, x ∈ Rd, x = (x1, . . . , xd), as

F (y) := max{r|L1(x)− x1|, . . . , r|Ld(x)− xd|, r−1|x|∞}.(4.27)

Moreover ,
1
2d
≤MkM2d+1−k ≤ (2d)2d−1, 1 ≤ k ≤ 2d.(4.28)

Proof. See [Dav58, (20), p. 113, Lemma 3].

Note that for some constant, say c(d) > 0, depending on d only,

r−1 ≤M1 ≤ · · · ≤Md ≤ c(d),(4.29)

where the first inequality is obvious by F (m,m) ≥ r−1|m|∞. If here m = 0
then m 6= 0 and F (m,m) = r|m|∞ ≥ r−1|m|∞ ≥ r−1. Finally, Md �d 1
follows from (4.28) for k = d.

In the following we shall consider linear forms

Lj(x) =
d∑

k=1

tqjkxk, 1 ≤ j ≤ d,(4.30)

where Q = (qij), i, j = 1, . . . , d, and t ∈ R is arbitrary. We denote the
corresponding successive minima of the norm F (·) defined by (4.27) and
(4.30) for fixed t by Mj,t, j = 1, . . . , d. Thus, we can write

Mj,t = |L(m,n, t)|∞(4.31)

for some m,n ∈ Zd, where

(4.32) L(m,n, t)

=
(
r(m1 − t(Qn)1), . . . , r(md − t(Qn)d), r−1n1, . . . , r

−1nd
)
.

It is easy to see from the definition that

Mj,t = Mj,−t, j = 1, . . . , d, t ∈ R.(4.33)

Lemma 4.15. Let r ≥ 1. Then

|θ(r−2 + itπ/2)| �d q
−3d/4
0 rd/2(M1,t · · ·Md,t)−1/2.

Proof. By Lemma 4.13 we need to estimate the theta series ψ(r, tπ/2).
Since the matrix Ω = 2Q++Q is positive definite we may use the inequalities
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Ω−1[x] ≥ 1
3q |x|

2
∞ and Ω[x] ≥ q0|x|2∞ to get, with cQ = min

{
π2

6q , 2q0

}
,

ψ(r, tπ/2)�d

∑
m,n∈Zd

exp{−cQ|L(m,n, t)|2∞},(4.34)

where L(m,n, t) is defined in (4.32). Let

H := {(m,n) ∈ Z2d : |L(m,n, t)|∞ < 1}.
Now, Lemma 4.14 may be restated for the forms (4.30) as

#H �d (M1,t · · ·Md,t)−1.(4.35)

In order to bound ψ(r, tπ/2), for k := (k1, . . . , k2d) ∈ Z2d we introduce the
sets

Bk := [k1 − 1/2, k1 + 1/2)× · · · × [k2d − 1/2, k2d + 1/2),

Hk := {(m,n) ∈ Z2d : L(m,n, t) ∈ Bk}
such that R2d =

⋃
k Bk. For any fixed (m∗, n∗) ∈ Hk we have

(m−m∗, n− n∗) ∈ H for any (m,n) ∈ Hk.

Hence, for any k ∈ Z2d,

#Hk ≤ #H �d (M1,t · · ·Md,t)−1.(4.36)

Since x ∈ Bk implies |x|∞ ≥ |k|∞/2, by (4.34) and (4.36) we obtain

ψ(r, tπ/2)�d #H0 +
∑

k∈Z2d\0

∑
m,n∈Z2d

I{L(m,n,t)∈Bk} exp{−cQ|k|2∞/4}

�d (M1,t · · ·Md,t)−1
∑
k∈Z2d

exp{−cQ|k|2∞/4}

�d (M1,t · · ·Md,t)−1(c−1/2
Q + 1)2d,

using bounds similar to (4.18). Some simple bounds together with Lemma
4.13 finally conclude the proof of Lemma 4.15.

In the following we consider an arbitrary, real, symmetric, non-degenerate
d∗×d∗ matrix Q∗. The norm on Rd∗ , associated to (4.32), and the associated
successive minima are denoted by |L∗|∞ and M∗j,t, 1 ≤ j ≤ d∗, respectively.

