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1. Introduction. In this paper we are interested in the existence of
integer and rational points on the hypersurface given by the equation

Vf : f(p) + f(q) = f(r) + f(s),

where f ∈ Q[X] and deg f = 5. We assume that for each pair a, b ∈ Q \ {0}
we have f(ax + b) 6= cx5 + d for any c, d ∈ Q. This assumption guarantees
that Vf is an affine algebraic variety of dimension three. The set of rational
points on Vf will be denoted by Vf (Q). In other words,

Vf (Q) = {(p, q, r, s) ∈ Q4 : f(p) + f(q) = f(r) + f(s)}.
Similarly, Vf (Z) denotes the set of integer points on Vf , so Vf (Z) =
Vf (Q) ∩ Z4.

We say that the point P = (p, q, r, s) ∈ Vf is nontrivial if {p, q} ∩
{r, s} = ∅ and {f(p), f(q)} ∩ {f(r), f(s)} = ∅. We denote by Tf the set of
trivial rational points on Vf . Note that each singular point is trivial, and
the number of singular points (rational or not) is finite. In the following,
a rational point will mean a nontrivial rational point.

The problem of the existence of integer points on Vf was investigated in
the interesting work of Browning [1], who showed that

M(f ;B)�ε,f B
1+ε(B1/3 +B2/

√
5+1/4)

for each ε > 0; here M(f ;B) is the number of solutions (p, q, r, s) ∈ Z4 of the
equation which defines Vf with 0 < p, q, r, s ≤ B and {p, q}∩{r, s} = ∅. The
above estimate shows that the set of positive integer points on Vf is rather
“thin”. To the author’s knowledge no example is known of a polynomial f
of degree five with Vf (Z) \ Tf infinite. Moreover, we have been unable to
find in the literature any example of a polynomial f of degree five which
gives a positive answer to the following:
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Question 1.1. Let N > 1 be given. Is it possible to construct a polyno-
mial f of degree five such that ](Vf (Z) \ Tf ) > N?

It is clear that the question of existence of a polynomial f of degree five
with Vf (Q) infinite should be easier to tackle. So, it is natural to ask the
following:

Question 1.2. For which polynomials f of degree five the set Vf (Q) is
infinite?

It seems that these questions have not been considered before. It is also
clear that in the case of Question 1.2 we can only consider polynomials of the
form f(X) = X5+aX3+bX2+cX, where a, b, c ∈ Z and at least one of a, b, c
is nonzero. We will see that if b 6= 0, then the diophantine equation f(p) +
f(q) = f(r) + f(s) has a rational two-parameter solution (Theorem 2.1). In
geometrical terms this means that there is a unirational surface contained
in Vf . From this we can deduce easily that the answer to Question 1.1 is
positive. Moreover, we will prove that for any polynomial f of degree five
there exists a Q(i)-rational surface contained in Vf (Theorem 2.5).

2. Construction of rational points on Vf . Let f ∈ Q[X] with
deg f = 5. In this section we will construct parametric solutions of the
equation defining the hypersurface

Vf : f(p) + f(q) = f(r) + f(s).

Since we are interested in rational solutions, we can assume without loss
of generality that f(X) = X5 +aX3 + bX2 + cX, a, b, c ∈ Z and at least one
of a, b, c is nonzero.

Our aim is to prove the following theorem.

Theorem 2.1. Let f(X) = X5 + aX3 + bX2 + cX ∈ Z[X], where b 6= 0.
Then there exists a Q-unirational elliptic surface Ef such that Ef (Q) ⊂
Vf (Q). In particular , the set Vf (Q) is infinite.

Proof. In the equation defining Vf we make a (noninvertible) substitu-
tion

(1) p = x, q = y − x, r = z, s = y − z.
As a result,

f(x) + f(y − x)− f(z)− f(y − z) = (x− z)(x− y + z)G(x, y, z),

where G(x, y, z) = 2b + 3ay + 5x2y − 5xy2 + 5y3 − 5y2z + 5yz2. From the
geometric point of view this substitution amounts to intersecting the hyper-
surface Vf with the hyperplane L : p+q = r+s ((1) gives a parametrization
of L).
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Note that the equation G(x, y, z) = 0 has a solution in rational numbers
if and only if the discriminant of the polynomial G with respect to z is the
square of a rational number, say v. Thus, we are interested in the rational
points on the surface

S : v2 = −5y(15y3 + 20xy(x− y) + 12ay + 8b) =: ∆(x, y).

