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1. Introduction. Let k be a field of rational functions over a finite
field Fq with q elements. Fix a generator T of k, and let R = Fq[T ] be
the polynomial subring of k. Let M be a monic polynomial in R, and ΛM
be the M -torsion of the Carlitz module. The field kM obtained by adding
the points of ΛM to k is called the Mth cyclotomic function field. For the
definition of the Carlitz module and basic facts on cyclotomic function fields,
see Section 2 below. Let k+

M be a “maximal real subfield” of kM which is
the decomposition field of the infinite prime of k in kM/k.

Define hk+
M

to be the order of the divisor class group of degree 0 for k+
M .

Bae and Kang obtained a determinant formula for hk+
M

in [1]. For the field

k+
M , the congruence zeta function ζ(s, k+

M ) is expressed by

ζ(s, k+
M ) =

Pk+
M

(q−s)

(1− q−s)(1− q1−s)
(1)

where Pk+
M

(X) is a polynomial with integral coefficients, and Pk+
M

(1) = hk+
M

(cf. [5, p. 130]).
The purpose of this paper is to give a determinant formula for Pk+

M
(X)

(see Section 3). Since Pk+
M

(1) = hk+
M

, our formula is a generalization of the
determinant formula for hk+

M
. As an application, we calculate some low coef-

ficients of Pk+
M

(X) by using the first and second derivatives of a determinant
(see Section 4).

2. Basic facts. In this section, we recall some basic properties of cy-
clotomic function fields and their congruence zeta functions. For details, see
[2, 3, 4].

2000 Mathematics Subject Classification: 11M38, 11R60.
Key words and phrases: congruence zeta function, cyclotomic function fields.

DOI: 10.4064/aa138-3-3 [259] c© Instytut Matematyczny PAN, 2009



260 D. Shiomi

2.1. Cyclotomic function fields. Let End(kac) be the Fq-algebra of endo-
morphisms of the additive group of the algebraic closure kac of k. The Frobe-
nius automorphism ϕ (x 7→ xq) and the T -multiplication µT (x 7→ T ·x) are
elements of End(kac). We define

xM := M(ϕ+ µT )(x)(2)

for x ∈ kac and M ∈ R. Then kac becomes an R-module with the above
action.

For a monic polynomial M ∈ R, let ΛM be the set of all x satisfying
xM = 0, which is a cyclic R-submodule of kac. We have the following iso-
morphism of R-modules:

R/M → ΛM (A mod M 7→ λA)(3)

where λ is one of the generators of ΛM .
Let (R/M)× be the group of units of R/M . Let Φ(M) be the order

of (R/M)×. By using the previous isomorphism, we see that Φ(M) is the
number of generators of ΛM .

Let kM be the field obtained by adding the elements of ΛM to k, which
is called the Mth cyclotomic function field. Then kM is an abelian extension
of k. Fix a generator λ of ΛM . We get the following isomorphism:

(R/M)× → Gal(kM/k) (A mod M 7→ σAmodM )(4)

where Gal(kM/k) is the Galois group of kM/k, and σAmodM is the isomor-
phism given by σA mod M (λ) = λA. The extension degree of kM/k is Φ(M).
We see that F×q is contained in (R/M)×, and let k+

M be the subfield of kM
corresponding to F×q . We call k+

M the maximal real subfield of kM . The ex-
tension degree of k+

M/k is Φ(M)/(q − 1). If M is a monic polynomial of
degree 1, then k+

M = k.
For a monic polynomial M ∈ R, let XM be the group of all primitive

Dirichlet characters of (R/M)×. We call χ the real character if χ(a) = 1 for
any a ∈ F×q . Let X+

M be the set of real characters contained in XM . Let D
be the group of all primitive Dirichlet characters. Put

k̃ :=
⋃
M

kM(5)

where M runs through all monic polynomials in R. By the same argument as
in Chapter 3 of [4], we have a one-to-one correspondence between finite sub-
groups of D and finite subextension fields of k̃/k, and XM , X

+
M corresponds

to kM , k+
M respectively.

Theorem 2.1 (cf. [4, Theorem 3.7]). Let X be a finite subgroup of D,
and L the associated field. For an irreducible monic polynomial P ∈ R, put

Y := {χ ∈ X | χ(P ) 6= 0}, Z := {χ ∈ X | χ(P ) = 1}.