Lemma 4.16. Let (m,n), (m′, n′) ∈ Z2d∗ \ 0, t, t′ ∈ R and r ≥ 1. Let
M := |L∗(m,n, t)|∞ and M ′ := |L∗(m′, n′, t′)|∞. Assume that 〈Q∗n, n′〉 > 0
and

max{M,M ′} ≤ (4d∗)−1/2.(4.37)

Set

∆ = ∆(m,n;m′, n′) := |〈n′,m〉 − 〈m′, n〉|.(4.38)
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Then

(4.39)
(i) ∆ = 0 ⇒ |t− t′| ≤ (d∗)1/2 max{M,M ′}(|n|+ |n′|)

r〈Q∗n, n′〉
,

(ii) ∆ 6= 0 ⇒ |t− t′| ≥ 〈Q∗n, n′〉−1/2.

In particular , if we assume n = n′ and (4.37) then alternative (i) in (4.39)
holds.

Furthermore, assuming (m,n) ∈ Z2d∗ \ 0 and M = |L∗(m,n, t)|∞ ≤
(4d∗)−1/2 we have either

(i) |t| ≤ 2d∗M |n|
r|Q∗n|

or (ii) |t| ≥ 1
2|Q∗n|

.(4.40)

This means t, t′ resp. t, 0 have to be either “near” to each other or “far”
apart.

Proof. See [Göt04, p. 217, Lemma 3.6] or [Els06, p. 38, Lemma 2.4.17].

The application of Lemma 4.16 to Q∗ = Q yields the following

Corollary 4.17. Let r ≥ 1 and d ≥ 4. Then

M1,t · · ·Md,t ≥ d−d
(

min
{
q0|t|r

2
,

1
q|t|r

})d
.(4.41)

Proof. Since |Qn| = |Q+n| we have |Qn| ≥ q0|n|, and |n| ≥ q−1|Qn|. In
the case where Mj,t ≤ (4d)−1/2, from (4.40), |n|∞ ≤ rMj,t and 2d1/2 ≤ d we
obtain either

(4.42)
(i) |t|rd−1q0 ≤ |t|rd−1 |Qn|

|n|
≤ 2Mj,t, or

(ii)
1
|t|
≤ 2|Qn| ≤ 2q|n| ≤ 2d1/2q|n|∞ ≤ qdrMj,t,

for appropriate (m,n) ∈ Z2d depending on j such that Mj,t = |L(m,n, t)|∞.
Note that if Mj,t ≥ (4d)−1/2, then Mj,t ≥ d−1 since d ≥ 4. Combined with
(4.42), this proves Corollary 4.17 since

min
{
q0|t|r

2
,

1
q|t|r

}
≤ 1

(recall that q0 ≤ q).

In the following two lemmas we will additionally assume that the matrix
Q∗ is positive definite. The smallest and largest eigenvalues ofQ∗ are denoted
by q∗0 and q∗ respectively.
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Lemma 4.18. Let 0 < κ < ξ <∞. For g ∈ C1[κ, ξ] such that g ≥ 0 and
g′ ≤ 0 on [κ, ξ], define

Hκ,ξ(τ) := Hκ,ξ,Q∗(τ) :=
ξ�

κ

I{M∗1,t≤τ}g(t) dt.(4.43)

Then, for all

κ > (q∗0r)
−1, r−1 ≤ τ ≤ (2d∗)−1(4.44)

with κ(τr) ≤ ξ, where κ(v) = max{κ, (2q∗vd1/2)−1}, we have

(4.45) Hκ,ξ(τ)�d∗ Hκ,ξ(τ) :=
q∗

q∗0
τ2

ξ�

κ(τr)

g(t) dt+
1
q∗0

τ

r
g(κ(τr)).

In the case where κ(τr) > ξ, we have Hκ,ξ(τ) = 0.

Proof. See [Göt04, p. 219, Lemma 3.8].

For indicator functions g Lemma 4.18 reads as follows.

Lemma 4.19. Let λ denote the Lebesgue measure. There exists a constant
c(d∗) depending on d∗ only such that for any r ≥ 1, τ > 0 and ξ > κ,

I(τ) := λ{t ∈ [κ, ξ] : M∗1,t ≤ τ} ≤ c(d∗)
(
q∗

q∗0
τ2(ξ − κ) +

1
q∗0
τr−1

)
.