If we make a change of variables

(x, y, w) =
(
−5b(t+ 1)
X + 5a

,− 10b
X + 5a

,
20bY

(X + 5a)2

)
,

with the inverse

(X, t, Y ) =
(
−5(2b+ ay)

y
,
2x− y
y

,
5bw
y2

)
the surface S is transformed to

E : Y 2 = X3 − 75a2X − 125(5bt2 + 10b2 + 2a3).

Note that the surface E is of degree three and contains a rational curve
at infinity [X : Y : t : Z] = [0 : 1 : t : 0], so the Segre theorem shows that
E is unirational. This implies the existence of a two-parameter solution of
the equation defining E . For the convenience of the reader we will show how
this solution can be constructed.

Set F (X,Y, t) = Y 2 − (X3 − 75a2X − 125(5bt2 + 10b2 + 2a3)). We use
the method of undetermined coefficients to find a two-parameter solution of
F (X,Y, t) = 0. Let u, v be parameters and set

(2) X = T 2 + 10uT + p, Y = T 3 + qT 2 + rT, t = (v/5b)T 2 + s.

We want to find p, q, r, s, T ∈ Q(u, v) such that the equation F (X,Y, t) = 0
is satisfied identically. For the quantities given by (2) we have

F (X,Y, t) = a0 + a1T + a2T
2 + a3T

3 + a4T
4 + a5T

5,

where

a0 = 250a3 +1250b2 +75a2p−p3 +625b2s2, a1 = 30(5a− p)(5a+ p)u,
a2 = 75a2 − 3p2 + r2 − 300pu2 + 250bsv, a3 = 2(qr−30pu−500u3),
a4 = −3p+ q2 + 2r − 300u2 + 25v2, a5 = 2(q − 15u).

The system of equations a2 = a3 = a4 = a5 = 0 has exactly one solution in
Q(u, v) given by

(3)
p = 25(u2 − 3v2)/3, q = 15u,

r = 50(u2 − v2), s = (25u4 − 450u2v2 − 75v4 − 9a2)/30bv.

If p, q, r, s are given by (3) then F (T 2+10uT+p, T 3+qT 2+rT, (v/5b)T 2+s)
∈ Q(u, v)[T ] and degT F = 1. So this polynomial has a root in the field
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Q(u, v) given by

T = −250a3 + 1250b2 + 75a2p− p3 + 625b2s2

30(5a− p)(5a+ p)u
.

Putting the calculated values p, q, r, s, T into (2) we get the desired solutions
depending on two parameters u, v.

Remark 2.2. The same method was used by Whitehead [4] to prove
the unirationality of the surface z2 = h(x, y), where h ∈ Q[x, y] has degree
three. This theorem can also be found in [3, p. 85].

Thanks to the theorem above we can easily prove that the answer to the
Question 1.1 is positive.

Corollary 2.3. For any N ∈ N+ there are infinitely many polynomials
f ∈ Z[X] of degree five such that on the hypersurface Vf : f(p) + f(q) =
f(r) + f(s) there are at least N nontrivial integer points.

Proof. Let f(X) = X5 + aX3 + bX2 + cX with b 6= 0. From the pre-
vious theorem, the diophantine equation f(p) + f(q) = f(r) + f(s) has
infinitely many solutions in rational numbers. Let (pi/p′i, qi/q

′
i, ri/r

′
i, si/s

′
i),

i = 1, . . . , N , be such distinct solutions, and define

d = LCM(p′1, q
′
1, r
′
1, s
′
1, . . . , p

′
N , q

′
N , r

′
N , s

′
N ).

If we now define F (X) = X5 + ad2X3 + bd3X2 + cd4X, then on the hyper-
surface Vf : F (p) + F (q) = F (r) + F (s) we have the points

(dpi/p′i, dqi/q
′
i, dri/r

′
i, dsi/s

′
i)

for i = 1, . . . , N , which are tuples of integers.

This corollary gives a positive answer to Question 1.1. However, if N
grows then the coefficients of the polynomial F grow too. Therefore, we can
ask the following:

Question 2.4. Let N > 1 be given. Is it possible to construct a polyno-
mial f(X) = X5 + aX3 + bX2 + cX with ](Vf (Z) \ Tf ) ≥ N and at least
one nonzero coefficient a, b or c independent of N?