A determinant formula for congruence zeta functions 261

Then

X/Y ' the inertia group of P for L/k,
Y/Z ' the cyclic group of order fP ,
X/Z ' the decomposition group of P for L/k,

where fP is the residue class degree of P in L/k.

2.2. The congruence zeta function for k+
M . For a monic polynomial

M ∈ R, let Ok+
M

be the integral closure of R in the field k+
M . We define

ζ(s,Ok+
M

) by

ζ(s,Ok+
M

) :=
∏
P

(
1− 1
NPs

)−1

(6)

where P runs through all primes of Ok+
M

, and NP denotes the number of
elements of the residue field of P. By the same argument as in the case of
number fields, we have the following proposition.

Proposition 2.1 (cf. [4, Theorem 4.3]).

ζ(s,Ok+
M

) =
∏

χ∈X+
M

L(s, χ)(7)

where the L-function is defined by

L(s, χ) :=
∏
P

(
1− χ(P )
NP s

)−1

with P running through all monic irreducible polynomials of R.

The congruence zeta function of k+
M is defined by

ζ(s, k+
M ) :=

∏
P

(
1− 1
NPs

)−1

where P runs through all primes of k+
M . Let P∞ be the infinite prime of k

determined by the unique pole of T . Let e∞, f∞, g∞ be the ramification
index in k+

M/k, the residue class degree, and the number of primes lying
above P∞, respectively. Then we obtain

ζ(s, k+
M ) = ζ(s,Ok+

M
)(1− q−sf∞)−g∞ .

Since P∞ splits completely in k+
M/k, we get

ζ(s, k+
M ) = ζ(s,Ok+

M
)(1− q−s)−Φ(M)/(q−1).(8)
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3. The determinant formula for Pk+
M

(X). The goal of this section
is to give a determinant formula for Pk+

M
(X).

For a monic polynomial M ∈ R of degree d (d ≥ 2), we define RM :=
(R/M)×/F×q . For α ∈ (R/M)×, let rα be the element of R satisfying

rα ≡ α mod M, deg rα < d,

where degA denotes the degree of the polynomial A. We define

Deg(α) = deg rα.(9)

We can easily see that Deg is a function over RM .
Let N = Φ(M)/(q − 1)− 1. We put

RM = {1, α1, . . . , αN},

and

di = Deg(αi) (i = 1, . . . , N),

dij = Deg(αiα−1
j ) (i, j = 1, . . . , N).

We define

Jk+
M

(X) :=
∏

χ∈X+
M

χ 6=1

∏
Q|M

(1− χ(Q)XdegQ),(10)

where Q runs through all irreducible monic polynomials dividing M . We
put

Dk+
M

(X) :=
(
Xdij −Xdi

1−X

)
i,j=1,...,N

.(11)

Proposition 3.1.

Jk+
M

(X) =
∏
Q|M

(1−XfQ degQ)gQ

1−XdegQ
(12)

where Q is an irreducible monic polynomial dividing M and fQ, gQ are
the residue class degree in k+

M/k and the number of primes lying over Q,
respectively.

Proof. Let Q be an irreducible monic polynomial dividing M , and put

Y +
Q := {χ ∈ X+

M | χ(Q) 6= 0}, Z+
Q := {χ ∈ X+

M | χ(Q) = 1}.
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From Theorem 2.1,∏
χ∈X+

M

(1− χ(Q)XdegQ) =
∏
χ∈Y +

Q

(1− χ(Q)XdegQ)

=
∏

χ∈Y +
Q /Z+

Q

∏
ψ∈Z+

Q

(1− χψ(Q)XdegQ)

=
( ∏
χ∈Y +

Q /Z+
Q

(1− χ(Q)XdegQ)
)gQ

.

Since Y +
Q /Z

+
Q is a cyclic group of order fQ, we have∏

χ∈Y +
Q /Z+

Q

(1− χ(Q)XdegQ) = 1−XfQ degQ.

Hence we obtain∏
χ∈X+

M

(1− χ(Q)XdegQ) = (1−XfQ degQ)gQ .

From the above equality, the desired result follows.

From Proposition 3.1, Jk+
M

(X) is a polynomial with integral coefficients.
Now we can prove the main result of the present paper.