Proof. See [Göt04, p. 222, Lemma 3.9].

We now return to a general (not necessarily positive definite) non-dege-
nerate, symmetric, real d×d matrix Q, to the corresponding norm |L|∞ (see
(4.32)) and the associated successive minima Mj,t (see (4.31)).

In the following we assume that Q is a block-type matrix, that is, there
exist positive definite matrices Q+ ∈ GL(Rd+) and Q− ∈ GL(Rd−) with
d+ + d− ≥ 5 such that

Q =

(
Q+ 0
0 −Q−

)
.

We denote the corresponding successive minima of the norm F±(·), de-
fined by the analogue of (4.27) and (4.30) for Q±, for a fixed t, by M±j,t,
j = 1, . . . , d±. Thus, we can write

M±j,t = |L±(m,n, t)|∞(4.46)

for some m,n ∈ Zd± , where

L±(m,n, t)=
(
r(m1 − t(Q±n)1), . . . , r(md± − t(Q±n)d±),

1
r
n1, . . . ,

1
r
nd±

)
.

As in (4.33) we have

M±j,t = M±j,−t, j = 1, . . . , d±, t ∈ R.(4.47)
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In this special case there is a simple relation between the first successive
minimum of Q and those of Q+ and Q−.

Lemma 4.20. For t ∈ R,

M1,t ≥ min{M+
1,t,M

−
1,t}.(4.48)

In particular , for τ ∈ R,

I{M1,t≤τ}
≤ I{M+

1,t≤τ}
+ I{M−1,t≤τ}

.

Proof. Choose (m,n) =
((m+

m−

)
,
( n+
n−

))
∈ Zd \ 0 such that M1,t =

|L(m,n, t)|∞. It is easy to see that

M1,t = |L(m,n, t)|∞ = max{|L+(m+, n+, t)|∞, |L−(m−, n−,−t)|∞}.

Since (m,n) 6= 0, it follows that (m+, n+) 6= 0 or (m−, n−) 6= 0 and hence
by (4.47),

|L+(m+, n+, t)|∞ ≥M+
1,t or |L−(m−, n−,−t)|∞ ≥M−1,−t = M−1,t.

This proves (4.48).

Corollary 4.21. Again, let λ denote the Lebesgue measure. Then there
exists a constant c = c(d) > 1 depending on d only such that for any r ≥ 1,
τ > 0 and ξ > κ,

I(τ) := λ{t ∈ [κ, ξ] : M1,t ≤ τ} ≤ c
(
q

q0
τ2(ξ − κ) +

1
q0
τr−1

)
.

Proof. Using Lemmas 4.19 and 4.20 we obtain

I(τ) ≤
�
(I{M+

1,t≤τ}
+ I{M−1,t≤τ}

)λ(dt)

≤ (c(d+) + c(d−))
(
q

q0
τ2(ξ − κ) +

1
q0
τr−1

)
,

where we have used the fact that q (resp. q0) is greater (resp. smaller)
than the largest (resp. smallest) eigenvalue of Q+ and Q−. Taking c :=
maxd+,d−∈N, d++d−=d(c(d+) + c(d−)) completes the proof.

Lemma 4.22. Let M(t) = M1,t · · ·Md,t, γ = γ(κ, ξ) = rd infκ≤t≤ξM(t).
Set

D = max{(2d)−drd, γ} and G(κ, ξ) =
ξ�

κ

g(t) dt

for 0 < κ < ξ ≤ ∞ and let g(t) and κ(v) be as in Lemma 4.18. For κ > ξ
define G(κ, ξ) = 0. Then
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Iκ,ξ :=
ξ�

κ

g(t)
M(t)1/2

dt(4.49)

�d q
−1
0 rd/2−2

D�

γ

v−1/2+1/d(qv1/dG(κ(v1/d), ξ) + g(κ(v1/d)))
dv

v

+G(κ, ξ).

Proof. We generalize the proof in [Göt04, p. 222, Lemma 3.10]. Write
γ := infκ≤t≤ξM(t) and cd = (2d)−d. If γ ≥ cd, then Iκ,ξ �d G(κ, ξ) and
(4.49) is obvious. In the case

γ < cd(4.50)

we define

Jκ,ξ(v) :=
ξ�

κ

g(t)I{M(t)≤v} dt(4.51)

for 0 < κ < ξ. Since Mj,t ≤ Md,t �d 1, for j = 1, . . . , d, by Lemma 4.14,
there exists a constant M depending on d only such that M(t) ≤ M for
all t. Therefore we have, for all t ∈ [κ, ξ],

M(t)−1/2 =
M�

γ

ε−1/2 dI{M(t)≤ε}.