As we will see, the answer to this question is also positive. First, let us
go back to Question 1.2 for f(X) = X5 + aX3 + cX. Unfortunately, we are
unable to prove a theorem similar to Theorem 2.1 in this case. However, we
can prove the following:

Theorem 2.5. Let f(X) = X5 + aX3 + cX ∈ Z[X]. If a < 0 and
a 6≡ 2, 18, 34 (mod 48) then the diophantine equation f(p) + f(q) = f(r) +
f(s) has a two-parameter rational solution.
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Proof. Set

(4) p =
−x+ y + 3z

5
, q =

2x+ y

5
, r =

3y
5
, s =

x− y + 3z
5

.

Then

f(p) + f(q)− f(r)− f(s) =
6(x− y)(x+ 2y − 3z)(x+ 2y + 3z)F (x, y, z)

625
,

where F (x, y, z, a) = x2 + 2y2 + 3z2 + 5a. The first three brackets in the nu-
merator lead to trivial solutions of our equation. Thus we obtain a nontrivial
solution if and only if F (x, y, z) = 0. In particular, we must have a < 0. For
diophantine equations of degree two, the local to global principle of Hasse is
true: the equation x2 +2y2 +3z2 +5a = 0 has a solution in rational numbers
if and only if it has solutions in the field Qp of p-adic numbers for any given
p ∈ P ∪ {∞}, where as usual Q∞ = R.

The theorem below gives the well-known criterion of the solvability of
the diophantine equation a1X

2
1 + a2X

2
2 + a3X

2
3 + a4X

2
4 = 0. This criterion

is taken from [2].

Theorem 2.6. If f(x1, x2, x3, x4) = a1X
2
1 +a2X

2
2 +a3X

2
3 +a4X

2
4 , where

ai ∈ Z \ {0} are square-free and no three have a factor in common, then f
represents zero if and only if the following three conditions hold :

(1) Not all coefficients have the same sign.
(2) If p is an odd prime dividing two coefficients and (d/p2 | p) = 1,

then (−aiaj | p) = 1, where GCD(aiaj , p) = 1 and d = a1a2a3a4 is
the discriminant of the form f .

(3) If d ≡ 1 (mod 8) or d/4 ≡ 1 (mod 8) then (−a1a2,−a2a3)2 = 1.

Here (α, β)2 takes two values: +1 or −1, depending on whether the equa-
tion αx2

1 + βx2
2 = 1 has a solution in Q2 or not. If α = 2uα1, β = 2vβ1 and

GCD(2, α1β1) = 1, then (α, β)2 = (2 |α1)v(2 |β1)u(−1)(α1−1)(β1−1)/4, where
(·|·) is the usual Legendre symbol.

In order to finish the proof of Theorem 2.5 we apply the above procedure
to the quadratic form X2

1 + 2X2
2 + 3X2

3 + 5aX2
4 . We have to consider four

cases depending on the values of GCD(a, 6). Because this reasoning is very
simple we leave it to the reader.

Example 2.7. Let f(X) = X5 − X3 + cX and consider the equation
f(p) + f(q) = f(r) + f(s). We will show how to use the previous theorem in
practice.

Consider the equation (∗) x2 + 2y2 + 3z2 − 5 = 0. It has a rational
solution (x, y, z) = (0, 1, 1). Set x = uT, y = vT + 1, z = T + 1. Next solve
the equation (uT )2 + 2(vT + 1)2 + 3(T + 1)2 − 5 = 0 with respect to T .
After some simplifications we get a parametrization of rational solutions of
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equation (∗) in the form

x = − 2u(2v + 3)
u2 + 2v2 + 3

, y =
u2 − 2v2 − 6v + 3
u2 + 2v2 + 3

, z =
u2 + 2v2 − 4v − 3
u2 + 2v2 + 3

.

Hence we get a solution of the equation f(p) + f(q) = f(r) + f(s):

p =
2(2u2 + (2v + 3)u+ 2v2 − 9v − 3)

5(u2 + 2v2 + 3)
,

q =
u2 − 4(2v + 3)u− 2v2 − 6v + 3

5(u2 + 2v2 + 3)
,

r =
3(u2 − 2v2 − 6v + 3)

5(u2 + 2v2 + 3)
, s =

2(u2 − (2v + 3)u+ 4v2 − 3(v + 2))
5(u2 + 2v2 + 3)

.

Using the method of proof of Theorem 2.5 we will show the following:

Corollary 2.8. The answer to Question 2.4 is positive.