Theorem 3.1. Let M ∈ R be a monic polynomial of degree not less
than 2. Then

detDk+
M

(X) = Pk+
M

(X)Jk+
M

(X).(13)

Proof. For any χ ∈ X+
M , let fχ be the conductor of χ. Define χ̃ by

χ̃ = χ ◦ πχ
where πχ : (R/M)× → (R/fχ)× is the natural homomorphism. Then we can
easily see that

L(s, χ̃) = L(s, χ) ·
∏
Q|M

(1− χ(Q)q−sdegQ).

Hence we have∏
χ∈X+

M
χ 6=1

L(s, χ̃) =
( ∏
χ∈X+

M
χ 6=1

L(s, χ)
)
· Jk+

M
(q−s) = ζ(s,Ok+

M
)(1− q1−s)Jk+

M
(q−s).

By the same argument as in Lemma 3 in [2], if χ 6= 1,

L(s, χ̃) =
d−1∑
k=0

∑
degA=k
Amonic

χ̃(A)q−ks =
∑
α∈RM

χ̃(α)q−Deg(α)s.
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Since χ̃ is real, χ̃ is a character of RM . Notice that χ̃ runs through all char-
acters of RM when χ runs through all characters of X+

M . By the Frobenius
determinant formula (cf. [4, Lemma 5.26]),∏
χ∈X+

M
χ 6=1

L(s, χ̃) =
∏

χ∈X+
M

χ 6=1

∑
α∈RM

χ̃(α)q−Deg(α)s = det (q−sdij − q−sdi)i,j=1,...,N .

Since P∞ splits completely in k+
M/k, we have

det
(
q−sdij − q−sdi

1− q−s

)
i,j

= Pk+
M

(q−s)Jk+
M

(q−s).

Putting X = q−s, we obtain the desired result.

By applying L’Hôpital’s rule, we calculate

Xdij −Xdi

1−X

∣∣∣∣
X=1

= di − dij .(14)

We can now use our theorem to rederive the class number formula of Bae
and Kang.

Corollary 3.1 (Bae–Kang [1]). In the notations of Proposition 3.1, we
have

det (di − dij)i,j=1,...,N = Wk+
M
hk+

M
(15)

where

Wk+
M

=

{ ∏
Q|M fQ if gQ = 1 for every prime Q dividing M ,

0 otherwise.
(16)

Proof. We can calculate

detDk+
M

(X)|X=1 = det (di − dij)i,j=1,...,N ,(17)

and WK+
M

= J+
M (1) by Proposition 3.1. Since Pk+

M
(1) = hk+

M
, we obtain the

desired result.

Remark. The corollary applies, in particular, when M = Qd is a prime
power. Since Q is totally ramified in k+

M/k, we have gQ = 1 and fQ = 1. It
follows, in this case, that hk+

M
= det (di − dij).

Corollary 3.2. Let M ∈ R be a monic polynomial of degree 2. Then
Pk+

M
(X) = 1.

Proof. We have

di = 1, dij =

{
0 if i = j,
1 if i 6= j.

It follows that Dk+
M

(X) = IN . By Theorem 3.1, Pk+
M

(X) = 1.
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I would like to thank the referee for suggesting the following alternative
proof of Corollary 3.2. Using the Riemann–Hurwitz formula, we find that k+

M
has genus zero in the case of degM = 2. Thus, we also obtain PK+

M
(X) = 1.

We give some examples of Pk+
M

(X).

Example 3.1. Let q = 2 and M = T 3 ∈ Fq[T ]. We put

RM = {1, α1 = T + 1, α2 = T 2 + 1, α3 = T 2 + T + 1}.

As M is a power of an irreducible polynomial, Pk+
M

(X) = detDk+
M

(X).
Hence

Pk+
M

(X) = detDk+
M

(X) =

∣∣∣∣∣∣∣
1 −X −X
X 1 +X 0
0 X 1 +X

∣∣∣∣∣∣∣ = 1 + 2X + 2X2.

Example 3.2. Let q = 2 and M = T 2(T + 1)2 ∈ Fq[T ]. We put

RM = {1, α1 = T 2 + T + 1, α2 = T 3 + T + 1, α3 = T 3 + T 2 + 1}.

Then

detDk+
M

(X) =

∣∣∣∣∣∣∣
1 +X −X2 −X2

0 1 +X +X2 X2

0 X2 1 +X +X2

∣∣∣∣∣∣∣
= (1 +X + 2X2)(1 +X)2,

and

Jk+
M

(X) = (1 +X)2.