Hence, Fubini’s theorem implies

Iκ,ξ =
M�

γ

ε−1/2 dJκ,ξ(ε).

Splitting the integral Iκ,ξ into the part where ε ≤ cd and its complement,
we obtain

Iκ,ξ ≤
cd�

γ

ε−1/2 dJκ,ξ(ε) + c
−1/2
d

ξ�

κ

g(t) dt.

Using partial integration we have, by (4.50) and the definition of γ,

Iκ,ξ ≤ c
−1/2
d Jκ,ξ(cd)︸ ︷︷ ︸

=G(κ,ξ)

− γ−1/2 Jκ,ξ(γ)︸ ︷︷ ︸
=0

+
1
2

cd�

γ

ε−3/2Ja,b(ε) dε(4.52)

+ c
−1/2
d G(κ, ξ)

=
1
2

cd�

γ

ε−3/2Ja,b(ε) dε+ 2c−1/2
d G(κ, ξ).
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Furthermore, M(t) ≥ (M1,t)d ≥ r−d (see (4.29)) implies, together with
Lemma 4.20,

Jκ,ξ(ε) ≤
ξ�

κ

g(t)I{(M1,t)d≤ε} dt =
ξ�

κ

g(t)I{M1,t≤ε1/d} dt(4.53)

≤
ξ�

κ

g(t)I{M+
1,t≤ε1/d}

dt+
ξ�

κ

g(t)I{M−1,t≤ε1/d} dt

= Hκ,ξ,Q+(ε1/d) +Hκ,ξ,Q−(ε1/d),

where Hκ,ξ,Q± is defined as in (4.43) in Lemma 4.18. The smallest and largest
eigenvalues of Q± are denoted by q±0 and q±, respectively.

Since r−d ≤ ε ≤ cd and hence r−1 ≤ ε1/d ≤ (2d)−1 ≤ (2d±)−1,
Lemma 4.18 can be applied and by changing the variable v = rdε we obtain
cd�

γ

ε−3/2Hκ,ξ,Q±(ε1/d) dε

≤ c(d±)
cd�

γ

ε−3/2

(
q±

q±0
ε2/dG(κ(ε1/dr), ξ) +

1
q±0

ε1/d

r
g(κ(ε1/dr))

)
dε

≤ c(d±)
D�

γ

r3d/2−2v−3/2+1/d

(
q±

q±0
v1/dG(κ(v1/d), ξ) +

1
q±0

g(κ(v1/d))
)
r−d dv

= rd/2−2c(d±)
D�

γ

v−1/2+1/d

(
q±

q±0
v1/dG(κ(v1/d), ξ) +

1
q±0

g(κ(v1/d))
)
dv

v
.

Analyzing the proof of Lemma 4.18 we may assume that the constant c(d)
is increasing in d. Since q0 = min{q+

0 , q
−
0 } and q = max{q+, q−}, we have

(4.54)
cd�

γ

ε−3/2Hκ,ξ,Q±(ε1/d) dε

≤ rd/2−2c(d)
D�

γ

v−1/2+1/d

(
q

q0
v1/dG(κ(v1/d), ξ) +

1
q0
g(κ(v1/d))

)
dv

v
.

Thus we conclude, by using (4.52)–(4.54), that

Iκ,ξ �d r
d/2−2

D�

γ

v−1/2+1/d

(
q

q0
v1/dG(κ(v1/d), ξ) +

1
q0
g(κ(v1/d))

)
dv

v

+G(κ, ξ),

which proves (4.49). This completes the proof of Lemma 4.22.
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Lemma 4.23. Let 0 < κ < ξ <∞ and assume that Q is irrational. Then

lim
r→∞

inf
t∈[κ,ξ]

(rM1,t) · · · (rMd,t) =∞.

Proof. See [Göt04, p. 224, Lemma 3.11] or [Els06, p. 47, Lemma 2.4.24].
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