Proof. This is a simple consequence of the fact that for any number N we
can find a negative number aN such that the equation x2+2y2+3z2 = −5aN
has at least N solutions in positive integers x, y, z all divisible by 5. To prove
this, we set gN =

∏N
k=1(k2 + 2) and aN = −(5gN )2. Next, we define

xk =
5gN
k2 + 2

(2k+3), yk =
5gN
k2 + 2

(k2+3k−2), zk =
5gN
k2 + 2

(k2−2k−1),

for k = 1, . . . , N. Note that xk, yk, zk are integers divisible by 5.
Since (

2k + 3
k2 + 2

)2

+ 2
(
k2 + 3k − 2
k2 + 2

)2

+ 3
(
k2 − 2k − 1
k2 + 2

)2

= 5,

we see that
x2
k + 2y2

k + 3z2
k = −5aN for k = 1, . . . , N.

Now define fN (x) = x5 + aNx
3 + cx, where c is an integer. From our

reasoning we see that on the hypersurface VfN
there are at least N integer

points given by

pk =
−xk + yk + 3zk

5
, qk =

2xk + yk
5

, rk =
3yk
5
, sk =

xk − yk + 3zk
5

,

for k = 1, . . . , N and the c is independent of N .

The results of this section suggest the following:

Conjecture 2.9. Let f(x) = x5 + ax3 + cx, where a, c ∈ Z \ {0}. Then
the set Vf (Q) \ Tf is infinite.
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3. Construction of Q(i)-rational points on Vf . In this section we
will construct Q(i)-rational points on the hypersurface Vf .

Let us go back to the equation of the surface S from the proof of
Theorem 2.1 and note that the polynomial ∆ has degx∆ = 2. Now we
view S as a curve defined over the field Q(i)(y), where i2 + 1 = 0. It is
easy to see that it is a rational curve. Indeed, on S there is a Q(i)(y)-
rational point [x : v : w] = [i : 10y : 0] (it is a point at infinity). Setting
x = ip, w = 10yp + u and solving the resulting equation for p we get the
parametrization of our curve given by

x = i
u2 + 75y4 + 60ay2 + 40by

20y(5iy2 − u)
, w =

u2−10iuy2−75y4−60ay2−40by
2(u− 5iy2)

.

Hence a two-parameter solution of the equation defining Vf is

p = −i u
2 + 75y4 + 60ay2 + 40by

20y(u− 5iy2)
,

q = i
u2 − 20iy2u− 25y4 + 60ay2 + 40by

20y(u− 5iy2)
,

r =
u2 + 10(1− i)y2u− 25(3 + 2i)y4 − 60ay2 − 40by

20y(u− 5iy2)
,

s = −u
2 − 10(1 + i)y2u− 25(3− 2i)y4 − 60ay2 − 40by

20y(u− 5iy2)
.

We sum up the discussion concerning the existence of Q(i)-rational
points on Vf in the following:

Theorem 3.1. Let f(X) = X5 +aX3 + bX2 + cX ∈ Z[X]. If a = b = 0
then there exists a Q(i)-rational curve contained in Vf . If a 6= 0 or b 6= 0,
then there exists a Q(i)-rational surface contained in Vf .

Note that in the above expressions for p, q, r, s the number c does not
appear explicitly, and the solution obtained is nontrivial for all a, b, c ∈ Z.
If we put a = b = c = 0, then we get a parametric solution (defined over
Q(i)) of the diophantine equation p5 + q5 = r5 + s5. After simplifications
the solution is (in homogeneous form)

p = u2 + 75v2,

q = −u2 + 20iuv + 25v2,

r = iu2 + 10(1 + i)uv + 25(2− 3i)v2,

s = −iu2 − 10(1− i)uv + 25(2 + 3i)v2.

This solution is probably well known but we have not been able to find it in
the literature. Note that this solution can be used to construct a parametric
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solution (over Z[i]) of the diophantine equation

p5n + q5 = r5 + s5,

where n is a given positive integer. Indeed, it is easy to see that the dio-
phantine equation u2 + 75v2 = Xn has a parametric solution given by the
solution of the system

u+
√
−75 v = (t1+

√
−75 t2)n, u−

√
−75 v = (t1−

√
−75 t2)n, X = t21+75t22.

It is clear that the solutions u, v,X lead to a polynomial solution of the
equation p5n + q5 = r5 + s5.

4. Possible generalizations. In this section we consider natural gen-
eralizations of the equation defining the hypersurface Vf .