Thus, we get

Pk+
M

(X) = 1 +X + 2X2.

4. Calculating the coefficients of detDk+
M

(X). In this section, we
will give a formula for the coefficients of low degree for detDk+

M
(X).

Let M ∈ R be a monic polynomial of degree d. Since detDk+
M

(0) = 1,
we can write

detDk+
M

(X) = 1 + a1X + a2X
2 + · · ·,(18)

where ai (i = 1, 2, . . . ) are integers. For 0 ≤ i < d, put

si = #{α ∈ RM | degα = i}, ti = #{α ∈ RM | degα ≤ i},

where #A is the number of elements of the set A. We have the following
result.
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Proposition 4.1. If degM ≥ 3, then

a1 =
Φ(M)
q − 1

− t1,(19)

a2 =
1
2

{
Φ(M)
q − 1

− 2t2 +
(
Φ(M)
q − 1

− t1
)2

+ t21

}
.(20)

To prove this proposition, we first state the following lemma, which can
be shown by simple calculations.

Lemma 4.1. Let F (X) = (fij(X))i,j be a matrix-valued function of one
variable. If F (X) is twice differentiable and invertible for X = X0, then

ddetF (X)
dX

∣∣∣∣
X=X0

= detF (X0) · Tr
(
F (X0)−1 dF

dX
(X0)

)
,

d2 detF (X)
dX2

∣∣∣∣
X=X0

= detF (X0) ·
{

Tr
(
F (X0)−1 d

2F

dX2
(X0)

)
− Tr

(
F (X0)−1 dF

dX
(X0)F (X0)−1 dF

dX
(X0)

)
+ Tr

(
F (X0)−1 dF

dX
(X0)

)2}
,

where Tr(A) is the trace of the matrix A.

Proof of Proposition 4.1. The matrix Dk+
M

(0) is the unit matrix IN , and

Dk+
M

(0)−1 = IN ,
dDk+

M

dX
(0) = (cij)i,j=1,...,N ,

where

cij =



0 if i = j, di = 1,
1 if i = j, di 6= 1,
1 if dij = 1, di > 1,
−1 if dij > 1, di = 1,
0 otherwise.

(21)

From Lemma 4.1, we obtain

a1 = Tr((cij)i,j) =
Φ(M)
q − 1

− t1,

and

2a2 = Tr
(d2Dk+

M

dX2
(0)
)
− Tr

((dDk+
M

dX
(0)
)2)

+ Tr
(dDk+

M

dX
(0)
)2

.
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By straightforward calculations, we get

Tr
(d2Dk+

M

dX2
(0)
)

= 2
(
Φ(M)
q − 1

− t2
)
, Tr

(dDk+
M

dX
(0)
)2

=
(
Φ(M)
q − 1

− t1
)2

.

From (21),

Tr
((dDk+

M

dX
(0)
)2)

=
N∑
i=1

N∑
j=1

cijcji

=
N∑
i=1

c2i +
∑

di=1<dij

dj=1<dji

1 +
∑

dij=1<di

dji=1<dj

1−
∑

di=1<dij

dji=1<dj

1−
∑

dj=1<dji

dij=1<di

1.

Since degM ≥ 3, we can easily see that
N∑
i=1

c2i =
Φ(M)
q − 1

− t1,
∑

di=1<dij

dj=1<dji

1 = s21 − s1,

∑
dij=1<di

dji=1<dj

1 = 0,
∑

di=1<dij

dji=1<dj

1 =
∑

dj=1<dji

dij=1<di

1 = s21.

It follows that

Tr
((dDk+

M

dX
(0)
)2)

=
Φ(M)
q − 1

− t21.

Hence (20) follows.

We give some examples for Proposition 4.1.

Example 4.1. Let M ∈ R be an irreducible monic polynomial of de-
gree 3. Then

t1 = q + 1, t2 =
Φ(M)
q − 1

= q2 + q + 1.

By Proposition 4.1,

Pk+
M

(X) = detDk+
M

(X) = 1 + q2X +
q(q3 + 1)

2
X2 + · · · .

Example 4.2. We put M = Tn (n ≥ 3). Then

t1 = q, t2 = q2,
Φ(M)
q − 1

= qn−1.

Hence

Pk+
M

(X) = detDk+
M

(X)

= 1 + (qn−1 − q)X +
qn−1(qn−1 − 2q + 1)

2
X2 + · · · .
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