The first natural generalization which comes to mind is

VF,G : F (p) +G(q) = F (r) +G(s),

where F (x) = x5 + ax3 + bx2 + cx, G(x) = x5 + dx3 + ex2 + fx and
F (x)− F (0) 6= G(x)−G(0). It is clear that in order to find rational points
on VF,G we can assume that a, b, . . . , e, f ∈ Z.

We will show that for given F,G as above the hypersurface VF,G contains
an elliptic surface defined over Q. To do this, define

(5) p = t− U

V
, q =

U

V
, r =

1
V
, s = t− 1

V
.

Then

F (p) +G(q)− F (r)−G(s) = − tV − U − 1
V 4

H(U, V, t),

where H(U, V, t) =
∑

i+j≤3 ai,jU
iV j and

(6)

a3,0 = −a2,0 = 5t, a1,0 = −a0,0 = 5t,
a2,1 = −a+ d− 5t2, a1,1 = a− d,
a0,1 = −a+ d+ 5t2, a1,2 = b+ e+ (2a+ d)t+ 5t3,
a0,2 = −b−e− (a+2d)t−5t3, a0,3 = f − c+(e− b)t+ (d−a)t2.

Note that the surface SF,G : H(U, V, t) = 0 can be viewed as a cubic
curve defined over the field Q(t). This curve has a Q(t)-rational point P =
(U, V ) = (1, 0). We can consider P as the point at infinity and transform
SF,G birationally onto the elliptic surface EF,G with the Weierstrass equation

EF,G : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

where ai ∈ Z[t] depend on the coefficients of F,G. We do not give the polyno-
mials ai exactly as they are rather complicated. However, the computations
suggest the following.
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Conjecture 4.1. Let a, b, c, d, e, f ∈ Z and consider the elliptic surface

E : H(U, V, t) =
∑
i+j≤3

ai,jU
iV j = 0

where the ai,j are given by (6). Then the set

S = {t ∈ Q : Et is an elliptic curve and has a positive rank}
is nonempty.

Another generalization which comes to mind is

Vf : f(p, q) = f(r, s),

where f is a symmetric (f(x, y) = f(y, x)) quintic polynomial, i.e.

(7) f(x, y) =
5∑
i=1

ai(xi + yi) + xy

3∑
i=1

bi(xi + yi) + x2y2(c0(x+ y) + c1).

We will show that there are in general infinitely many Q(i)-rational
points on Vf . Indeed, the substitution (5) yields

f(p, q)− f(r, s) = −(U − 1)(tV − U − 1)
V 4

G(U, V ),

where G(U, V ) =
∑

i+j≤2 bi,jU
iV j , bi,j ∈ Z[t] and

b2,0 = 2a4−2b2 + c1 + t(5a5−3b3 + c0), b1,0 = 0, b0,0 = b2,0,

b0,2 = 2a2 + t(3a3− b1)+ t2(4a4− b2)+ t3(5a5− b3), b0,1 = b1,1 = −tb2,0.

In order to construct Q(i)(t)-rational points on Vf we must consider the
quadratic C : G(U, V ) = 0 defined over the field Q(t). Note that G(i, 0) = 0,
so we can use standard methods to parametrize Q(i)(t)-rational points on C
and in general we get a two-parameter solution of the equation G(U, V ) = 0.
This implies the existence of a two-parameter solution defined over the field
Q(i) of the equation defining the hypersurface Vf .

It is clear that this method does not always work. Indeed, if b2,0 ≡ 0 ∈
Z[t] then the equation G(U, V ) = 0 reduces to the equation b0,2(t) = 0
which has at most three solutions in Q(i). However, if b2,0(t) 6= 0 for some t,
then the curve C is nontrivial and we can apply our method to construct
Q(i)-rational points on Vf . This suggests the following

Question 4.2. Consider the hypersurface Vf : f(p, q) = f(r, s) where f
is of the form (7). Suppose that 2a4 − 2b2 + c1 = 5a5 − 3b3 + c0 = 0. Is it
possible to construct Q(i)-rational points on Vf?

Remark 4.3. Although it is possible, we do not give equations defining
the parametrization of the curve C in the case when b2,0 ∈ Z[t] \ {0}. Also
note that it is very likely that for a specific choice of ai, bj , ck there is
a rational number t0 such that the quadric Ct0 : G(U, V ) = 0 (here we
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specialize the curve C which is defined over Q(t) at t = t0) has a rational
point. Then we can use a standard method of parametrization of quadrics
to get rational solutions of the equation defining the hypersurface Vf .
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